Efficacy and safety of rVIII-SingleChain: Results of a Phase I/III multicenter clinical trial in severe hemophilia A

Johnny Mahlangu,1 Kazimierz Kuliczkowski,2 Faraijah Abdul Karim,3 Oleksandra Stasyshyn,4 Marina V. Kosinova,5 Lynda Mae Lepatan,6 Aleksander Skotnicki,7 Lisa N. Boggio,8 Robert Klamroth,9 Johannes Oldenburg,10 Andrzej Hellmann,11 Elena Santagostino,12 Ross I. Baker,13 Kathelijn Fischer,14 Joan C. Gill,15 Stephanie P’Ng,16 Pratima Chowdary,17 Miguel A. Escobar,18 Claudia Djambas Khayat,19 Luminita Rusen,20 Debra Bensen-Kennedy,21 Nicole Blackman,21 Tharin Limsakun,21 Alex Veldman,22 Katie St. Ledger,21 and Ingrid Pabinger23 for the AFFINITY Investigators.

1 Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, South Africa; 2 Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland; 3 Hemophilia Clinic, National Blood Centre, Kuala Lumpur, Malaysia; 4 Institute of Blood Pathology and Transfusion Medicine, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine; 5 Kemerovo Regional Clinical Hospital, Kemerovo, Russia; 6 Perpetual Succour Hospital, Cebu, Philippines; 7 Krakow Medical Centre, Krakow, Poland; 8 Hemophilia and Thrombophilia Center, Rush University Medical Center, Chicago, IL, USA; 9 Vivantes Clinic Friedrichshain, Berlin, Germany; 10 Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany; 11 Department of Hematology and Transplantation, Medical University of Gdansk, Gdansk, Poland; 12 A. Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Ca’ Granda Foundation, Maggiore Hospital Policlinico, Milan, Italy; 13 Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Australia; 14 University Medical Center Utrecht, Netherlands; 15 Blood Center of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA; 16 Royal Perth Hospital, Perth, Australia; 17 Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free Hospital, London, United Kingdom; 18 University of Texas Health Science Center and The Gulf States Hemophilia and Thrombophilia Center, Houston, TX, USA; 19 Lebanon Department of Pediatrics, Hotel Dieu de France Hospital, Beirut, Lebanon; 20 Sanador SRL, Bucharest, Romania; 21 Clinical Research and
Development, CSL Behring, King of Prussia, PA, USA; Clinical Research and Development, CSL Behring, Marburg, Germany; Clinical Division of Haematology and Haemostaseology, Medical Clinic I, Medical University Vienna, Vienna, Austria

Corresponding Author:

Prof. Dr. med. Ingrid Pabinger
Clinical Division of Haematology and Haemostaseology, Medical Clinic I, Medical University Vienna, Vienna, Austria.
Phone: +43 (0)1 40 400 44970
Fax: +43 (0)1 40 400 40300
ingrid.pabinger@meduniwien.ac.at

Short title: rVIII-SingleChain in severe hemophilia A

Word count: abstract = 231, main text: 4,118

Figures and Tables: 7

References: 24

Category: Clinical Trials and Observations
Key points

- rVIII-SingleChain is a novel recombinant factor VIII, designed to have high stability and high binding affinity for von Willebrand Factor
- In severe hemophilia A patients, rVIII-SingleChain was well tolerated and resulted in low bleeding rates, when dosed twice per week

Abstract

rVIII-SingleChain is a novel B-domain truncated recombinant Factor VIII (rFVIII), comprised of covalently bonded FVIII heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor. This Phase I/III study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). Participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N=146) or on-demand (N=27). The total cumulative exposure was 14,306 exposure days (ED), with 120 participants reaching ≥50 ED and 52 participants having ≥100 ED. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low annualized bleeding rate in patients on prophylaxis and a favorable safety profile in this large clinical study (www.ClinicalTrials.gov identifier: NCT01486927).
Introduction

Hemophilia is an X-linked congenital bleeding disorder caused by a coagulation factor deficiency, which affects an estimated 1 in 10,000 births. The primary aim of care is to prevent and treat bleeding using coagulation factor replacement therapy. In hemophilia care today, challenging unmet needs remain to be addressed; amongst those are the poor uptake of prophylaxis, and the prevention of hemophilic arthropathy and inhibitor development. Optimization of prophylaxis to prevent (or delay) functional deterioration of an existing hemophilic arthropathy and development of less immunogenic replacement clotting concentrates are the potential solutions. Products with improved pharmacokinetics (PK) and innovative dosing regimens have the potential to reduce the frequency of injections with current prophylactic regimens, improve compliance and reduce the burden of musculoskeletal complications of recurrent joint bleeds.

The plasma half-life of most currently available FVIII products means patients are required to inject FVIII every other day or three times a week, resulting in poor compliance. Recently, several new recombinant FVIII (rFVIII) products with extended half-life have completed phase III studies. Whilst (glycol) pegylation and Fc fusion have prolonged the half-life of rFVIII, this extension is limited to only 1.5–1.7 times the normal half-life of endogenous FVIII. This is largely due to the dependence of factor VIII on the half-life of von Willebrand factor (vWF) in the circulation.

Immunogenicity remains the other major challenge of replacement therapy in FVIII deficient patients. Ex-vivo studies suggest that in addition to protection from proteolysis, vWF prevents uptake of FVIII by antigen presenting cells. This mechanism is presumed to mitigate the risk of inhibitor development; therefore, improved binding of FVIII to vWF may reduce the likelihood of inhibitor formation.

The rVIII-SingleChain is comprised of the FVIII heavy and light chain covalently fused into a single polypeptide protein which upon activation by thrombin, is indistinguishable from endogenous activated FVIII. The single-chain design results in a stable and homogenous drug product with increased binding affinity for vWF, and PK properties that are superior to those of full-length rFVIII. Of note, these favorable PK attributes were achieved without glycopegylation or fusion to antibody fragments.
Here, we report the efficacy, safety and PK results of a prospective Phase I/III study investigating rVIII-SingleChain for prophylaxis, on-demand treatment and perioperative management of severe hemophilia A.
Methods

Study design and patients

This open-label, non-randomized multicenter study (ClinicalTrials.gov Identifier: NCT01486927) recruited males with severe hemophilia A (FVIII activity <1%), previously treated with FVIII (>150 exposure days [ED] prior to enrollment) and aged between 12 and 65 years. Patients with a personal or family history (first degree relatives) of FVIII inhibitors, or a detectable inhibitor titer at screening were excluded from the study. Other exclusion criteria were laboratory evidence of hepatic and renal failure, and immunosuppression (including low CD4 counts in HIV positive patients). For full inclusion and exclusion criteria see Supplementary Methods.

The study was conducted in accordance with the International Conference on Harmonization Guidelines for Good Clinical Practice (ICH GCP) and the ethical principles outlined in the Declaration of Helsinki 2008. Ethics approval, individual informed consent, and approval by the relevant national authorities was obtained prior to enrolment. Safety of study participants was overseen by an Independent Data Monitoring Committee.

Dosing

Participants were assigned to either prophylaxis or on-demand therapy by the investigator and switching therapies was not permitted during the study. Patients on routine prophylaxis could be prescribed 20–40 IU/kg rVIII-SingleChain every second day or 20–50 IU/kg rVIII-SingleChain two to three times per week, or at other doses or dosing frequencies at the investigator’s discretion. The FVIII treatment regimen used prior to enrolment and the patient’s bleeding phenotype were taken into account. The prescription for dosing rVIII-SingleChain, to treat bleeding in patients receiving on-demand therapy or breakthrough bleeds in patients on routine prophylaxis, was guided by the World Federation of Hemophilia (WFH) recommendations for the treatment of different types of bleeding locations and intensity. The dose could be adjusted during the study if necessary.
For patients undergoing surgery, the rVIII-SingleChain dosing regimen was individualized based on the type of surgery and the clinical status of the patient. Dosing was adjusted in the pre-, intra and post- surgical settings to achieve and maintain a FVIII activity level recommended by the WFH Guidelines.¹⁴

Efficacy endpoints

The primary efficacy endpoints of this study were the annualized spontaneous bleeding rate (AsBR) and hemostatic efficacy in the control of bleeding episodes and during surgery. The secondary efficacy endpoints were the annualized bleeding rate (ABR) for all bleeds and the number of injections of rVIII-SingleChain required to achieve hemostasis. Bleeding episodes were either treated by the patient or, when in hospital, by the investigator and classified as spontaneous, when they occurred without apparent external cause, or traumatic, when an injury preceded the bleeding event.

Hemostatic efficacy in bleeding events treated with rVIII-SingleChain, was rated by the investigator on a four-point rating scale, utilizing information provided by the patient and considering the number of doses needed to control the bleed (Table 1). The efficacy of rVIII-SingleChain in surgical prophylaxis was rated by the investigator on a four-point rating scale, based on information from the surgeon on intraoperative hemostasis and the anesthesia team on intraoperative blood loss and transfusion requirements (if any) [Table 1]. Each treated bleed or surgery was assigned an efficacy rating of excellent, good, moderate or no response. Treatments assigned an efficacy rating of excellent or good were considered a treatment success.

In participants assigned to a prophylaxis or on-demand regimen, the ABR was calculated for all bleeds and the AsBR for spontaneous bleeding events.

Safety endpoints

The primary safety endpoint was the rate of inhibitor formation to FVIII evaluated from the time of first dose through the end-of-study visit. Inhibitory antibodies against FVIII were determined using the Nijmegen-modified Bethesda assay, as previously
described. Anti-rVIII-SingleChain antibodies were determined via a two-tiered approach using direct-binding enzyme-linked immunosorbent assays (ELISA). Antibodies against rFVIII-Chinese Hamster Ovary (CHO) cell proteins were detected using a validated ELISA and confirmed using Surface Plasmon Resonance technology (see Supplementary Methods for more detail).

Safety was further assessed on the basis of the following secondary endpoints: local tolerability at the site of injection assessed by investigator and participant; the number, type and severity of adverse events (AE); laboratory safety parameters (hematology and biochemistry); vital signs and physical examination.

Pharmacokinetic assessment

The potency of rVIII-SingleChain was assigned using the chromogenic substrate assay calibrated against the World Health Organization FVIII standard (see Supplementary Methods for details). PK was assessed in a subgroup of patients following the initial dose (50 IU/kg ± 10%) and repeated dosing; pre-dose, 10-15 min, 0.5, 1, 3, 6, 9, 24, 28, 32, 48, 72 and 96 hours. A non-compartmental PK analysis of FVIII activity in plasma was performed, with and without baseline correction, for the individual participant plasma FVIII activity-versus-time data using Model 202 for constant injection in WinNonlin® 6.3.0 (Phoenix Build 6.3.0.395, Pharsight Corp, St. Louis, MO). The following parameters were calculated; incremental recovery (IR), maximum observed FVIII activity (Cmax), time to Cmax (Tmax), terminal half-life (t1/2), clearance (CL), volume of distribution at steady-state (Vss), area under the curve (time zero to last quantifiable FVIII activity [AUC0-last] and time zero extrapolated to infinity [AUCinf]) and mean residence time (MRT).

Statistical analysis

Efficacy analyses were conducted in participants who received at least one dose of rVIII-SingleChain as part of either on-demand treatment or routine prophylaxis. The ABR and the AsBR were calculated according to the following formula: number of
treated events x 365.25 / efficacy evaluation period, excluding data from the PK and surgical parts of the study. Descriptive statistics included the median and interquartile range. Data from all prophylaxis regimens was combined and compared with on-demand therapy. Statistical comparisons were based on estimates from a Poisson model. All tests were performed at the 2-sided 0.05 level of significance.

Safety was assessed in all participants exposed to rVIII-SingleChain. The study was sufficiently powered to rule out an estimated incidence of inhibitor development of more than 6.8%. An exact 2-sided 95% Clopper-Pearson confidence interval (CI) [or 1-sided 97.5% upper confidence limit] was to be used for estimating the incidence of inhibitor formation.
Results

Study population

Participant disposition in the study is shown in Figure 1. Of the 204 patients screened, 175 met study eligibility criteria and were enrolled into the study. In total, 173 patients completed the study, 146 received prophylaxis and 27 received on-demand therapy. At screening, hemophilic arthropathy was reported by 15 patients (56%) assigned to on-demand therapy and by 71 patients (49%) assigned to prophylactic therapy.

The initial 27 patients who entered the study underwent a comparative PK investigation (Part 1), the results of which have been reported previously. Of the 27 patients who completed the PK investigation, 26 continued into a treatment phase (Part 2) and one elected to withdraw from the study. Participants were assigned to either prophylaxis (N=14) or on-demand therapy with rVIII-SingleChain (N=12).

Part 3 of the study recruited 148 additional patients, one patient withdrew prior to dosing with rVIII-SingleChain. Sixty-four of the 147 patients in Part 3 underwent an initial PK investigation. Of these, 30 underwent a repeat PK investigation three to six months later. As in Part 2, patients in Part 3 were assigned to either prophylaxis (N=132) or on-demand therapy with rVIII-SingleChain (N=15).

Thirteen patients underwent 16 surgical procedures during the surgical sub-study. Overall, the study patients accumulated 14,306 EDs with rVIII-SingleChain; 120 patients were treated for \geq50 ED, and of those, 52 received rVIII-SingleChain for \geq100 EDs. Demographics of the patients who received rVIII-SingleChain are displayed in Table 2.

rVIII-SingleChain in prophylaxis

In this study, patients received prophylaxis in a regimen that was assigned by the investigator, taking into account the patient’s FVIII treatment regimen used prior to enrolment and the patient’s bleeding phenotype. Of the 146 patients on prophylaxis, 79 (54%) were assigned a three times per week regimen, 47 (32%) a twice per week regimen, 9 (6%) rVIII-SingleChain every other day and 11 (8%) were assigned other regimens (Figure 1). Data on the previous dosing regimen was available for 121
patients. Prior to enrollment, 73 patients (60%) were treated with an on-demand regimen and 48 patients (40%) were treated with prophylaxis. Treatment regimens prior to study entry and at the end of this study are displayed in Table 3. A comparison of previous and end-of-study treatment regimens for the 48 patients in whom information on the previous treatment regimen was available and who were treated with prophylaxis therapy prior to enrollment are displayed in Table 4.

Patients on prophylaxis three times per week were assigned doses by their individual investigator; median dose was 30 IU/kg per injection. Patients assigned a twice per week regimen used a median dose of 35 IU/kg. The median consumption of rVIII-SingleChain across all prophylaxis regimens was 4,283 IU/kg year (mean ± standard deviation [SD] 4,494 ± 1,778.17 IU/kg) [Table 5].

Across all prophylaxis regimens, the observed median AsBR, was 0.0 (Q1, Q3: 0.0, 2.4) and the observed mean ± SD AsBR was 2.1 ± 4.76. The calculated AsBR across all prophylaxis regimens was 1.6 bleeds per year with 95% CI of 1.3–1.8. In the subgroup of patients that received prophylaxis twice a week, the observed median AsBR was 0.0 (Q1, Q3: 0.0, 1.1) and the observed mean ± SD AsBR was 2.33 ± 6.67, which were comparable with values in subjects who received prophylaxis three times a week (median AsBR 0.0 [Q1, Q3: 0.0, 3.6]; mean ± SD AsBR 2.33 ± 3.87). The AsBR with prophylaxis was markedly reduced (p<0.0001) compared to the on-demand treatment group, median AsBR 11.73 (2.8, 36.5) [Table 5]. The majority of spontaneous bleeding episodes that required treatment were located in the joint (Table 5).

The observed median ABR across all prophylaxis regimens was 1.14 (Q1, Q3: 0.0, 4.2) and the observed mean ± SD ABR was 3.11 ± 5.05. The calculated ABR across all prophylaxis regimens was 2.6 bleeds per year with 95% CI of 2.3–2.9. In the subgroup of patients that received prophylaxis twice a week, the median observed ABR was 0.0 (Q1, Q3: 0.0, 3.3); and the observed mean ± SD ABR was 3.27 ± 6.83. These are not increased relative to patients who received rVIII-SingleChain three times week, in whom the observed median ABR was 1.93 (Q1, Q3: 0.0, 4.9); and the observed mean ± SD ABR was 3.34 ± 4.26. The ABR with prophylaxis was highly significantly (p<0.0001)
reduced compared to the ABR in the on-demand group, median ABR 19.64 (Q1, Q3: 6.2, 46.5) [Table 5].

rVIII-SingleChain in the control of bleeding events

A total of 848 bleeding events were treated with rVIII-SingleChain in the study, of which 835 were assessed by the investigator. Of the 848 bleeding events, 590 occurred in the 27 patients on on-demand therapy and 258 occurred in the 146 patients on prophylaxis. Of the patients on prophylaxis, 43% had no treated bleeds during the study. Of the 835 bleeding events assessed by the investigator, efficacy of rVIII-SingleChain to control the bleed was rated as excellent in 603 (72.2%), good in 180 (21.6%) and moderate in 52 (6.2%). No bleeds were reported as having a poor or no response to rVIII-SingleChain (Table 6).

For 80.9% of the bleeding events, patients required a single dose of rVIII-SingleChain to achieve hemostatic control. A second dose was required to achieve hemostatic control in 12.6% of bleeding events and three or more doses were required for 6.5% of bleeding events. The median cumulative dose used to treat a bleeding event was 34.7 IU/kg (mean 45.4 IU/kg), the median dose per injection to treat a bleeding event was 31.7 IU/kg (mean 32.0 IU/kg). The doses used to treat bleeds that achieved hemostatic control after a single dose, were not higher than the initial doses used to treat bleeds that required multiple doses for hemostatic control (Table 6).

rVIII-SingleChain in surgical prophylaxis

Thirteen patients underwent a total of 16 surgical procedures that required general, spinal or regional anesthesia (wisdom teeth extraction, abdominal hernia repair, elbow replacement, ankle arthroplasty, knee replacement [5], cholecystectomy combined with lengthening of the Achilles tendon and straightening of the right toes, circumcision [3], ORIF right ankle, hardware removal right ankle). Two of these procedures (cholecystectomy combined with lengthening of the Achilles tendon and straightening of the right toes) were performed in the same session but received differentiated
assessment of hemostasis. Overall, investigators assessed hemostatic efficacy of rVIII-
SingleChain in surgical prophylaxis as excellent in 15/16 surgeries and as good in 1/16
surgeries. Median rVIII-SingleChain consumption (pre- and intra-operatively) was 89.36
IU/kg (range 40.45–108.58 IU/kg).

Safety

Immunogenicity: Safety was assessed in all 174 patients exposed to rVIII-
SingleChain. FVIII inhibitors were not detected in any study patients; the inhibitor
incidence was 0% (95% CI; 0.0–2.1). In the 120 patients with ≥50 ED, the inhibitor
incidence was 0% (95% CI; 0.0–3.0).

Eight patients entered the study with a positive test for non-inhibitory anti-drug
antibodies (ADAs) [i.e., anti-FVIII IgG and / or IgM antibodies], prior to dosing with rVIII-
SingleChain. Seven of these patients remained positive until the end-of-study/last-visit
on-study and one patient, who started the study with positive IgG antibodies, became
negative by the end-of-study visit. Four other patients became positive for IgG and/or
IgM during the study; two had negative and two had positive antibody results at the end-
of-study visit.

No patient had pre-existing anti-CHO cell protein antibodies or developed them during
the study.

Tolerability: rVIII-SingleChain was well tolerated. Of 13,580 injections in which
tolerability was assessed by the patients, 99.3% reported no reactions, 0.5% very slight,
0.15% slight, 0.05% moderate, and none had severe reactions. Consistent with these
patient assessments, for 552 (99.8%) of the investigator-assessed injections, the
assessment of the reaction was “none”. Only 1 (0.2%) patient with erythema was
assessed by the investigator as having a very slight or “barely perceptible” reaction.

Adverse Events: Of the 174 patients, 113 (64.9%) experienced a total of 292
treatment-emergent AEs, the majority (77%) were mild in severity (Supplementary
Table 1). Only 7.5% of subjects experienced AEs that were considered to be related to
the study drug (N=13 events). A single study drug-related AE, a case of hypersensitivity,
was considered severe, all others were mild or moderate in intensity. No patient withdrew from the study due to an AE. The three most common AEs reported in the study were nasopharyngitis, arthralgia and headache.

Of the ten SAEs reported in this study, none led to withdrawal from the study and one was judged to be related by the investigator; this was an event of hypersensitivity for which the investigator hospitalized the patient for observation, and administration of steroids and antihistamines, with relief within 30 minutes, allowing hospital discharge later on the same day. The patient remained on rVIII-SingleChain treatment and tolerated it well. No clinically evident thromboembolic events were observed during the study.

Evaluation of the FVIII PK following repeat IV administration of rVIII-SingleChain

The PK investigation in Part 3 of the study confirmed the rVIII-SingleChain PK properties of Part 1 as published previously.12 PK parameters after initial (after the first dose, N=64) and repeat dosing (three to six months later, N=30) in Part 3 are summarized in Table 7. Because rVIII-SingleChain FVIII plasma activity is underestimated by the one-stage clotting assay, PK parameters were based on plasma FVIII activity measured by the chromogenic substrate assay. Results demonstrated a stable (time-independent) PK profile with a half-life of 12.9 hours, incremental recovery of 1.99 IU/dL per IU/kg and clearance of 3.05 mL/h/kg after repeat dosing. The PK of adolescents (≥ 12 to < 18 years) was not different from that of adults (≥ 18 years of age) [data not shown].
Discussion

In this large Phase I/III clinical study of individuals aged 12–65 years with severe hemophilia A, rVIII-SingleChain demonstrated excellent efficacy for prophylactic treatment with 43% of patients having no treated bleeds during the study. The median annualized spontaneous bleed rates were 0.0 when administered either twice or three times per week. rVIII-SingleChain showed excellent efficacy in controlling bleeding episodes at doses that are in line with the WFH recommendations. Treatment success (i.e., investigator rating of excellent or good) was documented in 93.8% of all bleeds assessed. Thirteen patients underwent 16 surgeries, including seven joint surgeries/replacements with surgical hemostasis rated excellent in 15 (94%) procedures and good in one (6%).

Across all prophylaxis regimens, a very low median ABR (1.14 [Q1, Q3: 0.0, 4.2]) and a median AsBR of 0.0 (Q1, Q3: 0.00, 2.4) was achieved. As common practice in pivotal registration studies for new FVIII products, this study had no comparator arm to allow a direct comparison of efficacy with other products. While indirect comparisons across studies are limited and do not allow for superiority claims, all of the recently published studies follow the same regulatory guidance (EMA 2011) and enroll similar populations (patients with severe hemophilia A). Efmoorocog alfa (Eloctate®) reported a median ABR of 1.6 with individualized prophylaxis.⁷ Median ABR with turoctocog alfa (NovoEight®) was 3.7 in adults and adolescents with 83% of patients receiving a three times per week prophylaxis schedule.¹⁶ Simoctocog alfa (Nuwiq®) reported a median ABR of 0.9 in a small study of 32 adult patients; however, this bleeding rate was achieved with a prophylactic regimen requiring dosing every second day.¹⁷

This study was designed to reflect clinical practice and as such, patients were assigned to prophylaxis regimens based on the clinical judgment of the treating physician. This resulted in one third of the study population being assigned to two times weekly prophylaxis regimen and half of the population being assigned to a three times weekly regimen. ABRs in both populations were low (0 and 1.93 respectively), confirming the possibility of almost complete freedom of bleeding events when rVIII-SingleChain is prescribed with accurate clinical judgment.
The hemostatic efficacy reported here for rVIII-SingleChain (93.8% of bleeds rated as good or excellent) is comparable to that of other rFVIII products, which range from 81 to 96.1% of bleeds being rated as excellent or good.6,16,18,19 rVIII-SingleChain was also analogous in terms of the numbers of injections needed to achieve hemostatic control; 93.5% of bleeds were controlled with one or two injections. With one or two injections efmoroctocog alfa controlled 97.7% of bleeding episodes, moroctocog alfa (Refacto®) controlled 88% (of 677 bleeding events across two studies) and rurioctacog alfa pegol controlled 95.9% of bleeding episodes.6,7,20

Of the patients on prophylaxis with rVIII-SingleChain, 43% achieved a zero bleed rate during the study. This is comparable to individualized prophylaxis with efmoroctocog alfa (45%) and twice-weekly prophylaxis with rurioctacog alfa pegol (39.6%).6,7

Treatment with rVIII-SingleChain during all surgical procedures resulted in very good control of bleeding, with hemostatic efficacy rated as excellent in 94% of procedures. These results are in line with those reported recently for other novel rFVIII products. Efmoroctocog alfa reported excellent hemostasis in 88% and good hemostasis in 12% of surgeries (N=8). For turoctocog alfa, intraoperative hemostasis was reported as excellent in 62% and good in 38% of 13 patients undergoing 15 procedures.7,21

Dosing in our study was at the investigators’ discretion with a recommendation to start prophylaxis with a dose between 20-40 IU/kg rVIII-SingleChain every second day or 20-50 IU/kg 2 to 3 times per week. Other schedules could be prescribed at the investigators’ discretion. Six-percent of patients were dosed every second day, 54% were dosed three times per week (median dose 30 IU/kg), 32% were dosed twice per week (median dose 35 IU/kg) and 8% followed other dosing regimens. The adherence to the prophylaxis regimen was high, with 92.5% of patients receiving not less than 80% and not more than 120% of the number of doses prescribed by the investigator.

For the treatment of bleeding events, investigators were instructed to follow the dosing guidelines for different bleeding types as recommended by the WFH in the 2012 edition of the WFH guidelines.1 With these dosing instructions, the median dose per injection to treat a bleeding episode was 31.7 IU/kg (range 6–84), which is in line with doses used
with other new rFVIII products; 27.35 IU/kg/dose for efmoroctocog alfa and a mean dose of 45.6 IU/kg for turoctocog alfa was used to stop a bleed.7,16

The overall median consumption for subjects on rVIII-SingleChain prophylaxis was 4,283 IU/kg/year which is comparable to that of the recently approved long-acting efmoroctocog alfa where a median consumption of 4,118.4 IU/kg/year was observed in a study investigating individualized regimens.22

To our knowledge, this pivotal study accumulated the most ED for a new rFVIII product, with a total of 14,306 ED in 174 patients. Of these, 120 patients were treated for \(\geq 50 \) ED and 52 for \(\geq 100 \) ED. Despite this significant exposure and a wide global reach with multiple ethnicities included in patient recruitment, no inhibitor development was observed in this study. The immunogenicity of this novel rFVIII molecule will be further explored in an ongoing study including previously untreated patients (NCT02172950).

Four patients became positive for non-inhibitory IgG ADAs during the study. At end of study visit, two of these patients had a negative antibody result, and two remained positive. This rate of ADA development is in line with other recently approved rFVIII products7 and the incidence of non-neutralizing antibodies against FVIII in healthy individuals and in patients with hemophilia.23,24 Eight patients had non-inhibitory ADAs prior to dosing with rVIII-SingleChain, seven of whom remained ADA positive at the end of the study.

rVIII-SingleChain was well tolerated and showed a favorable AE/SAE profile similar to that described for other products of the same class. The three most common AEs reported were nasopharyngitis, arthralgia and headache. Of the 10 SAEs reported in this large study, only one was judged to be related to the study drug by the investigator. This was an event of hypersensitivity that was controlled by administration of steroids and antihistamines allowing hospital discharge of the patient on the day of the event. The patient continued in the study. No participants discontinued due to adverse events.

The increased binding affinity of rVIII-SingleChain for vWF translates into a favorable PK profile of rVIII-SingleChain when compared to octocog alfa (Advate\textregistered).12 The previously reported PK parameters were confirmed in this study and remained consistent after repeated dosing.
In conclusion, this study, which was designed to reflect clinical practice, demonstrated with a robust data set that rVIII-SingleChain is highly efficacious in the treatment of bleeding events, routine prophylaxis and in controlling hemostasis in a variety of surgical procedures in adolescents and adults with severe hemophilia A. The study also demonstrated that rVIII-SingleChain has a favorable safety profile and is well tolerated. Very low annualized bleeding rates in patients on individualized prophylaxis hopefully has the potential to translate into prolonged freedom from debilitating joint disease.
Acknowledgements

This work was funded by CSL Behring, Marburg, Germany. Editorial assistance with the preparation of this manuscript was provided by Meridian HealthComms Ltd, funded by CSL Behring.

Authorship Contributions

DBK, NB, TL, AV, KSL and IP contributed to the design of the study; analysis and interpretation of data, drafted the manuscript, and reviewed and approved the final version. JM, KK, FAK, OS, MVK, LML, AS, LNB, RK, JO, AH, ES, RIB, KF, JCG, SP, PC, MAE, CDK and LR contributed to acquisition and interpretation of data, revised the manuscript, and reviewed and approved the final version. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Disclosure of conflicts of interest

JM has received research grants from Bayer, Biogen, CSL Behring, NovoNordisk and Roche. LNB has received research support from Bayer, Biogen, Baxalta, Green Gene, Pfizer, Opko, NovoNordisk and Octapharma. RK has received honoraria and research funding from Baxter, Bayer, Biogen Idec, Biotest, CSL Behring, Grifols, NovoNordisk, Octapharma, Pfizer and SOBI. JO received reimbursement for attending symposia/congresses and/or honoraria for speaking or consulting, and/or funds for research from Bayer HealthCare, Baxter, Biogen Idec, Biotest, CSL Behring, Grifols, Novo Nordisk, Octapharma, Swedish Biovitrum and Pfizer. ES received fees as a speaker in meetings organized by Kedrion, acted as a paid consultant to Bayer, Pfizer, CSL Behring, NovoNordisk, Grifols, Baxter, Baxalta, Biogen Idec, Sobi, Octapharma and Roche and received unrestricted research grant from Pfizer. RIB has received funding for clinical trials from Biogen Idec, Boehringer Ingelheim, Bayer, Baxter, Pfizer, Daiichi Sankyo, Portola Pharmaceuticals, Astellas and CSL Behring; has participated in clinical advisory boards for Amgen, Biogen Idec, Baxalta, Boehringer
Ingelheim, Bayer, Alexion Pharmaceuticals, and Pfizer; and has received research support from Baxter Healthcare, Bayer, Bristol-Myers Squibb and Alexion Pharmaceuticals; and has received conference travel support from Amgen, Novo Nordisk, Baxter Healthcare and Alexion Pharmaceuticals. KF has received speaker’s fees from Bayer, Baxter, CSL Behring, Pfizer, Novo Nordisk; performed consultancy for Bayer, Baxter, Biogen CSL Behring, Novo Nordisk and Pfizer; and has received research support from Bayer, Wyeth/Pfizer, Baxter, and Novo Nordisk. JCG has served on advisory committees for Baxalta, Bayer and CSL-Behring and received research Support: Baxalta. PC has received honoraria from Bayer, Baxter Healthcare, Biogen Idec, CSL Behring, Novo Nordisk, Pfizer and Sobi; has served on advisory boards for Baxter Healthcare, Biogen Idec, CSL Behring, Novo Nordisk, Pfizer and Sobi; and has received research funding from CSL Behring, Novo Nordisk, and Pfizer. ME has served as an advisory board participant, study investigator, and/or consultant for Baxalta, Biogen, Bio Products Laboratory, Kedrion, Novo Nordisk, Bayer and Pfizer. DB-K, NB, TL, AV and KSL are employees of CSL Behring. IP has received a research grant from CSL Behring honoraria for occasional lectures and advisory board sessions from CSL Behring, Novo-Nordisk, Biotest and Pfizer.
References

Table 1: Investigator evaluation of hemostatic efficacy, four point scale

<table>
<thead>
<tr>
<th>Rating</th>
<th>Treatment of bleeding events</th>
<th>Treatment during surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Definite pain relief and/or improvement in signs of bleeding (i.e., swelling, tenderness, and/or increased range of motion in the case of musculoskeletal hemorrhage) within approximately 8 hours after the first rVIII-SingleChain injection.</td>
<td>Hemostasis clinically not significantly different from normal (e.g., achieved hemostasis comparable to that expected during similar surgery in a non-factor deficient patient) in the absence of other hemostatic intervention and estimated blood loss during surgery is not more than 20% higher than the predicted blood loss for the intended surgery.</td>
</tr>
<tr>
<td>Good</td>
<td>Definite pain relief and/or improvement in signs of bleeding at approximately 8 hours after the first rVIII-SingleChain injection, but requires two injections for complete resolution.</td>
<td>Normal or mildly abnormal hemostasis in terms of quantity and/or quality (e.g., slight oozing, prolonged time to hemostasis with somewhat increased bleeding compared to a non-factor deficient patient in the absence of other hemostatic intervention) or estimated blood loss is greater than 20% but less than or equal to 30% higher than the predicted blood loss for intended surgery.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Probable or slight beneficial effect within approximately 8 hours after the first rVIII-SingleChain injection; requires more than two injections for complete resolution.</td>
<td>Moderately abnormal hemostasis in terms of quantity and/or quality (e.g., moderate hemorrhage that is difficult to control) with estimated blood loss greater than what is defined as Good.</td>
</tr>
<tr>
<td>Poor/No response</td>
<td>No improvement at all or condition worsens (i.e., signs of bleeding) after the first rVIII-SingleChain injection and additional hemostatic intervention is required with another FVIII product, cryoprecipitate, or plasma for complete resolution.</td>
<td>Severely abnormal hemostasis in terms of quantity and/or quality (e.g., severe hemorrhage that is difficult to control) and/or additional hemostatic intervention required with another FVIII product, cryoprecipitate, or plasma for complete resolution.</td>
</tr>
</tbody>
</table>
Table 2: Participant demographics

<table>
<thead>
<tr>
<th></th>
<th>On-demand treatment arm (N=27)</th>
<th>Prophylaxis treatment arm (N=146)</th>
<th>Total study population (N=174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (range)</td>
<td>39.0 (23–64)</td>
<td>28.0 (12–58)</td>
<td>29.5 (12–64)</td>
</tr>
<tr>
<td>Age group, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥12 to <18 years</td>
<td>0</td>
<td>14 (9.6)</td>
<td>14 (8.0)</td>
</tr>
<tr>
<td>≥18 to ≤65 years</td>
<td>27 (100)</td>
<td>132 (90.4)</td>
<td>160 (92.0)</td>
</tr>
<tr>
<td>Weight, kg, mean (SD)</td>
<td>78.1 (15.63)</td>
<td>74.0 (17.26)</td>
<td>74.6 (16.99)</td>
</tr>
<tr>
<td>BMI, kg/m(^2), mean (SD)</td>
<td>25.2 (4.07)</td>
<td>24.1 (4.82)</td>
<td>24.3 (4.70)</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (3.7)</td>
<td>30 (20.5)</td>
<td>31 (17.8)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>3 (11.1)</td>
<td>11 (7.5)</td>
<td>14 (8.0)</td>
</tr>
<tr>
<td>White</td>
<td>23 (85.2)</td>
<td>102 (69.9)</td>
<td>126 (72.4)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>3 (2.1)</td>
<td>3 (1.7)</td>
</tr>
<tr>
<td>Ethnicity, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>2 (7.4)</td>
<td>10 (6.8)</td>
<td>12 (6.9)</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>25 (92.6)</td>
<td>135 (92.5)</td>
<td>161 (92.5)</td>
</tr>
<tr>
<td>Not reported</td>
<td>0</td>
<td>1 (0.7)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Geographical region, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>4 (14.8)</td>
<td>18 (12.3)</td>
<td>22 (12.6)</td>
</tr>
<tr>
<td>Japan</td>
<td>1 (3.7)</td>
<td>9 (6.2)</td>
<td>10 (5.7)</td>
</tr>
<tr>
<td>Europe</td>
<td>16 (59.3)</td>
<td>69 (47.3)</td>
<td>86 (49.4)</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>6 (22.2)</td>
<td>50 (34.2)</td>
<td>56 (32.2)</td>
</tr>
</tbody>
</table>

BMI, body mass index; N, number; SD, standard deviation
Table 3: Treatment regimens prior to study entry and at the end of this study

<table>
<thead>
<tr>
<th></th>
<th>Prior to study (N=121)</th>
<th>End of study (N=121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 2nd day</td>
<td>9 (7%)</td>
<td>8 (7%)</td>
</tr>
<tr>
<td>3 times weekly</td>
<td>25 (21%)</td>
<td>57 (47%)</td>
</tr>
<tr>
<td>2 times weekly</td>
<td>6 (5%)</td>
<td>32 (26%)</td>
</tr>
<tr>
<td>Other regimen</td>
<td>8 (7%)</td>
<td>11 (9%)</td>
</tr>
<tr>
<td>On-demand</td>
<td>73 (60%)</td>
<td>13 (11%)</td>
</tr>
</tbody>
</table>
Table 4: Comparison of previous and end-of-study treatment regimens for subjects treated with prophylaxis therapy prior to enrollment

<table>
<thead>
<tr>
<th></th>
<th>Prior to study (N=48)</th>
<th>End of study (N=48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 2(^{nd}) day</td>
<td>9 (19%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>3 times weekly</td>
<td>25 (52%)</td>
<td>18 (38%)</td>
</tr>
<tr>
<td>2 times weekly</td>
<td>6 (12%)</td>
<td>17 (35%)</td>
</tr>
<tr>
<td>Other regimen</td>
<td>8 (17%)</td>
<td>9 (19%)</td>
</tr>
</tbody>
</table>
Table 5: Dosing and consumption of rVIII-SingleChain, annualized spontaneous bleeding rate (AsBR), annualized bleeding rate (ABR) and location of bleeds with rVIII-SingleChain in on-demand therapy and prophylaxis

<table>
<thead>
<tr>
<th></th>
<th>On-demand (N=27)</th>
<th>Prophylaxis</th>
<th>All (N=146)</th>
<th>Three times per week (N=79)</th>
<th>Twice per week (N=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose, IU/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>30 (25, 40)</td>
<td>31 (27, 40)</td>
<td>30 (26, 38)</td>
<td>35 (30, 41)</td>
<td></td>
</tr>
<tr>
<td>Consumption, IU/kg/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4,283</td>
<td>4,514</td>
<td>3,669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>4,494 (1,778.17)</td>
<td>4,769 (1237.42)</td>
<td>3,974 (2,396.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>11.73 (2.8, 36.5)</td>
<td>0.0 (0.0, 2.4)</td>
<td>0.0 (0.0, 3.6)</td>
<td>0.0 (0.0, 1.1)</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>24.84 (33.84)</td>
<td>2.10 (4.76)</td>
<td>2.33 (3.87)</td>
<td>2.33 (6.67)</td>
<td></td>
</tr>
<tr>
<td>N bleeds per year* (95% CI)</td>
<td>19.5 (17.8–21.3)</td>
<td>1.6 (1.3–1.8)</td>
<td>1.9 (1.6–2.3)</td>
<td>1.3 (1.0–1.8)</td>
<td></td>
</tr>
<tr>
<td>ABR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>19.64 (6.2, 46.5)</td>
<td>1.14 (0.0, 4.2)</td>
<td>1.93 (0.0, 4.9)</td>
<td>0.0 (0.0, 3.3)</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>31.14 (35.56)</td>
<td>3.11 (5.05)</td>
<td>3.34 (4.26)</td>
<td>3.27 (6.83)</td>
<td></td>
</tr>
<tr>
<td>N bleeds per year** (95% CI)</td>
<td>24.9 (23.0–27.0)</td>
<td>2.6 (2.3–2.9)</td>
<td>2.9 (2.5–3.4)</td>
<td>2.4 (1.9–3.0)</td>
<td></td>
</tr>
<tr>
<td>Location of spontaneous bleeds, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint</td>
<td>419 (91.1)</td>
<td>147 (94.2)</td>
<td>104 (97.2)</td>
<td>39 (95.1)</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>55 (12.0)</td>
<td>11 (7.1)</td>
<td>7 (6.5)</td>
<td>3 (7.3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>57 (12.4)</td>
<td>12 (7.7)</td>
<td>8 (7.5)</td>
<td>1 (2.4)</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; N, number; SD, standard deviation; Q1, lower quartile; Q3, upper quartile
*estimated number of spontaneous bleeds per subject per year based on a Poisson distribution
**estimated number of bleeds per subject per year based on a Poisson distribution
<table>
<thead>
<tr>
<th></th>
<th>N, %</th>
<th>Median Dose (IU/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding events treated with rVIII-SingleChain</td>
<td>848</td>
<td>34.7</td>
</tr>
<tr>
<td>Bleeding events with investigator assessment</td>
<td>835 (100)</td>
<td>34.7</td>
</tr>
<tr>
<td>Efficacy rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>603 (72.2)</td>
<td>32.2</td>
</tr>
<tr>
<td>Good</td>
<td>180 (21.6)</td>
<td>43.2</td>
</tr>
<tr>
<td>Moderate</td>
<td>52 (6.2)</td>
<td>93.4</td>
</tr>
<tr>
<td>Poor/no response</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of injections required to treat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>686 (80.9)</td>
<td>31.2*</td>
</tr>
<tr>
<td>2</td>
<td>107 (12.6)</td>
<td>35.6*</td>
</tr>
<tr>
<td>≥3</td>
<td>55 (6.5)</td>
<td>37.6*</td>
</tr>
</tbody>
</table>

N, number; N/A, not applicable
* IU/kg for first injection
Table 7: PK parameters following the first dose and following three to six months of treatment (repeat PK in Part 3)

<table>
<thead>
<tr>
<th>Parameter, unit</th>
<th>Initial PK total (N=64)</th>
<th>Repeat PK (N=30)</th>
<th>Mean (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Repeat</td>
</tr>
<tr>
<td>IRab, (IU/dL)/(IU/kg)</td>
<td>1.85 (21.8)</td>
<td>1.90 (21.0)</td>
<td>1.99 (17.7)</td>
</tr>
<tr>
<td>C\textsubscript{max}ab, IU/dL</td>
<td>99.9 (19.9)</td>
<td>103 (19.3)</td>
<td>108 (17.2)</td>
</tr>
<tr>
<td>AUC\textsubscript{t}, IU*h/dL</td>
<td>1780 (34.5)</td>
<td>1783 (33.3)</td>
<td>1850 (33.0)</td>
</tr>
<tr>
<td>AUC\textsubscript{inf}, IU*h/dL</td>
<td>1830 (34.9)</td>
<td>1840 (33.9)</td>
<td>1880 (34.5)</td>
</tr>
<tr>
<td>CL, mL/h/kg</td>
<td>3.15 (38.2)</td>
<td>3.13 (32.6)</td>
<td>3.05 (36.0)</td>
</tr>
<tr>
<td>V\textsubscript{ss}, mL/kg</td>
<td>59.5 (23.9)</td>
<td>60.3 (22.2)</td>
<td>53.1 (16.4)</td>
</tr>
<tr>
<td>t\textsubscript{1/2}, h</td>
<td>14.1 (27.1)</td>
<td>14.2 (29.0)</td>
<td>12.9 (29.4)</td>
</tr>
<tr>
<td>MRT, h</td>
<td>20.3 (26.4)</td>
<td>20.2 (27.8)</td>
<td>18.9 (28.5)</td>
</tr>
</tbody>
</table>

Median (range) age of the 64 subjects included in the PK analysis is 26 (12, 58) years.
The coefficient of variation (CV) represents the % of variability in each parameter and is calculated as the standard deviation divided by the mean.

AUC\textsubscript{inf}, area under the curve extrapolated to infinity; AUC\textsubscript{t}, area under the curve to the last sample with quantifiable drug concentration; CL, clearance; C\textsubscript{max}, observed maximum plasma concentration; IR, incremental recovery; MRT, mean residence time; N, number of participants; t\textsubscript{1/2}, half-life; V\textsubscript{ss}, volume of distribution at steady state.

aFor IR and C\textsubscript{max}, the total number of participants with available predose-corrected measurements was N = 63 at the initial PK assessment, and N = 29 at the repeat PK assessment.

bFor IR and C\textsubscript{max}, predose correction was performed by subtracting each participant’s FVIII activity level before dosing from the activity level obtained at each time point after dosing. All other parameters are predose-uncorrected.
Figure legends

Figure 1: Patient disposition in the study

204 patients with severe hemophilia A screened
190 patients enrolled

PART 1
27 patients enrolled
comparative PK investigation
with Adamek

1 patient enrolled
but withdrew prior to dosing

PART 2
16 patients treated with N80-SingleChain
Prophylaxis

9 patients
started every 2nd day

8 patients
started 3x/week

5 patients
started 2x/week

3 patients
started with other regimens

PART 2
13 patients treated with N80-SingleChain
On-demand

PART 3
146 patients entered Part 3
of the study

132 patients treated
with N80-SingleChain
Prophylaxis

75 patients
started every 2nd day

66 patients
started 3x/week

15 patients treated
with N80-SingleChain
On-demand

8 patients
started with other regimens

64 patients of Part 3
underwent initial PK
investigation

50 patients of Part 3
underwent repeat PK
investigation

132 patients rolled over in extension study for continued treatment with N80 SingleChain

SURGICAL SUBSTUDY
13 patients underwent a total of 36 major surgeries
Efficacy and safety of rVIII-SingleChain: results of a phase I/III multicenter clinical trial in severe hemophilia A

Johnny Mahlangu, Kazimierz Kuliczkowski, Farai Zhang Abdul Karim, Oleksandra Stasyshyn, Marina V. Kosinova, Lynda Mae Lepatan, Aleksander Skotnicki, Lisa N. Boggio, Robert Klamroth, Johannes Oldenburg, Andrzej Hellman, Elena Santagostino, Ross I. Baker, Kathelijin Fischer, Joan C. Gill, Stephanie P’Ng, Pratima Chowdary, Miguel A. Escobar, Claudia Djambas Khayat, Luminita Rusen, Debra Bensen-Kennedy, Nicole Blackman, Tharin Limsakun, Alex Veldman, Katie St. Ledger and Ingrid Pabinger

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.