MOLECULAR PREDICTION OF DURABLE REMISSION AFTER FIRST LINE FLUDARABINE-CYCLOPHOSPHAMIDE-RITUXIMAB IN CHRONIC LYMPHOCYTIC LEUKEMIA

Running title: Durable remission after FCR

Davide Rossi,1 Lodovico Terzi-di-Bergamo,1 Lorenzo De Paoli,1 Michaela Cerri,1 Guido Ghilardi,1 Annalisa Chiarenza,2 Pietro Bulian,3 Carlo Visco,4 Francesca R. Mauro,5 Fortunato Morabito,6 Agostino Cortelezzii,7 Francesco Zaja,8 Francesco Forconi,9,10 Luca Laurenti,11 Ilaria Del Giudice,5 Massimo Gentile,6 Iolanda Vincelli,11 Marina Motta,13 Marta Coscia,14 Gian Matteo Rigolin,15 Alessandra Tedeschi,16 Antonino Neri,17 Roberto Marasca,18 Omar Perbellini,19 Carol Moreno,20 Giovanni Del Poeta,21 Massimo Massaia,22 Pier Luigi Zinzani,23 Marco Montillo,16 Antonio Cuneo,15 Valter Gattei,3 Robin Foà,5 Gianluca Gaidano1

1Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy; 2Hematology, Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy; 3Clinical and Experimental Oncology-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy; 4Department of Cell Therapy and Hematology, Ospedale San Bortolo, Vicenza, Italy; 5Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy; 6Hematology Unit, Department of Onco-Hematology, Hospital of Cosenza, Cosenza, Italy; 7Department of Hematology Oncology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy; 8Clinica Ematologica, Centro Trapianti e Terapie Cellulari “Carlo Melzi” DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy; 9Cancer Sciences Unit, Southampton Cancer Research UK and NIHR ECMC Centres, University of Southampton, Southampton, United Kingdom & 10Division of Hematology, University of Siena, Siena, Italy; 11Institute of Hematology, Catholic University of the Sacred Heart, Rome, Italy; 12Hematology Unit, Hospital of Reggio Calabria, Reggio Calabria, Italy; 13Department of Hematology, Spedali Civili, Brescia, Italy; 14Division of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza and University of Turin, Turin, Italy; 15Hematology Section, Azienda Ospedaliero Universitaria Arcispedale S. Anna, University of Ferrara, Italy; 16Department of Oncology/Haematology, Niguarda Cancer Center, Niguarda Ca Granda Hospital, Milan, Italy; 17Department of Clinical Sciences and Community Health, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy; 18Division of Hematology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy; 19Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; 20Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 21Department of Hematology, Tor Vergata University, Rome, Italy; 22Hematology and Cell Therapy Unit, Ospedale Mauriziano and University of Turin, Turin, Italy; 23Institute of Hematology ’L. e A. Seràgnoli’, University of Bologna, Bologna, Italy.

Correspondence: Davide Rossi, MD, PhD, Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; Ph +39-0321-660698; Fax +39-0321-620421; E-mail rossidav@med.unipmn.it; Gianluca Gaidano, MD, PhD, Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; Ph +39-0321-660655; Fax +39-0321-620421; E-mail gianluca.gaidano@med.uniupo.it.
**Key points:** CLL patients harboring mutated *IGHV* genes but neither 11q or 17p experience durable remission after frontline FCR
Fludarabine, cyclophosphamide and rituximab (FCR) has represented a significant treatment advancement in chronic lymphocytic leukemia (CLL). In the new scenario of targeted agents, there is an increasing interest in identifying patients who gain the maximum benefit from FCR. In this observational multicenter retrospective analysis of 404 CLL patients receiving frontline FCR, the combination of three biomarkers that are widely tested before treatment (IGHV mutation status, 11q deletion and 17p deletion; available in 80% of the study cohort) allowed to identify a very low-risk category of patients carrying mutated IGHV genes but neither 11q or 17p deletion that accounted for 28% of all cases. The majority of very low-risk patients (71%) remained free of progression after treatment and their hazard of relapse decreased after four years from FCR. The life expectancy of very low-risk patients (91% at 5 years) was superimposable to that observed in the matched normal general population, indicating that neither the disease, nor complications of its treatment affected survival in this favorable CLL group. These findings need a prospective validation and may be helpful for the design of clinical trials aimed at comparing FCR to new targeted treatments of CLL, and, possibly, for optimized disease management.

**Keywords**: chronic lymphocytic leukemia, FCR, immunoglobulin, 17p, 11q
INTRODUCTION

Fludarabine, cyclophosphamide and rituximab (FCR) is the most effective chemoimmunotherapy regimen for the management of chronic lymphocytic leukemia (CLL), and represents the current standard for untreated patients who are young and in good physical conditions. 1-3 Though the majority of CLL patients receiving FCR as frontline therapy are destined to relapse, a subgroup of cases may experience a durable first remission. 4-8 In the new scenario of targeted agents for CLL, 9-14 affordable treatment strategies should be patient-risk oriented as well as cost-effective and resource-saving. 15-17 On these bases, there is an increasing interest in identifying a priori patients who may maximally benefit from FCR.

In this observational retrospective study based on a large dataset of FCR-treated CLL, we show that the combination of three biomarkers of common use, i.e. immunoglobulin heavy variable (IGHV) gene mutation status and FISH abnormalities at chromosomes 11q and 17p, allows segregation of a subgroup of patients who may achieve durable remissions after first-line FCR and experience an expected survival similar to that of the general population.

METHODS

Patients

The study was designed as a retrospective observational analysis and collected 404 progressive and previously untreated CLL patients who consecutively received standard FCR as first-line therapy in 19 hematologic centers between 2001 and 2010. The database was locked on June 2014 (further details are in the Supplementary Appendix). The Reporting Recommendations for Tumor Marker Prognostic Studies criteria were followed throughout this study. 18 Patients provided informed consent in accordance with local IRB requirements and
Declaration of Helsinki. The study was approved by the Ethical Committee of the Ospedale Maggiore della Carità di Novara associated with the Amedeo Avogadro University of Eastern Piedmont (Protocol Code 59/CE; Study Number CE 8/11).

Statistical analysis

Progression free survival (PFS) was the primary endpoint and was measured from date of treatment start to date of progression according to IWCLL-NCI guidelines (event), death (event) or last follow-up (censoring).\(^\text{19}\) Overall survival (OS) was measured from date of initial presentation to date of death from any cause (event) or last follow-up (censoring).\(^\text{19}\) Response assessment was according to NCI or IWCLL-NCI guidelines.\(^\text{19,20}\) Survival analysis was performed by Kaplan-Meier method and compared between strata using the Log-rank test. The adjusted association between exposure variables and PFS was estimated by Cox regression. The hierarchical order of relevance in predicting PFS of covariates was estimated by recursive partitioning (rpart function of R). Relative survival, defined as the ratio between actuarial survival observed in the CLL cohort and expected survival of the general Italian population matched to CLL patients by sex, age and calendar year of FCR start, was calculated using the Ederer II method. Expected survival estimates were calculated utilizing Italian life tables (Human Mortality Database; http://www.mortality.org/, accessed June 18, 2014). All statistical tests were two-sided. Statistical significance was defined as p value <0.05. The analysis was performed with the Statistical Package for the Social Sciences (SPSS) software v.22.0 (Chicago, IL) and with R statistical package 3.1.2 (http://www.r-project.org) (further details are in the Supplementary Appendix).
RESULTS AND DISCUSSION

The characteristics of the study cohort (n=404; 317 with complete molecular data) were consistent with those reported in CLL receiving FCR as first treatment (Table 1S).\(^1\)\(^-\)\(^3\) After a median follow-up of 70 months, 194 patients have progressed and 72 have died, accounting for a median PFS of 54.8 months and for a 5-year OS of 81.2% (median: not reached) (Figure 1S). By multivariate analysis (Table 1 and 2S), unmutated \(IGHV\) genes (HR: 1.65; p=.0099), 11q deletion (HR: 1.67; p=.0096) and 17p deletion (HR: 3.72; p=<.0001) maintained independent association with PFS (Figures 2S-8S), thus providing the rationale to utilize these molecular features in the development of a model to predict remission duration after FCR.

By recursive partitioning, a low-risk category was hierarchically classified that accounted for 28.4% of the study cohort and comprised patients harboring mutated \(IGHV\) genes but lacking both 11q deletion and 17p deletion (Table 3S; Figure 7S-9S). The hazard of relapse in low-risk patients progressively decreased after four years from FCR (Figure 1; Figure 10S; Figure 11S), and most of them (71.6%) were projected to remain free of progression and treatment (Figure 1; Figure 12S). Consistently, the life expectancy of low-risk patients was similar to that observed in the matched normal general population (5-year relative survival: 95.8%; p=.2770) (Figure 1), indicating that neither disease, nor complications of treatment affected survival in this favorable CLL group.

Although the study lacked a systematic assessment of minimal residual disease (MRD),\(^{21,22}\) a fraction (4/9) of low-risk patients alive and progression-free for 6 or more years from FCR (range 6-9 years) was investigated by flow cytometry on peripheral blood for MRD (sensitivity \(10^{-4}\)) and tested negative in all cases (data not shown). This observation proved the persistence of a deep response among low-risk patients who are in persistent remission.

CLL is associated with an increased risk of developing second cancers,\(^{23}\) and long-term toxicities, including second malignancies, represent a concern for FCR-treated patients.\(^{24}\) In our
cohort, a small proportion of low-risk cases (3.9%) developed a second tumor (Figure 1). Though an extended follow-up might capture additional events, the rate of second primary tumors in low-risk cases was lower than that observed among the other risk subgroups of patients and did not translate into an excess mortality compared to the matched general population (Figure 1). This might be explained, at least in part, by the lower requirement of salvage treatments, and thus by the low overall load of chemotherapy received by low-risk patients.

The follow-up of our cohort does not equate that of the seminal FCR series, and the retrospective design of our study represents an inevitable limitation. Nevertheless, an external validation of our data is provided by the consistent description of patients in durable remission in clinical trials of FCR treated CLL, and by the individual association between PFS and the status of 17p, 11q or IGHV by multivariable analyses from prospective cohorts. The novel contribution of our study is the first demonstration that the combination of high risk biomarkers widely tested prior to treatment allows the segregation of a subgroup of CLL patients projected to maintain a durable remission after FCR. This predictive model may be of help for therapeutic stratification of CLL.

In the era of personalized medicine, challenges of CLL treatment will involve correctly matching therapy to the unique risk profile of each individual patient. Our data support front-line FCR as a highly active option in physically fit patients with progressive CLL whose disease has a low-risk molecular profile. Novel agents such as signaling kinase inhibitors show promising activity in CLL but are associated with considerable costs and are not affordable in many health care systems if applied broadly across large numbers of patients. To responsibly and effectively advance the development of these new therapies, novel drugs should be targeted specifically to patient subgroups in which they can provide the greatest benefit compared to established chemoimmunotherapy. Given the highly favorable outcome of IGHV mutated CLL lacking 17p and 11q deletion hereby reported following front-line FCR treatment, assessment of whether novel agents provides additional benefit in this biologic subgroup will require highly
powered studies with a long follow-up, and should include quality of life and long-term toxicities among endpoints.

**Acknowledgements**: This study was supported by Special Program Molecular Clinical Oncology 5 x 1000 No. 10007, My First AIRC Grant No. 13470, Associazione Italiana per la Ricerca sul Cancro Foundation Milan, Italy; Fondazione Cariplo, Grant No. 2012-0689; Progetto Giovani Ricercatori, Grant No. GR-2010-2317594, Ministero della Salute, Rome, Italy; Compagnia di San Paolo, Grant No. PMN_call_2012_0071, Turin, Italy; Futuro in Ricerca 2012 Grant No. RBFR12D1CB, Ministero dell'Istruzione, dell'Università e della Ricerca, Rome, Italy, Cancer Research UK, NIHR ECMC UK and Leukemia Lymphoma Research UK No. 14037.


**Conflict-of-interest disclosure**: The authors have no conflict of interest to disclose.
REFERENCES


<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
<th>Internal bootstrapping validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-year PFS (%)</td>
<td>Median PFS</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age &lt;65 years</td>
<td>46.6</td>
<td>58.1</td>
<td>49.5-66.6</td>
</tr>
<tr>
<td>Age ≥65 years</td>
<td>42.9</td>
<td>46.5</td>
<td>36.0-56.9</td>
</tr>
<tr>
<td>Binet A</td>
<td>59.5</td>
<td>64.7</td>
<td>31.8-96.6</td>
</tr>
<tr>
<td>Binet B+C</td>
<td>43.5</td>
<td>54.3</td>
<td>48.3-60.3</td>
</tr>
<tr>
<td>IGHV Mutated</td>
<td>58.6</td>
<td>nr</td>
<td>na</td>
</tr>
<tr>
<td>IGHV Unmutated</td>
<td>36.3</td>
<td>48.2</td>
<td>43.7-52.7</td>
</tr>
<tr>
<td>No 11q deletion</td>
<td>49.4</td>
<td>56.9</td>
<td>47.1-66.6</td>
</tr>
<tr>
<td>11q deletion</td>
<td>18.4</td>
<td>43.5</td>
<td>32.2-54.7</td>
</tr>
<tr>
<td>No 17p deletion</td>
<td>48</td>
<td>58.9</td>
<td>49.3-68.4</td>
</tr>
<tr>
<td>17p deletion</td>
<td>10.9</td>
<td>22.5</td>
<td>8.5-36.4</td>
</tr>
<tr>
<td>Female</td>
<td>50.1</td>
<td>66.2</td>
<td>50.5-82.0</td>
</tr>
<tr>
<td>Male</td>
<td>42.7</td>
<td>51.6</td>
<td>43.8-59.3</td>
</tr>
<tr>
<td>No13q deletion</td>
<td>45.4</td>
<td>55.6</td>
<td>48.3-62.8</td>
</tr>
<tr>
<td>13q deletion</td>
<td>41.1</td>
<td>50.8</td>
<td>38.6-63.0</td>
</tr>
<tr>
<td>No trisomy 12</td>
<td>45.1</td>
<td>55.6</td>
<td>46.3-64.8</td>
</tr>
<tr>
<td>Trisomy 12</td>
<td>40.3</td>
<td>51.7</td>
<td>44.9-58.6</td>
</tr>
</tbody>
</table>

* PFS, progression free survival; IGHV, immunoglobulin heavy variable gene; CI, confidence interval; HR, hazard ratio; LCI, lower confidence interval; UCI upper confidence interval

Shrinkage coefficient: 0.92
Discrimination: bias-corrected c-index: 0.64; optimism: 0.02
Calibration: bias-corrected calibration slope: 0.91; optimism: 0.09
FIGURE LEGENDS

Figure 1. Estimates of progression free survival, hazard of progression, overall survival and prevalence of second tumors according to the model based on 17p deletion, 11q deletion and IGHV mutation status. High-risk cases harboring 17p deletion independent of co-occurring 11q deletion or unmutated IGHV genes are colour coded in red. Intermediate-risk cases harboring unmutated IGHV genes and/or 11q deletion in the absence of 17p deletion are colour coded in yellow. Low-risk cases harboring mutated IGHV genes in the absence of 11q and 17p deletion are colour coded in blue. Panel A. Progression free survival (PFS). Panel B. Estimate of the hazard of progression in relation to the time elapsed from FCR treatment start. Panel C. Overall survival (OS). The black line represents the expected OS in the age-, sex- and calendar year of treatment-matched general population. nr, not reached; na, not applicable; p values according to the Log-rank statistics. Panel D. Prevalence of second tumors among assessable cases of the three risk subgroups. Whiskers represent the 95% confidence interval of the proportion. p value according to Fisher's exact test.
Figure 1

A. Cumulative probability of PFS (%)
- Low-risk group (IGHV mutated)
- Intermediate-risk group (IGHV unmutated and/or 11q deletion)
- High-risk group (17p deletion)

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
<th>Median PFS (months)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>90</td>
<td>51.7</td>
<td>46.1-57.2</td>
</tr>
<tr>
<td>102</td>
<td>197</td>
<td>nr</td>
<td>na</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>22.5</td>
<td>8.5-36.4</td>
</tr>
</tbody>
</table>

Pairwise comparisons of the PFS curves:
- p = 0.0001
- p < 0.0001

B. Hazard of progression

C. Cumulative probability of OS (%)

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
<th>5-years OS</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>90</td>
<td>91.4</td>
<td>87.1-95.7</td>
</tr>
<tr>
<td>32</td>
<td>197</td>
<td>83.2</td>
<td>80.0-86.4</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>57.5</td>
<td>47.6-67.4</td>
</tr>
</tbody>
</table>

Pairwise comparisons of the OS curves:
- p = 0.0341
- p < 0.0001

D. Prevalence of second tumors
- Low-risk
- Intermediate-risk
- High-risk

p = 0.0500
19.0% (4/21)
3.9% (3/77)
12.1% (21/173)
Molecular prediction of durable remission after first line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia