Antenatal management in fetal and neonatal alloimmune thrombocytopenia: a systematic review

Dian Winkelhorst¹, Michael F Murphy,² Andreas Greinacher³, Nadine Shehata,⁴ Taman Bakchoul,⁵,⁶ Edwin Massey,⁶ Jillian Baker,⁷ Lani Lieberman,⁸ Susano Tanael,⁹ Heather Hume¹⁰ Donald M. Arnold,¹¹ Shoma Baiḍya,¹² Gerald Bertrand,¹³ James Bussel,¹⁴ Mette Kjaer,¹⁵ Cécile Kaplan,¹⁶ Jens Kjeldsen-Kragh,¹⁷ Dick Oepkes,¹ and Greg Ryan¹⁸

¹Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands; ²Blood Transfusion Medicine, University of Oxford; NHSBT and Oxford University Hospital, UK; ³Institute of Immunology and Transfusion Medicine, University Hospital Greifswald, Germany; ⁴Departments of Medicine and Obstetric Medicine, Mount Sinai Hospital, Toronto, Canada; ⁵Center for Clinical Transfusion Medicine, University of Tuebingen, Tuebingen Germany; ⁶Diagnostic and Therapeutic Services, NHS Blood and Transplant, UK; ⁷Hospital for Sick Children, St. Michael’s Hospital, Toronto, Canada; ⁸University Health Network, University of Toronto, Toronto, Canada; ⁹Center for Innovation, Canadian Blood Services, Toronto, Canada; ¹⁰Division of Haematology/Oncology, CHU Sainte-Justine, University of Montreal, Canada; ¹¹Division of Hematology and Thromboembolism, McMaster University, Canada; ¹²Australian Red Cross Blood Services; ¹³Platelet Immunology Department, French Blood Services of Brittany (EFS), Rennes, France; ¹⁴Weill Cornell Medical College, US; ¹⁵Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, Tromsø, Norway and Finnmark Hospital Trust, Hammerfest, Norway; ¹⁶Formerly Institut National de la Transfusion Sanguine, France; ¹⁷Department of Clinical Immunology and Transfusion Medicine, Regional and University Laboratories Region Skåne, Lund, Sweden; ¹⁸Fetal Medicine Unit, Mount Sinai Hospital, Toronto, Canada

Correspondence: Dick Oepkes, Department of Obstetrics, Leiden University Medical Center, P.O. Box 9600, K6-35, 2300 RC Leiden, The Netherlands; e-mail: d.oepkes@lumc.nl; telephone: 416 864 5058; fax : +031 71 5266741

Running title: Antenatal Management in FNAIT
Text word count: 3981 words
Abstract word count: 199 words
Number of figures: 1 figure
Number of tables: 3 tables in print, 1 supplementary table
Number of references: 47 references

Keywords: alloimmune thrombocytopenia, antenatal management, IVIG, IUPT, fetal therapy
KEY POINTS

- The systematic review suggests that first line antenatal management in FNAIT is weekly IVIG administration.
- Non-invasive management is effective without the relatively high rate of adverse outcomes seen in invasive strategies.

ABSTRACT

Several strategies can be used to manage fetal or neonatal alloimmune thrombocytopenia (FNAIT) in subsequent pregnancies. Serial fetal blood sampling (FBS) and intrauterine platelet transfusions (IUPT), and weekly maternal intravenous immunoglobulin infusion (IVIG), with or without additional corticosteroid therapy are common options, but the optimal management has not been determined. The aim of this systematic review was to assess antenatal treatment strategies for FNAIT. Four randomized controlled trials and twenty-two non-randomized studies were included. Pooling of results was not possible due to considerable heterogeneity. Most studies found comparable outcomes regarding the occurrence of intracranial hemorrhage, regardless of antenatal management strategy applied; FBS, IUPT or IVIG with/without corticosteroids. There is no consistent evidence for the value of adding steroids to IVIG. Fetal blood sampling or intrauterine platelet transfusion resulted in a relatively high complication rate, consisting mainly of preterm emergency cesarean section, 11% per treated pregnancy in all studies combined. Overall, non-invasive management in pregnant mothers who have had a previous neonate with FNAIT is effective without the relatively high rate of adverse outcomes seen with invasive strategies. This systematic review suggests that first line antenatal
management in FNAIT is weekly IVIG administration, with or without the addition of corticosteroids.
INTRODUCTION

Fetal and neonatal alloimmune thrombocytopenia (FNAIT) may lead to severe bleeding complications such as intracranial hemorrhage, in the fetus or newborn. Thrombocytopenia is caused by maternal alloantibodies against human platelet (PLT) antigens (HPA) resulting from maternal alloimmunization after exposure to paternally derived antigens on fetal PLTs. Most commonly involved are HPA-1a alloantibodies, which are responsible for approximately 80% of FNAIT cases.1,2 Not only do these maternal alloantibodies cause destruction and inhibit the production of fetal PLTs, they are also thought to affect vascular integrity, angiogenesis, resulting in an increased risk of intracranial and extracranial bleeding complications in fetuses and neonates and potentially intrauterine and perinatal death.3-6

In the absence of population-based screening programs, the diagnosis of FNAIT is usually made after an incidental finding of neonatal thrombocytopenia or because of bleeding complications ranging from bruising or petechiae to intracranial hemorrhage in the fetus or newborn. Consequently, with an estimated recurrence rate of 79% of severe bleeding complications, the current challenge is to determine the best management strategy of subsequent pregnancies in women with a history of FNAIT with the goal of preventing these complications and avoiding maternal toxicities.7 To avoid unnecessary interventions and anxiety, paternal genotyping should always be performed for the HPA involved in the preceding FNAIT. In case of paternal heterozygosity, maternal-fetal incompatibility should be determined either using amniocentesis or assessing cell-free fetal DNA, when HPA-1a is involved.

One of the first prenatal treatment strategies was ultrasound-guided fetal blood sampling (FBS) and intrauterine platelet transfusion (IUPT).8 This technique, used for the treatment of fetal anemia, was applied to fetuses with thrombocytopenia and involved the transfusion of PLTs.
Cordocentesis in the presence of thrombocytopenia may however lead to fetal bradycardia, tamponade of the cord and bleeding complications in the fetus including exsanguination. In addition, given the short life span of transfused PLTs, transfusions are needed regularly, increasing the overall risk of fetal loss. The first non-invasive treatment, maternal infusion of intravenous immunoglobulin (IVIG) was reported in 1988, after which IVIG rapidly gained ground as a standard antenatal treatment strategy for FNAIT as have corticosteroids. Prolonged use of IVIG and corticosteroids during pregnancy are associated with adverse effects as well. Although the side effects of IVIG are usually mild, hemolytic anemia, renal failure, aseptic meningitis and thrombotic complications may occur. Corticosteroids are associated with hypertension and diabetes. Both agents can affect the quality of life of patients.

No international consensus on the optimal antenatal management of FNAIT exists and numerous strategies, non-invasive as well as invasive, are applied in different centers specialized in antenatal therapy. Since FNAIT is a rare disease, systematically reviewing the literature to determine the evidence to support antenatal treatment options can inform practice. Hence, we performed a systematic review of all available literature on antenatal management strategies, to be used to inform and assist in the development of guidelines.
METHODS

Data Sources

This review was performed according to the PRISMA guidelines. With the assistance of a medical research library specialist, an electronic search strategy was developed, and applied to databases Medline, EMBASE and Cochrane Library from 1946 to December 2015 (Appendix). Reference lists were cross-checked for relevant citations.

Study Selection and data extraction

Citations were reviewed by two reviewers to identify studies that met the following inclusion criteria: 1) original study, 2) included five or more pregnant women with pregnancies at risk for FNAIT or fetuses/neonates diagnosed with FNAIT, 3) treated with either IVIG, steroids or IUPT, 4) included any of the following outcomes (intracranial hemorrhage and fetal/neonatal PLT count) and 5) published in the English language. In case of disagreement, the full report was retrieved and independent assessment was repeated. Disagreements for inclusion were resolved by consensus. For articles that were published more than once and contained the same FNAIT population, only the study with the largest number of women and the most complete data extraction was included. Data extraction was performed by two authors according to a predetermined standardized format of study characteristics, outcome data and complications of interventions (Table 1).

Risk of bias was assessed according to The Cochrane Collaboration’s tool for randomized studies, and Newcastle-Ottawa Scale (NOS) for nonrandomized studies. The NOS is based on three parameters: selection, comparability and outcome (Table 2). For the parameter selection, we assessed if the exposed cohort was representable for the FNAIT population
(defined as HPA incompatible pregnancies), if the patient enrollment was consecutive and if ICH was absent at start of the treatment. The parameter comparability was met if cohorts had a comparable proportion of siblings with ICH. For outcome, we assessed if the outcome of ICH was assessed by cranial ultrasound, if the follow-up was adequate (neonatal instead of fetal PLT count) and, lastly, if neonatal PLT count and ICH data were available for all subjects.

Data Analysis

Due to considerable methodological heterogeneity of the studies, a descriptive review of all included studies was performed rather than a meta-analysis. In 2011 a Cochrane review of part of the included RCTs was performed by Rayment et al,16 who also did not pool data.
RESULTS

Study selection and characteristics

Our search strategy retrieved a total of 4692 single records that were screened for title and abstract, resulting in 93 full articles to be assessed for eligibility. Of those 26 studies describing antenatal interventions in FNAIT were included (Figure 1), consisting of four RCTs, five prospective and 17 retrospective studies (Table 1 and Supplementary Table 1).

Most studies included pregnancies at risk for FNAIT based on a history of FNAIT, additionally specified as with ICH, PLT <100 x10^9/L, PLT<50 x10^9/L or signs of bleeding, or based on another female family member with FNAIT or recurrent spontaneous miscarriages. One study identified postnatal FNAIT patients from a population of thrombocytopenic neonates. Five studies did not report testing for incompatibility between pregnant women and fetus as a condition for inclusion in their study. Fetal blood sampling (FBS) was performed in all but three studies. Fetal blood was sampled at the earliest in gestational week 16 but most commonly began in weeks 20 or 22. Of the 16 studies performing IUPT, eight reported a fetal PLT count threshold to infuse PLTs. HPA-1a was the predominant cause of FNAIT in all articles, ranging from 72 to 100% of reported patients.

The overall quality of the RCTs was considered adequate, with the lack of blinding presenting the highest risk of bias (Table 2). Comparing or pooling data from the nonrandomized cohort studies included in this review was hampered by differences in patient selection, in particular HPA type and severity of disease in the previous affected siblings. In addition, relevant data were lacking in several studies, such as exclusion of ICH by ultrasound before starting treatment and outcome data for all treatment arms (Table 2).
Antenatal management

IVIG and corticosteroids

Of the 26 studies, 17 had a treatment arm with IVIG alone, three studies with corticosteroids alone and 11 had a study arm that combined IVIG and corticosteroid treatment. There were two studies comparing all three arms. In most studies, IVIG was administered at dose 1 g/kg/week. Doses other than 1g/kg/week in one or more cases were reported in nine studies; 0.4g/kg/day for 5 days, 0.5g/kg/week, 0.8g/kg/week, 1g/kg/2weeks and 2g/kg/week. Two studies did not report the IVIG dose. IVIG administration commenced as early as 10 weeks’ gestation and as late as 32 weeks’ gestation. Two studies administered IVIG directly to the fetus. Prednisone was used mainly at a dose of 0.5mg/kg/day and dexamethasone at a dose of 1.5mg/day. Specific dosages can be found in Supplementary Table 1.

FBS / IUPT

Fetal blood sampling was employed in 24 of the 26 studies. In 16 of these studies, FBS was combined with IUP Ts. Five studies included a study arm with IUP T as sole treatment. IUP T in combination with IVIG was used in three studies. The remainder of IUP Ts were performed in addition to a maternal therapy strategy of IVIG and/or steroids. One study reported FBS and PLT transfusion in all fetuses prior to delivery. Three studies did not report the number of IUP Ts performed for their study groups.

Risk stratification

Four studies stratified by risk group and altered interventions based on risk.
stratification was either based on whether a sibling suffered an ICH31,34,35, (high-risk), or on the timing of the ICH in the sibling e.g. antenatal or postnatal.19 (Supplementary Table 1).

Perinatal outcome

Intracranial Hemorrhage

All but one study described the occurrence of ICH for all study arms.29 In the 25 studies in which ICH was described, of the 839 pregnancies, a total of 24 ICHs were observed (3%). Seven of these occurred before treatment was started and one occurred in a group where no treatment was provided. Four ICHs were described by Heaver et al41 as part of a large retrospective analysis of patients with suspected FNAIT investigated at a reference laboratory. Unfortunately, no additional information on previously affected pregnancies or on the patients themselves was provided. Of the remaining 12 patients, five were described by Bussel et al,19 who reported different strategies of IVIG treatment in a high risk population (all siblings suffered from ICH). Three ICHs (two grade III-IV hemorrhages resulting in fetal demise and one grade I hemorrhage) occurred after receiving 1g/kg/week IVIG and 1mg/kg/day prednisone, the fourth one was a grade II-III perinatal hemorrhage after delivery at 24 weeks’ gestation and the last one was a grade I hemorrhage, both after a combination of 2g/kg/week IVIG with 1mg/kg/day prednisone. Furthermore, Berkowitz et al35 described two neonates with ICHs, both grade I subependymal hemorrhages, detected postnatally with normal neonatal PLT counts at birth (133 and 197 $\times 10^9$/L) after treatment with 2g/kg/week IVIG and 1g/kg/week IVIG with 1mg/kg/day prednisone (treatment started at 20 weeks), occurring in a low-risk population where none of the siblings suffered an ICH. Kaplan et al29 described 27 pregnancies treated with 1g/kg/week of IVIG, in which two fetuses had ICHs (one resulting in death and one resulting in neurological
sequela), both in the group of nine patients with persistent low PLTs despite treatment. Lastly, Berkowitz et al35 reported three ICHs, two grade I hemorrhages and one grade III ICH in a neonate that was delivered at 28 weeks’ gestation because of persisting fetal bradycardia after FBS. Overall, no remarkable or significant differences could be identified in the occurrence of ICHs between various study arms.

\textbf{Mortality}

Two studies did not report mortality rates.22,29 In the 24 remaining studies there was an overall mortality rate of 4% (30/821), of these 17 were related to a FBS/IUPT (53\%) and seven were due to ICH (22\%). In six fetuses/neonates the cause could not be determined. Ghevaert et al41 described a fetal loss due to acute amnionitis at 16 weeks’ gestation (not related to treatment) and Murphy et al40 report a fetal loss after a severe fall of the mother on icy pavement.

\textbf{Neonatal PLT Count}

Twenty studies reported neonatal PLT counts. Of the other six studies, one study reported the fetal PLT counts before pre-delivery IUPT,17 two studies reported fetal PLT counts after pre-delivery IUPT21,40 and three studies did not provide the neonatal PLT counts for all study arms.23,28,29 The mean neonatal PLT counts (x109/L), as well as the proportion of neonates with PLT counts below 50 x109/L, varied widely between the studies ranging from 0 to 100\%, regardless of the intervention.

Three studies compared IVIG treatment alone to corticosteroids alone.29,32,35 Kaplan et al29 found a higher proportion of neonates with a PLT count <50 x109/L in the group treated with steroids compared with IVIG only (60\% vs 48\%) as did Bertrand et al32 (73\% vs 44\%). Berkowitz et al35 found comparable mean PLT counts between those groups in patients; 104 x109/L with IVIG only versus 108 x109/L in the steroids only arm.
Three studies compared a non-invasive strategy (IVIG or IVIG and corticosteroids without FBS) to a strategy that included FBS and IUPT.27,33,34 Cornfield et al33 showed that IVIG treatment alone improved neonatal PLT counts in four of six patients, however only one pregnancy was high-risk. Tiblad et al27 reported a higher median PLT count of 90×10^9/L in the group treated with IVIG and a lower proportion of neonates with PLT counts below 50×10^9/L, 44\% versus 100\% in patients treated with IUPT. In addition, in the group treated with IVIG, 56\% of the pregnancies were high-risk, compared to 0\% in the group treated with IUPT. Most recently, Van den Akker et al34 compared 53 women treated with IVIG only to 13 women treated with IUPT only; median neonatal PLT counts were 125×10^9/L and 145×10^9/L, respectively.

Of the eight studies comparing IVIG only with IVIG and corticosteroids, Berkowitz et al35 identified comparable platelet counts between groups treated with IVIG only and IVIG with steroids, 104×10^9/L and 99×10^9/L respectively. The same group of investigators19 described management in 37 high-risk pregnancies. Four regimens, based on the timing of an ICH occurring in a previous pregnancy, were compared (Table 1 and Supplementary Table 1). No differences in neonatal platelet count between the treatment groups were identified (Table 1). Although Bertrand et al32 reported a significant difference in the number of neonates that needed postnatal treatment, 26\% in the group treated with IVIG and steroids versus 59\% in the group treated with IVIG only ($p = 0.01$), no significant differences in mean neonatal PLT count or severe thrombocytopenia were observed. The remaining five studies reported comparable neonatal PLT counts in women treated with IVIG only and IVIG combined with corticosteroids as well.20,22,24,36,37

Of the four studies that compared different IVIG regimens, two found comparable neonatal PLT counts with doses of 0.5g/kg/week, 1g/kg/week and 2g/kg/week.19,30 Van Der Lugt
et al31 reported a non-significant, lower mean PLT count in five women treated with 1g/kg/week (63 x109/L) compared to 17 women treated with 0.5g/kg/week (104 x109/L).

\textit{Treatment-related complications}

Of 24 studies in which FBS was performed with or without IUPT, two studies reported no procedure-related complications and 12 studies reported a total of 53 complications with a frequency ranging from 3 to 39\% per treated pregnancy (\textbf{Table 3}). One study reported complications in more detail elsewhere.20,43 Overall, the proportion of treated cases with complications due to either FBS or IUPT was 11\% (54 complications in 497 treated pregnancies). The most frequently described complication was the performance of an emergency cesarean section, mainly due to fetal distress (persisting bradycardia or fetal decelerations), of which approximately half resulted in a delivery before 34 weeks’ gestation. Fourteen of the 54 complications resulted in a fetal or neonatal death (26\%).

Of the 26 studies that used either IVIG or corticosteroids, 11 reported the side effects of the treatment. The most commonly reported side effect of dexamethasone treatment was the occurrence of oligohydramnios. Headache and rash were the most frequently reported side effects of IVIG treatment, leading to discontinuing of the treatment in only one patient.37
DISCUSSION

Main findings

A non-invasive management approach in pregnancies complicated by FNAIT was found to be equally effective as compared to IUPT in preventing fetal and neonatal bleeding due to thrombocytopenia. Our analysis revealed a relatively high complication rate of antenatal management by fetal blood sampling and IUPT, with a frequency of complications of 11%, and one in three of these leading to fetal or neonatal loss. The most common non-invasive treatment administered to pregnant women was IVIG, primarily in a weekly dose of 1 g/kg. IVIG only had a 98.7% success rate for preventing ICH (4 ICHs occurred in 315 pregnancies).16, 17, 19-24,26-32, 34,35 This is consistent with the 97.3% found in the Cochrane analysis reported by Rayment et al16, that included 37 pregnancies treated with IVIG only. However, none of the studies were powered to detect a significant difference in bleeding outcomes.

Strengths and limitations

Besides the obvious lack of randomized studies with an adequate control group (placebo or no treatment), the main limitation of our review is the heterogeneity of the extracted data from the primary studies. Although neonatal outcomes are generally well reported and appear quite homogenous, the crux of the heterogeneity is the diversity of study designs. First, there is an extensive variation in treatment strategies used, especially in different combinations. For example, Sainio et al42 described 15 women treated with 6 different strategies (IVIG only, IVIG and steroids, IVIG and IUPT, IVIG and steroids and IUPT, as well as weekly IUPT or FBS only). Secondly, the dosage of specific treatments differed considerably, e.g., prednisone was prescribed as 0.5 to 1mg/kg/day as well as 10 mg, 20 mg, 30 mg and 60 mg per day. The interval and duration of therapeutic strategies also differed considerably between studies. For example, mean duration of IVIG treatment varied from 2 weeks18,23 to 22 weeks.19 Additionally, in three
of the four RCTs, treatment intensification was applied to increase fetal PLT counts, which could have led to underestimation of the difference between treatment arms when comparing neonatal PLT counts.

Lastly, there is a great variability in the risk of ICH, when determined by the proportion of siblings with ICH not only between studies, but also between study arms.

The two most commonly used endpoints for studies are ICH and neonatal PLT counts. Whereas antenatal strategies target the prevention of bleeding complications in fetuses and neonates, preferably mortality and long-term neurodevelopmental impairment should be the gold standard outcomes. As these outcomes are rare, accordingly most studies are not powered to detect significant differences between treatment strategies and must resort to using PLT counts as surrogate outcome measurements.

In this regard, there appears to be a correlation between PLT count and risk of bleeding, but this does not appear to be a linear relationship.

Although the neonatal PLT count appears to be a logical and best available surrogate outcome in evaluating antenatal treatment strategies, this parameter has limitations. Comparing treatment modalities based on mean or median PLT counts may therefore show some effect, but may not be meaningful clinically. In addition, very low PLT counts were often found in fetuses or neonates without any bleeding. Although it is unclear to what extent animal studies can be used for understanding pathophysiology in humans, there is increasing evidence suggesting impairment of angiogenesis and endothelial integrity as a possible cause of increased bleeding tendency, leading to the assumption that thrombocytopenia not being the sole cause of bleeding complications in FNAIT.

Our systematic review was designed to evaluate the effect of antenatal treatment options on neonatal outcome including neonatal PLT count, ICH and mortality, but it did not facilitate any conclusions on the need for centralized care, the optimal timing or mode of delivery; nor
whether pre-delivery FBS should be performed to determine mode of delivery, neonatal brain imaging or the need for matched PLTs.

Ultimately, to our knowledge this is the first systematically performed review considering all available evidence, randomized as well as non-randomized studies. Despite the size and heterogeneity of the studies limiting the strength of this evidence, we used predefined outcome measures of all available evidence on antenatal management in pregnancies complicated by FNAIT.

Interpretation

This review suggests that non-invasive treatment strategies are safe and effective options for the antenatal management of pregnancies complicated by FNAIT, with a lower risk of severe complications compared to FBS and/or IUPT. The gestational age at which to start antenatal IVIG treatment in FNAIT has, however, not been well defined. It is reasonable to consider the severity of the disease in previous pregnancies when making treatment decisions. An earlier start of IVIG treatment will not necessarily result in a linear increase in the amount of IgG transported to the fetus. The amount of IgG that traverses the placenta depends on gestational age (with the greatest placental transport taking place in the third trimester), the IgG subclass, maternal IgG levels, and placental integrity.

In cohort analyses performed by Bussel et al and Van der Lugt et al, pregnancies were divided into risk-groups based on the only established risk factor for recurrent ICH, whether the sibling had (high-risk) or did not have (standard-risk) an ICH and when the ICH occurred in pregnancy (high risk, very high risk and extremely high risk). The time of initiation of IVIG treatment was based on this stratification and the dosage used relied on the presumption that ICH recurred in 79% of subsequent pregnancies. An analysis of 43 cases of ICH performed by Tiller
et al suggested that in order to reduce the risk of recurrent ICHs in subsequent pregnancies, IVIG should be initiated before 20 weeks’ gestation.

Whether the commonly used dose of 1g/kg/week is the best treatment for all FNAIT pregnancies, or whether this could be reduced or increased in certain subgroups remains unclear. Data from the previously described RCT and retrospective data provided by Van Der Lugt et al showed that the lower dose of 0.5g/kg/week appeared not to be inferior to the 1g/kg/week IVIG in standard risk (i.e. a previous sibling that did not have an ICH) populations. Given the dose-related side effects and costs, a dose of 0.5g/kg/week could be regarded suitable for these women. A limited number of patients were treated with the lower dose and therefore more data are probably required to change practice. Conversely, higher doses, i.e. 2g/kg/week, have also been used but the studies analysed were limited by adequately comparable treatment arms.

The use of IVIG in pregnancies at risk for FNAIT is still off-label and the possible immunostimulative or immunosuppressive effect of exposing the maturing fetal immune system to IVIG has not been adequately addressed. One cohort study by Radder et al, attempted to address this by examining the neurodevelopmental outcome of 50 children, at a median age of 5 years, of which 37 were exposed to IVIG during fetal life. A higher incidence of otorhinolaryngological and hearing disability in the group that did not receive IVIG was found. IgG, IgG subclass, IgA and IgM levels were comparable between groups. A trend was found between high plasma IgE levels and in utero IVIG exposure, nonetheless no difference in eczema or allergies was observed between the two groups. Although, based on this small cohort study, in utero exposure to IVIG seems to have no clinically apparent adverse effects in early childhood, further immunological research with a larger group of patients is needed to fully answer this question.
The benefit of adding corticosteroids to IVIG is unclear. One study found improvement in PLT counts (defined as a PLT > 25 x 10^9/L at second sampling, an increase by > 10 x 10^9/L compared to the first sampling, or PLT > 40 x 10^9/L that was not decreased by > 10 x 10^9/L). The remaining eight studies comparing treatment with IVIG to IVIG with steroids did not show significant differences in the PLT count, ICH or mortality. More data from randomized studies comparing IVIG to IVIG with steroids including an adequate control group are needed to reach any firm conclusions.

To achieve a major improvement in the treatment and prevention of FNAIT, physicians need to be able to prevent index cases, a strategy that was proven to be highly successful in hemolytic disease of the fetus and newborn, caused by the red cell counterpart of FNAIT. In order to do so, population-based screening programs are needed, to identify first pregnancies at risk in time to start effective antenatal prophylaxis or treatment.
CONCLUSION

This article represents a systematic review on the effectiveness of different antenatal treatment strategies in pregnancies complicated by FNAIT, aiming to prevent ICH and bleeding-related fetal/neonatal losses. Our summary provides the best available evidence that suggests that the optimal approach is a non-invasive approach, involving weekly administration of IVIG, with or without the addition corticosteroids. Regarding the optimal dose and start of the treatment, there are insufficient data to recommend a specific gestational age or specific dose. However, the data support the treatment of high-risk pregnancies (i.e. sibling suffered from ICH) with 1g/kg/week IVIG, started between 12 and 20 weeks’ gestation. For standard risk pregnancies (no sibling that has suffered from ICH) the data support starting treatment between 20 and 24 weeks’ gestation, and to use IVIG 1g/kg/week with or without steroids. Additional data, especially a reliable biomarker of severity in a patient known to be affected, might allow the use of a lower dose IVIG (i.e. 0.5g/kg/week) or alternatively higher dose IVIG (i.e. 2 g/kg/week) with or without corticosteroids, depending upon severity.
ACKNOWLEDGEMENTS

International Collaboration for Transfusion Medicine Guidelines (ICTMG) Members

Shubha Allard, MD, FRCP, FRCP(Path), Barts Health NHS Trust and NHS Blood & Transplant; **Celso Bianco**, MD, formerly with America's Blood Centres; **Jeannie Callum**, BA, MD, FRCP, CTBS, University of Toronto, Canada; **Veerle Compernolle**, MD, PhD, Belgian Red Cross, Flanders, Belgium; **Anne Eder**, MD, PhD, American Red Cross Blood Services, USA; **Dean Fergusson**, MHA, PhD, University of Ottawa, Canada; **Mark Fung**, MD, PhD, Fletcher-Allen Health Care, USA; **Andreas Greinacher**, MD, University of Greifswald, Germany; **Heather Hume**, MD, FRCP, Université deMontréal, Canada; **Lani Lieberman**, MD, University of Toronto, Canada; **Catherine Moltzan**, MD, FRCP, University of Manitoba, Canada; **Michael Murphy**, MD, FRCP, FRCPPath, FFPath, University of Oxford, UK; **Susan Nahiriak**, MD, FRCP, University of Alberta, Canada; **Katerina Pavenski**, MD, FRCP, University of Toronto, Canada; **Joanne Pink**, MBBS, FRACP, FRCPA, Australian Red Cross Blood Services, Australia; **Arjuna Ponnampalam**, MD, FRCP, University of Manitoba, Canada; **Paolo Rebulla**, Ospedale Maggiore Policlinico, Italy; **Nadine Shehata**, MD, FRCP, MSc, University of Toronto, Canada; **Cynthia So-Osman**, Groene Hart Ziekenhuis, Netherlands **Simon J. Stanworth**, MA, MRCP, DPhil, FRCPPath, University of Oxford, UK; **Zbigniew M. Szczepiorkowski**, MD, PhD, Dartmouth-Hitchcock Medical Centre, USA; **Susano Tanael**, MD MMA, Canadian Blood Services, Canada; **Alan T. Tinmouth**, MD, FRCPC, MSc, University of Ottawa, Canada; **Ralph Vassallo**, MD, FACP, Blood Systems Inc, USA; **Erica Wood**, MBBS, FRACP, FRCPA, Monash University, Australia.

The authors thank Shuoyan Ning for her assistance with data abstraction, Elizabeth Uleryk for the search strategy; and Sylvia Torrance and Kimberly Figures for administrative assistance.
AUTHORSHIP

Contribution: DW drafted the initial manuscript. JB, EM, LL, NS and TB performed the data search. DW extracted analysed the data, supported by SN, NS and ST. All authors reviewed, revised the manuscript and approved the final manuscript as submitted.

Conflict-of-Interest Disclosure: MK and JK are two of the founders and owners of Prophylix Pharma AS, a Norwegian biotech company coordinating the EU-funded PROFNAIT Consortium which is developing a prophylaxis against fetal and neonatal alloimmune thrombocytopenia (FNAIT). NS is consultant for Canadian Blood Services. AG has no conflicts of interests to disclose in regard to this manuscript. DO has received research funding to a project “Towards routine HPA-screening in Pregnancy”. JB is a consultant of Baxalta, Superior Biologics. The remaining authors report no conflict of interest.

Funding Source: Canadian Blood Services partially funded this study. Canadian Blood Services did not have any role in the design, analysis, and interpretation of the data or preparation, review, and approval of the manuscript.
REFERENCES

50. Radder CM, Brand A, Kanhai HH. Will it ever be possible to balance the risk of intracranial haemorrhage in fetal or neonatal alloimmune thrombocytopenia against the risk of treatment strategies to prevent it? *Vox sanguinis.* 2003;84:318-325

TABLES

Table 1 Study Outcomes

Table 2 Quality Assessment

Table 3 Complications

FIGURE

Figure 1 Flow chart of study selection
<table>
<thead>
<tr>
<th>First author, year of publication</th>
<th>Study arms</th>
<th>N</th>
<th>ICH in sibling n (%)</th>
<th>FBS n (%)</th>
<th>IUPT n (%)</th>
<th>FBS/IUPT Related AE n (%)</th>
<th>Duration IVIG in wks</th>
<th>SE IVIG/steroids n (%)</th>
<th>ICH n (%)</th>
<th>Mean PLTs *10^9/L</th>
<th>PLT <50 *10^9/L n (%)</th>
<th>Mortality n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Controlled Trials</td>
<td></td>
</tr>
<tr>
<td>Paridaans, 2015</td>
<td>IVIG 0.5g</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>10 (7-11)</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td>3 (25)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG 1g</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>11 (7-12)</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>4 (36)</td>
<td>0</td>
</tr>
<tr>
<td>Berkowitz, 2007</td>
<td>IVIG 2g</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>14 (6-21)</td>
<td>0</td>
<td>0</td>
<td>169</td>
<td>5 (14)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG 1g + steroids</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (6)</td>
<td>16 (12-19)</td>
<td>13 (33)</td>
<td>1</td>
<td>134</td>
<td>4 (11)</td>
<td>0</td>
</tr>
<tr>
<td>Berkowitz, 2006</td>
<td>IVIG (all)</td>
<td>40</td>
<td>4 (10)</td>
<td>All</td>
<td>0</td>
<td>NA</td>
<td>2 (1-10)</td>
<td>NR</td>
<td>NR</td>
<td>3</td>
<td>104</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids (high)</td>
<td>19</td>
<td>3 (16)</td>
<td>All</td>
<td>0</td>
<td>11 (14)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>99</td>
<td>NR</td>
<td>108</td>
</tr>
<tr>
<td>Bussel, 1996</td>
<td>IVIG</td>
<td>26</td>
<td>14 (21)</td>
<td>All</td>
<td>0</td>
<td>11 (2-8)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>169</td>
<td>NR</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids</td>
<td>26</td>
<td>3 (15)</td>
<td>All</td>
<td>0</td>
<td>9 (2-9)</td>
<td>NR</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>2 (16)</td>
<td>0</td>
</tr>
<tr>
<td>Prospective Studies</td>
<td></td>
</tr>
<tr>
<td>Kanhai, 2006</td>
<td>IVIG ± IUPT</td>
<td>7</td>
<td>7 (100)</td>
<td>3 (43)</td>
<td>3 (43)</td>
<td>NR</td>
<td>17 (8-21)</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
<td>28± 7 (100)±</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IUPT pre-delivery</td>
<td>2</td>
<td>0</td>
<td>All</td>
<td>2 (100)</td>
<td>NR</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>210</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG ± IUPT</td>
<td>4</td>
<td>0</td>
<td>2 (50)</td>
<td>2 (50)</td>
<td>NR</td>
<td>17 (15-19)</td>
<td>NR</td>
<td>0</td>
<td>204</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids</td>
<td>13</td>
<td>2 (15)</td>
<td>1 (8)</td>
<td>1 (8)</td>
<td>NR</td>
<td>12 (5-20)</td>
<td>NR</td>
<td>0</td>
<td>118</td>
<td>4 (31)</td>
<td>0</td>
</tr>
<tr>
<td>Radder, 2004</td>
<td>IVIG ± IUPT</td>
<td>37</td>
<td>8 (19)</td>
<td>26 (70)</td>
<td>26 (70)</td>
<td>0</td>
<td>5 (2-15)</td>
<td>NR</td>
<td>0</td>
<td>67</td>
<td>17 (46)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FBS ± IUPT</td>
<td>13</td>
<td>9 (69)</td>
<td>2 (22)</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>32</td>
<td>7 (54)</td>
<td>1 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, 2000</td>
<td>IVIG</td>
<td>8</td>
<td>3 (30)</td>
<td>All</td>
<td>NR</td>
<td>2 (20)</td>
<td>12 (3-16)</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>1 (13)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fetal IVIG</td>
<td>2</td>
<td>0</td>
<td>All</td>
<td>NR</td>
<td>2 (1-2)</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>2 (100)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lynch, 1992</td>
<td>IVIG</td>
<td>9</td>
<td>5 (56)</td>
<td>All</td>
<td>1 (11)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
<td>57</td>
<td>4 (44)</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids</td>
<td>9</td>
<td>3 (33)</td>
<td>8 (89)</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>5 (56)</td>
<td>0</td>
<td>64</td>
<td>3 (33)</td>
<td>NR</td>
</tr>
<tr>
<td>Retrospective Studies</td>
<td></td>
</tr>
<tr>
<td>van der Lugt, 2015</td>
<td>IVIG 1g (all)</td>
<td>5</td>
<td>2 (40)</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NR</td>
<td>0</td>
<td>1* 63</td>
<td>8 (67)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IVIG 0.5g (standard)</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NR</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>4 (33)</td>
<td>0</td>
</tr>
<tr>
<td>Bertrand, 2011</td>
<td>IVIG</td>
<td>27</td>
<td>9 (14)</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>14</td>
<td>NR</td>
<td>0</td>
<td>89</td>
<td>12 (44)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>14</td>
<td>NR</td>
<td>0</td>
<td>135</td>
<td>13 (27)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Steroids</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NR</td>
<td>0</td>
<td>46</td>
<td>8 (73)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mechoulan, 2011</td>
<td>IVIG</td>
<td>17</td>
<td>5 (29)</td>
<td>9</td>
<td>0</td>
<td>1 (11)</td>
<td>12</td>
<td>NR</td>
<td>0</td>
<td>68</td>
<td>10 (59)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IVIG + steroids</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>7</td>
<td>NR</td>
<td>0</td>
<td>78</td>
<td>4 (67)</td>
<td>0</td>
</tr>
<tr>
<td>Bussel, 2010</td>
<td>IVIG 1g (high+very high)</td>
<td>5</td>
<td>5 (100)</td>
<td>All</td>
<td>1 (17)</td>
<td>15 (7-25)</td>
<td>NR</td>
<td>1</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IVIG 1g + steroids (all)</td>
<td>19</td>
<td>19 (100)</td>
<td>All</td>
<td>0</td>
<td>3 (8)</td>
<td>12 (5-25)</td>
<td>NR</td>
<td>3</td>
<td>85</td>
<td>6 (40)</td>
<td>2 (11)</td>
</tr>
<tr>
<td></td>
<td>IVIG 2g (all)</td>
<td>4</td>
<td>4 (100)</td>
<td>All</td>
<td>0</td>
<td>22 (18-25)</td>
<td>NR</td>
<td>0</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Study, Year</td>
<td>Treatment</td>
<td>Outcome</td>
<td>Number (Percentage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giers, 2010</td>
<td>IVIG 2g + steroids (all)</td>
<td>9</td>
<td>9 (100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giers, 2010</td>
<td>Fetal IVIG + IuPT</td>
<td>10</td>
<td>10 (100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>te Pas, 2007</td>
<td>IVIG (all)</td>
<td>13</td>
<td>5 (15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Akker, 2007</td>
<td>IVIG (all)</td>
<td>33</td>
<td>11 (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghevaert, 2007</td>
<td>IUPT ± IVIG ± steroids</td>
<td>40</td>
<td>40 (100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yinon, 2006</td>
<td>IVIG ± IUPT</td>
<td>24</td>
<td>4 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibblad, 2003</td>
<td>IVIG §</td>
<td>9</td>
<td>5 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birchall, 2003</td>
<td>IVIG ± IUPT §</td>
<td>18</td>
<td>6 (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sainio, 1999</td>
<td>IVIG ± IUPT §</td>
<td>11</td>
<td>1 (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan, 1998</td>
<td>IVIG</td>
<td>27</td>
<td>7 (26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kornfeld, 1996</td>
<td>IVIG + IUPT</td>
<td>4</td>
<td>1 (25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murphy, 1994</td>
<td>IVIG + IUPT ± steroids</td>
<td>8</td>
<td>6 (75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wenstrom, 1992</td>
<td>IVIG + steroids</td>
<td>4</td>
<td>1 (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan, 1988</td>
<td>IUPT</td>
<td>4</td>
<td>1 (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan, 1988</td>
<td>IVIG (5days) + IUPT</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ICH occurred before start therapy; † Platelet count after IUPT; ‡ Platelet count before pre-delivery IUPT; § One or two patients also received steroids (Table S3); ¶ Five fetuses exanguinated and were excluded from other analysis; AE, adverse events; FBS, fetal blood sampling; ICH, intracranial haemorrhage; IVIG, intravenous immunoglobulins; IUPT, intrauterine platelet transfusion; N, number of patients; NA, not applicable; NR, not reported; PLT, neonatal platelet count; SE, side effects.
Table 2. Quality assessment of all 26 included studies

<table>
<thead>
<tr>
<th>Risk of bias in RCT</th>
<th>Study</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paridaans, 2015<sup>30</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berkowitz, 2007<sup>37</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berkowitz, 2006<sup>15</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bussel, 1996<sup>20</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Random sequence generation (selection bias); B. Allocation concealment (selection bias); C. Blinding of participants and personnel (performance bias); D. Blinding of outcome assessment (detection bias); E. Incomplete outcome data (attrition bias); F. Selective reporting (reporting bias); G. Other bias.

A. Representative exposed cohort; B. Consecutive patient enrolment; C. Outcome absent at start study; D. Comparable proportion ICH in siblings; E. Outcome assessment; F. Adequate duration follow-up; G. Complete outcome data for all subjects.
<table>
<thead>
<tr>
<th>First author, year of publication</th>
<th>AE in FBS/IUPT n/N (%)</th>
<th>Complications after FBS or IUPT (n)</th>
<th>SE in IVIG n/N (%)*</th>
<th>Reported side effects in IVIG treatment (n)</th>
<th>SE in steroids n/N (%)*</th>
<th>Reported side effects in steroid treatment (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechoulan, 2011</td>
<td>1/9 (11)</td>
<td>Emergency CS due to fetal distress (1), < 34 weeks (0)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Bussel, 2010</td>
<td>4/37 (11)</td>
<td>Emergency CS or delivery (4), < 34 weeks (NR) - due to fetal distress (3), insertion bleeding (1)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>van den Akker, 2007</td>
<td>3/99 (3)</td>
<td>Perinatal death (1) Emergency CS due to fetal distress (3), < 34 weeks (0)</td>
<td>NR</td>
<td>NR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Berkowitz, 2007</td>
<td>4/74 (5)</td>
<td>Emergency CS (4), < 34 weeks (3) - due to fetal distress (2), ROM (2)</td>
<td>NR</td>
<td>Rash (1) discontinued IVIG Headache, fatigue</td>
<td>NR</td>
<td>Gestational diabetes (7) Insomnia, mood swings</td>
</tr>
<tr>
<td>Berkowitz, 2006</td>
<td>11/79 (14)</td>
<td>Fetal death (1). Neonatal death (1) Emergency CS or delivery (10), < 34 weeks (NR) - due to fetal distress (8), streaming (1), PROM (1)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Radder, 2004</td>
<td>2/40 (5)</td>
<td>Neonatal death after fetal distress (1) Emergency CS due to exsanguination (1)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Birchall, 2003</td>
<td>15/38 (39)</td>
<td>Fetal death (2), after exsanguination (1) Emergency CS/delivery (13), < 34 weeks (6) - due to fetal distress (6), infection (1), technical difficulties (3), cord spasm or thrombosis (2), placental artery bleeding (1)</td>
<td>1/18 (6)</td>
<td>Headache and tachycardia (1), continued IVIG</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Silver, 2006</td>
<td>2/10 (20)</td>
<td>Emergency CS due to insertion bleeding (2), < 34 weeks (1)</td>
<td>NR</td>
<td>NR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sainio, 1999</td>
<td>4/15 (27)</td>
<td>Emergency CS or delivery (4), < 34 weeks (1) - due to fetal distress (3), acute amnionitis after ROM (1)</td>
<td>1/11 (9)</td>
<td>Headache and tachycardia (1), continued IVIG</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Bussel, 1996</td>
<td>5/59 (9)‡</td>
<td>Fetal or neonatal death after exsanguination (5) ‡</td>
<td>0/54</td>
<td>None</td>
<td>2/26 (8)</td>
<td>Oligohydramnios (2) in - Dexamethasone 1.5mg - Dexamethasone 4.5mg</td>
</tr>
<tr>
<td>Kornfeld, 1996</td>
<td>2/10 (20)</td>
<td>Pregnancy loss at 16 weeks’ gestation (1) Neonatal death due to chorioamnionitis at 25 weeks (1)</td>
<td>0/10</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Murphy, 1994</td>
<td>1/15 (7)</td>
<td>Fetal death due to cord hematoma (1)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lynch, 1992</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>5/9 (56)</td>
<td>Oligohydramnios (4) in - Dexamethasone 5mg</td>
</tr>
</tbody>
</table>

* Number of reported complications (n) versus the total number of patients treated with this specific strategy (N)
† Number of side effects reported, the total number of patients that reported a side effect is unclear
‡ The complications occurring during this study were reported in detail elsewhere
AE, adverse events; CS, caesarean section; CTG, cardiotocogram; FBS, fetal blood sampling; IVIG, intravenous immunoglobulins; IUPT, intrauterine platelet transfusion; SE, side effects; PROM, rupture of membranes.
Figure 1. Flow chart of search strategy

Records identified through database searching (n = 5940)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 4692)

Records screened (n = 4692)

Records excluded (n = 4599)

Full-text articles assessed for eligibility (n = 93)

Full-articles excluded (n = 67)
 - Population or outcome of interest not reported, n = 20
 - Corresponding outcome of intervention not provided, n = 35
 - Population described elsewhere, n = 5
 - Case report, n = 4
 - Non English, not accessible, n = 3

Studies included on antenatal management (n = 26)

Prospective studies (n = 5)

Retrospective studies (n = 17)

Randomized Controlled Trials (n = 4)
Antenatal management in fetal and neonatal alloimmune thrombocytopenia: a systematic review

Dian Winkelhorst, Michael F. Murphy, Andreas Greinacher, Nadine Shehata, Tamam Bakchoul, Edwin Massey, Jillian Baker, Lani Lieberman, Susano Tanael, Heather Hume, Donald M. Arnold, Shoma Baidya, Gerald Bertrand, James Bussel, Mette Kjær, Cécile Kaplan, Jens Kjeldsen-Kragh, Dick Oepkes and Greg Ryan