Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in Sickle Cell Disease

Tosti J Mankelow*1, Rebecca E Griffiths*1, Sara Trompeter2, Joanna F Flatt1, Nicola M Cogan1, Edwin J Massey1, David J Anstee1.
*Equally contributing authors

1Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, BS34 7QH, UK.
2Joint Red Cell Unit, University College London NHS Foundation Trust, Haematology Department, London, NW1 2PG, UK

Running Head – Autophagic vesicles in Sickle Cell Disease.

Corresponding author – Professor David Anstee

BITS
NHSBT
Northway
Filton
Bristol
BS34 7QH
UK

Fax – 44 (0)117 9125796
Tel – 44 (0)117 9217500
Email – david.anstee@nhsbt.nhs.uk

Manuscript length
Abstract 157 words
Main text 1249 words
Figures 2
References 21
Key Points

1. Reticulocyte maturation involves the release of intact, inside-out autophagic vesicles with phosphatidylserine exposed on their surface.

2. Elevated levels of autophagic vesicles on circulating reticulocytes cause phosphatidylserine exposure in patients with Sickle Cell Disease.

Abstract

During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out PS-exposed autophagic vesicles are extruded. Cell surface phosphatidylserine (PS) is a well characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with Sickle Cell Disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (~1.4 μm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomised individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside out PS exposed autophagic vesicles because of asplenia.

Introduction

The erythrocyte is one of the most abundant, accessible and best characterized of human cells but until the recent development of in vitro erythroid culture systems1;2 obtaining large numbers of its precursor cell the human reticulocyte has been problematic. Reticulocytes are broadly grouped into R1, motile multi-lobular and normally confined to bone marrow, and R2, which are non-motile, much more mechanically stable and released into peripheral circulation where they comprise approximately 2% of red cells3;4. During maturation to an erythrocyte the reticulocyte must lose approximately 20% of its surface area, reduce its volume and degrade or eliminate residual cytosolic organelles. Current dogma considers that loss of plasma membrane is through the release of endocytosed plasma membrane as exosomes, whereas purging of cellular organelles is executed by autophagy5.

Surface phosphatidylserine (PS) exposure is a well characterized signal for initiating phagocytosis of unwanted cells or cellular material6. PS is normally located on the intracellular surface of plasma membranes. Relocation to the extracellular surface may occur by activation of a scramblase7 or a bidirectional trafficking process involving cytosolic vesicles8. PS-exposed red cells are found in the peripheral blood of patients who have undergone splenectomy or have sickle cell disease (SCD) or thalassemia8-13.
Methods
Details of anonymised patient samples, antibodies used and full methods are within supplemental material. Briefly, reticulocytes were derived from erythroid cultures and confocal microscopy was performed as described\(^5\). PS was detected using Annexin V FITC (Annexin-V-FLUOS staining kit (Roche)) as directed by the manufacturer. Mononuclear cells were purified from a waste fraction from a donation of platelets (with informed consent) by apheresis in accordance with the Declaration of Helsinki (reviewed by the National Health Service National Research Ethics Service).

Results and Discussion
We previously showed\(^2\) that maturation of late \textit{in vitro} produced reticulocytes involves the generation of GPA decorated endocytic vesicles which fuse with autophagosomes to create large autophagic vesicles corresponding to the vacuoles described by Kent \textit{et al} 1966\(^14\). We used two monoclonal antibodies to GPA which recognise different epitopes on the extracellular domain of the glycoprotein; R10 recognises a trypsin-sensitive epitope\(^15\) whereas BRIC256 recognises a trypsin resistant epitope\(^16\). After trypsin treatment, R10 bound to uncleaved GPA can be distinguished from extracellular proteolytically cleaved GPA in the plasma membrane (Fig.1A). The results show that the endocytosed plasma membrane which fuses with the autophagosome\(^2\) is subsequently expelled from the reticulocyte. Furthermore the autophagic vesicle appears to be expelled intact. We observe no clear evidence that the vesicle membrane fuses with the plasma membrane as would be expected if residual organelle material were expelled by exocytosis prior to blebbing as previously proposed\(^2\). Dual staining the R10-positive vesicles with the autophagosome marker LC-3 confirmed that the vesicles are identical to those previously described\(^2\) (Fig.1B). GPA R10-positive vesicles were observed in a small subset of red cells from the peripheral blood of a normal blood donor (Fig.1C). To ascertain the orientation of these extruding vesicles cultured reticulocytes were stained for PS, and with monoclonal antibodies to intracellular epitopes BRIC163\(^17\) (GPA) and BRIC155\(^18\) (AE1), and shown to be inside-out (Fig.1D). To control for correct PS staining we treated red cells with N-ethyl maleimide (NEM) followed by Ca\(^{2+}\) and ionomycin as Kuypers \textit{et al} 1996\(^13\) (supplemental Fig.1). We have tested \textit{in vitro} produced reticulocytes from numerous different cultures and always observe that 5-10\% of reticulocytes have an external PS positive inside out vesicle. Costaining for PS and the Golgi marker Giantin (Fig.1E) and BRIC163 and mitochondria (Fig.1F) confirm that these inside-out, PS exposed vesicles are the same internal autophagic vesicles previously described\(^2\). The Mitotracker® stained emerging vesicle (blue) can be seen straddling the plasma membrane (Fig.1F). We assume that autophagic vesicles expelled by developing reticulocytes would be phagocytosed \textit{in vivo} by splenic macrophages in individuals with a functional spleen. Our data suggests that a bidirectional trafficking process, as proposed by Lee \textit{et al}\(^8\), is used to generate erythrocytes from mature reticulocytes. However, in the maturing human reticulocyte this apoptotic-like process combines with autophagy to achieve the reduction in surface area and volume and simultaneously eliminate unwanted residual intracellular organelles in order to form the biconcave erythrocyte.
The presence of circulating red cells with exposed PS in patients with hemoglobinopathies is well documented10,13. The presence of these cells has been linked to a hypercoagulable state through increased thrombin generation and associated platelet activation12,19. Previous studies demonstrating increased PS expression in SCD were done by flow cytometry and it has been assumed that the PS exposure is uniform over the cell surface. We examined the peripheral blood of SCD patients by live cell imaging. PS was only found in discrete areas of the red cell (Fig.2A) and was not uniformly distributed over the surface, as would be expected if caused by the action of a scramblase7. Further imaging confirmed the presence of vesicles positive for intracellular GPA and AE1. Quantitation showed all patients had increased numbers of red cells with vesicles positive for PS and intracellular GPA and AE1 on their surface when compared controls (Fig.2A). To confirm the PS positive cells observed by microscopy correlated with those detected by flow cytometry, we recovered PS positive SCD cells using a cell sorter and imaged. All cells positively sorted for PS showed fluorescence exclusively in large vesicles. Negatively sorted cells did not show any PS fluorescence (Fig.2B). The flow diagrams of the sort are shown in supplemental Fig.2.

The number of PS-exposed red cells in patients with SCD is higher in those patients who have had a splenectomy10,11. Hyposplenism is present in the majority of SCD patients before 12 months of age20. An increased number of PS-exposed red cells has also been observed by flow cytometry in circulating red cells after splenectomy21. We analysed red cells from two splenectomised, but otherwise healthy individuals. In both cases splenectomy was performed because of immune mediated thrombocytopenia and the patients hematological parameters were as expected post splenectomy. PS at the surface of patient red cells was exclusively on extruding vesicles and not elsewhere on the plasma membrane (Fig.2C). Further imaging confirmed the presence of vesicles positive for intracellular GPA and AE1 and both splenectomised individuals had more PS and intracellular GPA and AE1 positive vesicles on their red cells than controls (Fig.2C). Live dual staining for PS and mitochondria in SCD red cells showed complete colocalisation in these vesicles (Fig.2D). They are analogous to the internal PS-positive vesicles identified in cultured reticulocytes (Fig.1F). Red cells from SCD and splenectomised patients were trypsin-treated and stained with R10 and also found to have elevated levels of internal GPA-decorated vesicles (Fig.2E and F). We provide evidence indicating that PS exposed red cells described in SCD and splenectomised individuals9-12 are circulating reticulocytes which cannot be properly processed because the patients lack a functional spleen.

In mature R2 human reticulocytes we show that the trafficked vesicles have an inside-out orientation and \textit{in vivo} these vesicles are likely removed from the maturing reticulocyte by the spleen. Failure to remove these vesicles could explain the observed increase in thrombotic events that are reported to occur in splenectomised individuals. If not removed by the spleen, autophagic PS exposed vesicles are possibly released directly into plasma where they could be as pathologically active as those attached to red cells. Hyposplenism is a feature of SCD19 and failure to remove the vesicles from
circulating red cells may exacerbate the clinical severity of disease at sites of vasocclusion. Transfusion therapy reduces the percentage of PS-positive red cells circulating in SCD patients although the mechanism is not clear\(^{10}\). The development of procedures for removing PS-positive vesicles from circulating red cells \textit{ex vivo} could provide a useful additional therapy for patients with SCD and other hemoglobinopathies, particularly those patients for whom obtaining sufficient compatible blood for transfusion is problematic.

Acknowledgements
We thank Dr Sabine Taylor (BITS, UK) for assistance in culturing reticulocytes and Dr Andrew Herman (University of Bristol, UK) for assistance with fluorescence activated cell sorting. This work was supported by grants from the Department of Health (England); National Institute for Health Research (NIHR) and the Wellcome Trust.

Author Contributions
TJM and REG contributed equally to the study. TJM and REG designed and performed experiments, analysed data and wrote the paper, JFF and NMC performed confocal experiments on erythrocytes. ST and EJM provided patients samples and reviewed the paper. DJA designed experiments, analysed data and wrote the paper.

Conflict of Interest Disclosures
The authors declare no conflict of interest.
Reference List

Figure legends

Figure 1. Release of PS-exposed, inside-out autophagic vesicles is a normal mechanism of reticulocyte maturation.
(A) Trypsin-treated in vitro produced reticulocytes were fixed and stained with an anti-trypsin-insensitive GPA antibody (red – BRIC 256) before permeabilisation and then an anti-trypsin-sensitive GPA antibody after permeabilisation (green – R10), shown with higher magnification and 3D reconstruction using Volocity software (Perkin Elmer, MA, USA).
(B) Trypsin treated in vitro produced reticulocytes were fixed and stained for trypsin-insensitive GPA (green – R10) and autophagic marker LC3 (red).
(C) Trypsin-treated red cells from peripheral blood stained as in A. Shown in merge and magnification of a maximum projection.
(D) Live imaging of in vitro produced reticulocytes stained for PS, intracellular GPA (BRIC163) and intracellular AE1 (BRIC155) all green.
(E) Fixed and permeabilised in vitro produced reticulocytes stained for PS (green) and giantin (red). Staining is shown in fluorescence and phase overlay.
(F) Fixed unpermeabilised in vitro produced reticulocytes stained for extracellular AE1 (red – BRAC18) and intracellular GPA (green – BRIC163) followed by Mitotracker® (blue) staining post permeabilisation. Shown is a composite of a 2D slice in phase, fluorescence and overlay images, and 3D reconstructions of the vesicle using Volocity software.
All scale bars are 5µm.

Figure 2. PS-exposed autophagic vesicles on red cells from peripheral blood in Sickle Cell Disease (SCD) and after splenectomy.
(A) Live imaging of SCD red cells for PS, intracellular GPA (BRIC163) and intracellular AE1 (BRIC155) all green with quantitation from 20 SCD patients (red) and 8 controls (blue) imaging 5 random fields (average n per field=439), the thick horizontal line is the mean and standard deviation from the mean is shown.
(B) Live imaging of SCD red cells after sorting for PS (green). Shown in phase overlay (upper panel) and as a 3D reconstruction (lower panel) dual stained with GPA-546 (BRIC256) (red).
(C) Live imaging of splenectomised patient 1 (Sp1, 3 years post splenectomy) red cells for PS, intracellular GPA (BRIC163) and intracellular AE1 (BRIC155) all green with quantitation of Sp1 and splenectomised patient 2 (Sp2, 6 months post splenectomy) imaging 5 random fields (average n per field=375).
(D) Live imaging of red cells from Sp1 dual-stained with PS (green) and Mitotracker® (red).
(E) SCD red cells trypsin treated then fixed, permeablisled and stained with R10 vesicles (green) and extracellular GPA (red) with quantitation from 20 SCD patients (red) and 8 controls (blue) imaging 5 random fields (average n per field=381), the thick horizontal line is the mean and
standard deviation from the mean is shown.

(F) Spl1 red cells trypsin treated then fixed, permeabilised and stained with R10 vesicles (green) and extracellular GPA (red) with quantitation from Spl1 and Spl2 with 2 controls imaging 5 random fields (average n per field=280). All scale bars are 5µm.
Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease

Tosti J. Mankelow, Rebecca E. Griffiths, Sara Trompeter, Joanna F. Flatt, Nicola M. Cogan, Edwin J. Massey and David J. Anstee