Letter to the Editor

Diagnostic biomarker for ACTN1-macrothrombocytopenia

Shinji Kunishima,1 Katsumasa Kitamura,1 Motoko Yasutomi,2 and Ryoji Kobayashi3

1Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; 2Department of Pediatrics, University of Fukui, Fukui, Japan; 3Department of Pediatrics, Sapporo Hokuyu Hospital, Sapporo, Japan

Correspondence:

Shinji Kunishima, Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 4600001, Japan; e-mail: kunishis@nnh.hosp.go.jp
Congenital macrothrombocytopenia is a heterogeneous group of rare disorders characterized by abnormally giant platelets and thrombocytopenia with a variable degree of bleeding tendency\(^1\). A definitive diagnosis is possible in only approximately half of the patients; the rest of the patients remain without a definitive diagnosis and some patients are even misdiagnosed with chronic immune thrombocytopenia and treated accordingly. The most common congenial macrothrombocytopenias are MYH9 disorders/MYH9-related disease and Bernard-Soulier syndrome. These two disorders comprise approximately 40% of all cases and can be definitively diagnosed by an immunofluorescence analysis for neutrophil non-muscle myosin heavy chain II A (NMMHClIA) localization and flow cytometry for platelet GPIb/IX expression\(^1\). Recently, mutations in ACTN1, the gene encoding \(\alpha\)-actinin-1, have been found to be the next prevalent cause for congenital macrothrombocytopenia and should be considered in the differential diagnosis\(^3\)-\(^5\). We herein propose a diagnostic screening test for ACTN1-macrothrombocytopenia.

ACTN1-macrothrombocytopenia is characterized by mild macrothrombocytopenia with platelet anisocytosis and mild bleeding tendency without nonhematological complications\(^3\)-\(^5\). \(\alpha\)-Actinin-1 exists as antiparallel dimers and cross-links actin filaments and participates in the organization of the actin cytoskeleton\(^6\). The majority of ACTN1 mutations reside within the functional actin-binding or calmodulin-like domains. ACTN1 is the major actinin isoform in megakaryocytes/platelets. Mutations exert a dominant-negative effect, causing defective
proplatelet formation from megakaryocytes and resulting in the production of large platelets5. There are no apparent abnormalities in platelet aggregation, spreading on glass surfaces, or clot retraction in patients. Furthermore, there is no apparent abnormal \(\alpha\)-actinin-1 localization in resting as well as surface-activated platelets. This may be partly explained by the fact that only a fraction of \(\alpha\)-actinin-1 is associated with the cytoskeleton and large amounts are present as a cytosolic-free form7, thereby subtle abnormal localization, if present, may not be readily detected. Accordingly, a molecular genetic analysis is only available for the diagnosis and there is an unmet need for the development of a diagnostic test for clinical diagnostic practice3-5.

Peripheral blood smears from controls (n=4) and patients with \textit{MYH9} disorders (n=2) and \textit{ACTN1}-macrothrombocytopenia (n=3) were double-stained with anti-\(\alpha\)-actinin-1 antibody (sc-17829, Santa Cruz Biotechnology, Santa Cruz, CA) and anti-NMMHCIIA antibody (BT561, Biomedical Technologies, Stoughton, MA) and examined using a BX50 fluorescence microscope with a UPlanApo 100x/1.35 objective lens (Olympus, Tokyo, Japan)5. \(\alpha\)-Actinin-1 was fine-granularly distributed throughout resting platelets from both the controls and patients with \textit{MYH9} disorders and \textit{ACTN1}-macrothrombocytopenia (Figure 1A).

Surface-activated platelets undergo dynamic cytoskeletal reorganization, which allow them to change from a discoid to a spherical shape, extend filopodia, and form lamellipodia8. We have found in patients with \textit{MYH9} disorders that mutant
NMMHCIIA was only distributed in the central granulomere zone, indicating that upon surface activation, mutant NMMHCIIA is unable to translocate to lamellipodia. We therefore hypothesized that during actomyosin cytoskeletal reorganization in surface-activated spreading platelets, α-actinin-1 alteration in ACTN1-macrothrombocytopenia would influence NMMHCIIA localization. Platelets were seeded onto chamber slides (Millicell EZ Slide, Millipore, Bedford, MA) for 30 min, fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton X-100 and then processed for a double immunofluorescence analysis of α-actinin-1 and NMMHCIIA (Figure 1B). In control platelets, α-actinin-1 localized to lamellipodia in a discrete granular pattern and at the circumference of the surface membrane, corresponding to a focal adhesion, indicating that during the process of platelet activation, cytosolic α-actinin-1 was incorporated into the reorganized actin cytoskeleton. In patients with MYH9 disorders and ACTN1-macrothrombocytopenia, α-actinin-1 was similarly distributed as in control platelets. The distribution profile of NMMHCIIA was distinct from that of α-actinin-1. In control platelets, NMMHCIIA was diffusely distributed in lamellipodia but not in the central granulomere zone, whereas in patients with MYH9 disorders and ACTN1-macrothrombocytopenia, NMMHCIIA was additionally distributed diffusely in the granulomere zone. A density plot analysis of the fluorescence intensity of NMMHCIIA illustrated a clear difference between the controls and patients. In control platelets, the fluorescence intensity was evenly low at the granulomere zone, whereas in patient platelets, it was rather high and uneven. No differences of the distribution profile of α-actinin-1 were found among the controls and
patients with MYH9 disorders and ACTN1-macrothrombocytopenia. These data suggest that detection of NMMHCIIA in the granulomere zone in surface-activated platelets could be indicative of actomyosin cytoskeletal alterations. Thus we propose the immunofluorescence analysis of NMMHCIIA in surface-activated platelets as a potential diagnostic screening test for ACTN1-macrothrombocytopenia.

Acknowledgments:

This work was supported by grants from the Japan Society for the Promotion of Science KAKENHI 23591429 and 26461413, Health and Labour Sciences Research Grants for Research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan, and Mitsubishi Pharma Research Foundation.

Author contribution:

SK designed and performed experiments, analyzed data, and wrote the manuscript; KK helped with the experiments; and MY and RK provided the patient samples.

Conflict of interest disclosure:

The authors declare no competing financial interests.
References

Figure Legend

Figure. Localization of α-actinin 1 and NMMHCIIA in platelets.

(A) Localization of α-actinin 1 and NMMHCIIA in resting platelets. Peripheral blood
smears were stained with anti-α-actinin-1 antibody (Alexa Fluor 488, green) and
anti-NMMHCIIA antibody (Alexa Fluor 555, red). Merged images are shown. There
were abnormal NMMHCIIA aggregations in the neutrophils of patients with MYH9
disorders (indicated by arrow heads). P, patient; M, mother. Scale bar: 20 μm.

(B) Localization of α-actinin 1 and NMMHCIIA in surface-activated spreading platelets.
Surface-activated platelets were double-stained with anti-α-actinin-1 antibody (green)
and anti-NMMHCIIA antibody (red). The fluorescence intensity of α-actinin-1 (green)
and NMMHCIIA (red) along the lines of interest on the merged images was measured
using the ImageJ plot profile function (National Institutes of Health, Bethesda, MD) and
the data was exported to Microsoft Excel (Redmond, CA) for the construction of graphs.
Representative images from 10 spreading platelets in each individual are shown. The
granulomere zone is indicated by dotted lines. Scale bar: 20 μm.
Diagnostic biomarker for ACTN1-macrothrombocytopenia
Shinji Kunishima, Katsumasa Kitamura, Motoko Yasutomi and Ryoji Kobayashi