Macrophages and Iron Trafficking at the Birth and Death of Red Cells

Tamara Korolnek and Iqbal Hamza*

Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA

Running title: Heme Trafficking in Iron Metabolism

*To whom correspondence should be addressed.
Iqbal Hamza, Ph.D.
University of Maryland, College Park
2413 ANSC, Bldg 142
College Park, Maryland 20742
Phone: 301-405-0649
Fax: 301-405-7980
Email: hamza@umd.edu

Keywords:
Heme, iron, transport, porphyrins, anemia, erythropoiesis, nutrition, macrophages
Abstract

Macrophages play a critical role in iron homeostasis via their intimate association with developing and dying red cells. Central nurse macrophages promote erythropoiesis in the erythroblastic island niche. These macrophages make physical contacts with erythroblasts, enabling signaling and the transfer of growth factors and possibly nutrients to the cells in their care. Human mature red cells have a lifespan of 120 days before they become senescent and again come into contact with macrophages. Phagocytosis of red blood cells is the main source of iron flux in the body, as heme must be recycled from approximately 270 billion hemoglobin molecules in each red cell, and roughly 2 million senescent red cells are recycled each second. Here we will review pathways for iron trafficking found at the macrophage-erythroid axis, with a focus on possible roles for the transport of heme in toto.
Introduction

It is important to begin with iron’s distinctive properties and role as an essential micronutrient. Iron – itself or as a component of heme and iron-sulfur clusters – is required for numerous biological processes. Iron’s reactivity additionally makes it quite toxic, as it is able to catalyze Fenton reactions and generate dangerous hydroxyl radicals. Similarly, imbalances in the biogenesis of iron-containing prosthetic groups, such as heme or iron-sulfur clusters, result in buildup of toxic intermediates and subsequent pathologies, including anemia or porphyrias. Therefore, the trafficking and transport of iron and iron-containing prosthetic groups must be carefully regulated at cellular and systemic levels.

Iron is unique in how it is absorbed, stored, and mobilized in the body. Dietary iron is not readily absorbed, as it is rendered insoluble at intestinal pH and by precipitating compounds found in food. There are also no specific iron excretion mechanisms in the body. Loss of iron can happen via blood loss and via desquamation of intestinal epithelial cells, where it is retained in ferritin when body iron stores are elevated. Women are more vulnerable to iron deficiencies because of monthly loss through menstrual bleeding, as well as through pregnancy and childbirth.

The greatest need for iron mobilization in the body is erythropoiesis. As much as 70% of iron in the adult human body is found in the form of heme in hemoglobin in red blood cells (RBCs). While ~25 mg of iron is required per day for hemoglobin production and erythropoiesis, only 1-2 mg per day is absorbed in the gut. The majority of iron used for red cell formation therefore comes from iron recycled from senescent red blood cells. This review will concentrate on iron trafficking at both the birth and death of RBCs and
the role that macrophages play in these physiological processes. We will specifically focus on putative pathways for the transport of heme.

Birth: The Role of Macrophages During Erythropoiesis

Definitive erythropoiesis in humans occurs in the late fetal liver and in adult bone marrow. Hematopoietic progenitors differentiate into early burst-forming units erythroid (BFU-E) which then further develop into colony-forming units erythroid (CFU-E). CFU-E progenitors continue differentiation through the following stages, each with its own characteristic morphology: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. Orthochromatic erythroblasts enucleate to develop into reticulocytes, which eventually leave the site of erythropoiesis and mature into RBCs in the circulation. The process of differentiation from the proerythroblast to the reticulocyte stage has long been known to occur in a niche called the erythroblastic island. In this niche, developing erythrocytes surround a central macrophage, termed a nurse macrophage, whose contribution to erythropoiesis is still not entirely clear.

Some studies have suggested that the erythroblastic island is essential for definitive erythropoiesis. Liu et al analyzed mice lacking palladin, a ubiquitously-expressed protein associated with cytoskeletal actin in stress fibers. Unexpectedly, these mice showed compromised ability to form erythroblast islands, a block in definitive erythropoiesis, and death due to anemia around E15.5. Importantly, palladin-null erythroid precursors could form erythroblast islands with wild type macrophages, and hematopoietic stem cells from palladin knockout mice could reconstitute lethally-irradiated mice, suggesting that palladin might only be required during fetal
erythropoiesis. Proteins required for cell-cell interactions between macrophages and erythroid precursors have also been shown to be necessary for definitive erythropoiesis. These include erythroblast macrophage protein (Emp) in both cell types, vascular cell adhesion molecule 1 (VCAM-1) in macrophages, as well as the transcription factor, c-Maf, which is required for VCAM-1 expression in macrophages9-11. It has been suggested that β1-, alpha4- and alpha5-integrins might be required on the erythroid cells to interact with macrophages12-14. Mutants in these proteins exhibit lethal embryonic anemia due to lack of embryonic definitive erythropoiesis. It is interesting to note that primitive erythropoiesis does not appear to be dependent on the formation of erythroblastic islands.

Paradoxically, other studies have shown that erythroblastic islands are not necessary for effective erythropoiesis in adult mice. In experimental models where macrophages were depleted using genetic or chemical means, no severe phenotypes were observed15-17. When CD169-expressing macrophages were ablated using diphtheria toxin, bone marrow erythroblast numbers were reduced, but there was no concomitant anemia15. Similarly, when macrophages were chemically depleted using clodronate-encapsulated liposomes, mice had reduced hemoglobin concentration and RBC mean hemoglobin content (MCH), but did not show a reduction in RBCs16. However, recovery from erythropoietic stresses (including hemolytic anemia, acute blood loss, and myeloablation) was impaired in these mice. Similarly, blood cell numbers associated with polycythemia could be normalized by the same treatment.

The previously-mentioned studies used treatment with toxins to eliminate CD169-expressing macrophages, or clodronate liposomes to reduce macrophage numbers via phagocytosis, indiscriminately targeting macrophages in both the bone marrow and
spleen. Jacobsen et al recently investigated the effect of targeted depletion of bone marrow macrophages on medullary and extramedullary erythropoiesis. Treatment with pharmacologic doses of granulocyte colony-stimulating factor (G-CSF) specifically eliminates resident macrophages in the bone marrow. Jacobsen et al showed that loss of these bone marrow macrophages disrupts the erythroblast niche with a concomitant block in erythropoiesis, as mice treated with G-CSF for four days showed increased numbers of proerythroblasts and decreased amounts of more differentiated erythroblasts and reticulocytes. Interestingly, G-CSF treatment increased extramedullary erythropoiesis and erythroblastic island formation in the spleen. The effect of G-CSF on erythropoiesis in humans has not been extensively studied, but this treatment has been shown to reduce red cell numbers in humans.

The authors’ conclusion that the erythroblast island is necessary for erythropoiesis in the bone marrow contradicts the results discussed in the previous paragraph, but is supported by the genetic studies mentioned earlier. This inconsistency may be resolved in a number of ways. One could argue that erythroblastic islands are critical during steady state embryonic definitive erythropoiesis, but only required in adults during stress erythropoiesis. An alternative explanation is that the macrophage-depletion treatments used in the earlier experiments were not extensive enough to sufficiently impact red cell production. Further research is required to establish the requirement for the erythroblastic niche during erythropoiesis and relative contribution of the bone marrow versus the spleen to blood formation.
Nurse macrophages have been shown to regulate erythroblast development via proliferative and survival signals, and to play a role in enhancing enucleation6,7. Some have additionally suggested that the central macrophage assists developing erythroid cells through the delivery of nutrients7. With grams of iron found as heme in hemoglobin in adult human RBCs, what is the source of this iron, and what role, if any, do nurse macrophages play in delivering iron to erythroid precursors?

Early ferrokinetic studies established that diferric transferrin in the plasma is the sole source of iron for erythroid heme synthesis (\textbf{Figure 1, transferrin pathway}). These studies demonstrated that radioactive iron was taken up directly from the plasma, that transferrin was recycled after incorporation of iron into developing reticulocytes, and that a membrane-bound transferrin receptor was required for the process20-25. The transferrin/iron/transferrin receptor cycle has been extensively studied, showing that diferric transferrin binds the transferrin receptor (also known as CD71) and is internalized via receptor-mediated endocytosis. Iron is released from transferrin following acidification of the endosome, where it can be mobilized for use in the cell, for storage in ferritin, or for export from the cell26,27.

Human patients and mouse models of atransferrinemia have also provided support for the importance of transferrin-bound iron [Reviewed in 28]. Humans with mutations leading to the absence of transferrin suffer from hypochromic microcytic anemias. Without delivery of transferrin-bound iron, erythroid precursors lack sufficient iron to support heme and hemoglobin synthesis. Counterintuitively, there is iron overload in tissues such as the heart and liver, as reduced hepcidin increases iron absorption in the gut and non-erythroid tissues possess transferrin-independent mechanisms for iron
uptake29,30. A number of the mutations responsible for human cases of atransferrinemia have been characterized31-35, although a detailed analysis of the effects of these mutations on transferrin function has been lacking. The mouse model of atransferrinemia, the hpx mouse, was first described over 25 years ago36. The hpx mutation leads to abnormal splicing of the transferrin mRNA, resulting in less than 1% of normal levels of the mutant transferrin being detectable37,38. These hypotransferrinemic mice are born severely anemic and die before weaning if not treated with exogenous transferrin or blood transfusions.

Evidence from atransferrinemic patients and mouse models suggests that transferrin is the sole source of iron used in heme synthesis during erythropoiesis. However, there are a number of questions remaining with respect to this hypothesis. First, while most atransferrinemia patients exhibit symptoms in infancy or early childhood, at least one patient showed no symptoms until adulthood31. Further characterization of the effect of atransferrinemia-associated mutations on transferrin function would clarify whether the severity and timing of the disease onset correlates with the severity of the transferrin mutation. This might reveal a late-onset human patient with severe transferrin deficiency, indicating alternate pathways for iron transport to developing erythroblasts. Second, the hpx mouse survives until birth. Is this indicative that both primitive and fetal definitive erythropoiesis rely on iron sources other than transferrin-bound iron? Interestingly, mice lacking the transferrin receptor die at E12.529. What is the reason for the discrepancy between the two mouse models, which would be expected to have overlapping phenotypes?
There is intriguing evidence for alternate pathways for iron delivery to erythroblasts during their development. Ferritin molecules have been localized between the membranes of the central nurse macrophage and the surrounding erythroblasts (Figure 1, ferritin pathway). While the exact origin of this ferritin remains a mystery, studies have shown that it is absorbed by erythroblasts by micropinocytosis39. Cell culture studies have shown that in the absence of transferrin in the media, ferritin synthesized and secreted by macrophages is capable of supporting the differentiation of erythroid precursors40,41. These results contradict the in vivo evidence that transferrin is the sole means of iron delivery during erythropoiesis. Are these results artifactual? Are they due to differences in iron homeostasis between an in vitro co-culture system and a whole animal model? Notably, an in vitro co-culture system would be lacking systemic signals that have been shown to regulate iron homeostasis on an organismal level. The best example of this is hepcidin, a peptide secreted by the liver which regulates iron release into the circulation by binding to and causing degradation of ferroportin42-45. Another example is erythroferrone (ERFE), a TNF-α superfamily member. ERFE is secreted by erythroblasts in the bone marrow and spleen in response to Jak2/Stat5 signaling induced by erythropoietin (EPO), which is mainly secreted by the kidney46. ERFE signaling suppresses hepcidin expression in the liver enabling release of iron stores, and this pathway was shown to be important during stress erythropoiesis46. The effect of ERFE on other iron storage and transport molecules has not yet been elucidated.

Additionally, there is the possibility that heme itself is transported to developing erythroblasts. The heme importer, HRG1, is expressed in early erythroid cells47. Studies have shown that heme can be exported by macrophages, and macrophages indeed express
the plasma membrane heme exporter, FLVCR148,49 (Figure 1, heme transport pathway). FLVCR1a, the first reported isoform, was initially discovered as a plasma membrane heme exporter, although recently a second isoform, FLVCR1b, has been shown to function as a mitochondrial heme exporter48,50,51. Further research is required to determine the precise function of the plasma membrane-localized FLVCR1 protein in erythropoiesis, as an FLVCR1a-specific knockout mouse has not yet been reported. Are there as-yet-undiscovered pathways for the delivery of heme into erythroblasts? While these pathways are clearly not predominant under physiological conditions, they may play a role in pathological forms of erythropoiesis.

\textit{Death: Macrophage Iron Homeostasis During Erythrophagocytosis}

Human RBCs have a limited lifespan, after which they become senescent and are engulfed and digested by macrophages of the reticuloendothelial system (RES) in a process called erythrophagocytosis (EP) [Reviewed in 7,52-55]. As previously mentioned, the majority of iron required to sustain erythropoiesis is derived from recycled RBCs and defects in EP lead to aberrant iron metabolism, including anemia and iron overload.

EP occurs when senescent RBCs are recognized by RES macrophages and engulfed via phagocytosis. The relative contribution of splenic versus bone marrow macrophages to erythrophagocytosis is unknown. The RBC-containing phagosome merges with lysosomal vesicles, forming the erythrophagolysosome. Here red cells are degraded, with their contents subsequently imported into the macrophage cytosol for storage or recycling (Figure 2). The heme catabolism enzyme, heme oxygenase 1 (Hmox1), plays a critical role in EP, releasing iron from heme’s protoporphyrin ring for storage or reuse. Mice lacking Hmox1 lose the ability to recycle heme-iron and
consequently suffer from anemia, reduced serum iron, and accumulation of iron in the liver and the spleen. \textit{Hmox1}⁻/⁻ mice lack liver and splenic macrophages, which die from heme-associated toxicity, as is observed in vitro when \textit{Hmox1}⁻/⁻ macrophages are fed RBCs. Heme oxygenase deficiency has been reported in two human patients, who also exhibited asplenia and hemolytic anemia.

It has been proposed that the heme extracted from hemoglobin during EP was degraded by Hmox1 within the phagolysosome. This iron could then be imported into the cytosol by Nramp1, the iron transporter found on the phagolysosomal membrane, for storage in ferritin or export into the circulation by ferroportin. There are, however, a number of problems with the function of Hmox1 in this model. First, studies have revealed that even though Hmox1 is embedded in the ER membrane via a transmembrane segment, the active site of the enzyme is oriented toward the cytosol. Second, the optimal pH for Hmox1 (pH 7.4) is closer to cytosolic pH than acidic lysosomal pH. Third, maximal Hmox1 activity is achieved only in the presence of biliverdin reductase, which is located in the cytosol. Finally, immunocytochemical studies have shown that heme oxygenases are not found in or on the phagolysosome during EP. It is likely that heme must be exported from the erythrophagolysosome before degradation by Hmox1 for iron recycling.

Hrg1, a conserved heme-transporting permease, has recently been shown to mediate heme import from the phagolysosome into the cytosol during EP. Hrg1 is expressed in macrophages of the RES and is upregulated transcriptionally and at the protein level in response to treatment with heme or iron and during EP. This effect was observed in both \textit{ex vivo} cultured bone marrow-derived macrophages (BMDMs) and
in vivo in the spleens and livers of mice injected with heme, damaged RBCs, or the hemolysis agent, phenylhydrazine. Hrg1 colocalizes with Lamp1 in endolysosomal compartments, and specifically localizes to the erythrophagolysosome during EP67-69. Transcriptional induction of markers such as Hmox1, Ftn, and Fpn is indicative of increased cellular heme and iron levels in macrophages during EP. Correspondingly, when Hrg1 is depleted, BMDMs are unable to sufficiently upregulate this transcriptional response. This was interpreted as a lack of heme export, as the effect was still observed when BMDMs were treated with the iron chelator, desferroxamine68.

The same study also showed that a P36L polymorphism in HRG1 is associated with anemia and defective heme transport in a small percentage of African American subjects, as determined by expression in a yeast heterologous system, rescue of anemia in zebrafish morphants and in BMDMs during EP68. The latter experiments were performed by measuring the biochemical activity of a Golgi-confined hemoprotein reporter horseradish peroxidase (HRP) expressed in BMDMs – increased biochemical activity of HRP was attributed to greater cellular heme availability. Further controls are necessary to definitively show that increased HRP activity was due to incorporation of recycled heme (rather than heme synthesized de novo from recycled iron). However, these experiments hint that heme derived from recycled RBCs could be incorporated in toto into apohemoproteins rather than be destined for degradation and recycled as iron.

We have previously summarized the evidence for the existence of intracellular heme trafficking pathways in eukaryotic cells70. We have also identified one such transporter using genetic screens in C. elegans. The ABC transporter mrp-5 was shown to be an intestinal heme exporter essential for worm survival, as this nematode is incapable
of synthesizing heme and exclusively relies on heme derived from the diet71,72. In the same study, we showed that fibroblasts lacking the mammalian homolog of MRP5/ABCC5, showed attenuated activity of the Golgi-targeted heme-based HRP reporter in response to exogenous heme. Regardless of whether MRP5/ABCC5 is involved in the subcellular redistribution of heme during erythrophagocytosis in mammals, a network of chaperones and transporters must exist for heme trafficking.

Other studies also hint that not all heme derived from recycled RBCs is degraded into iron. SPI-C is a transcription factor that participates in a differentiation circuit for red pulp and bone marrow macrophages (RPMs and BMMs). Initial reports showed that splenic RPMs in $\textit{Spic}^{-/-}$ mice fail to develop, while other populations of monocytes and macrophages remain unchanged73. Lacking important populations of iron-recycling macrophages, $\textit{Spic}^{-/-}$ mice consequently develop an iron overload phenotype in the spleen. It was determined that SPI-C expression was activated by heme itself, via derepression by the heme-dependent transcription factor, Bach174. This heme/Bach1/SPI-C axis regulates the differentiation of monocytes into RES macrophages, for example, in the case of hemolysis and a sudden toxic bolus of heme to iron-recycling macrophages. The same metabolite, while toxic to mature RES macrophages, would also stimulate differentiation of monocytes to replace the very population lost due to heme toxicity.

We can also ask the following question: what is the source of the heme signal instructing monocytes to differentiate into RES macrophages? While Haldar \textit{et al} used either phenylhydrazine treatment or intraperitoneal heme injection to induce SPI-C expression and monocyte differentiation, is it possible that heme derived from recycled RBCs exits the macrophage to induce SPI-C \textit{in vivo}? Would inhibition of heme efflux
from RES macrophages, perhaps via deletion of FLVCR1a from macrophages, mimic a
Spic− phenotype and prevent differentiation of RPMs and BMMs? Further experimentation will be required to dissect the role of heme as a possible signal molecule following red cell recycling.

Acknowledgements. We thank Stefano Rivella for critical discussions and reading of the manuscript. This work was supported by funding from the National Institutes of Health DK85035 and DK74797 (I.H.).

Author Contributions. T.K. and I.H. wrote and discussed the manuscript.

Conflict of Interest Disclosure. I.H. is the President and Founder of Rakta Therapeutics Inc. (College Park, MD), a company involved in the development of heme transporter-related diagnostics. He declares no other competing financial interests. Correspondence and request for materials should be addressed to I.H. (hamza@umd.edu)
References

Figure 1. Pathways for delivery of iron and heme-iron to developing erythroblasts. Transferrin (Tf) is the major source of iron (indicated as red circles), as it emerges from the plasma to bind transferrin receptors (TfR), becomes internalized, and releases iron into acidic vesicles. Central nurse macrophages, found in erythroblastic islands, may deliver iron to developing erythroid cells, as secreted ferritin (Ftn) has been observed in the space between nurse macrophages and erythroblasts. Additionally, as both developing erythroid cells and macrophages express plasma membrane heme transporters, such as Hrg1 and Flvcr1, it is possible that heme (indicated as red crosses) itself is transferred to developing red blood cells.

Figure 2. Pathways for heme and iron recycling during erythrophagocytosis. Senescent red blood cells are recognized by macrophages of the reticuloendothelial system and subsequently internalized and degraded. Iron (indicated by red circles) is released from hemoglobin in the phagolysosome by an unknown mechanism, imported into the cytosol via Nramp1, and either stored in ferritin (FTN) or exported from the cell by ferroportin (FPN). Heme in the phagolysosome is transported into the cytosol by Hrg1, where it can be degraded by Hmox1 for storage or export at iron. This heme may also be effluxed from the cell by the heme exporter, Flvcr1, and there is some evidence that it can be inserted in toto into apohemoproteins within the macrophage.
Figure 1

For personal use only.

www.bloodjournal.org

From
Figure 2
Macrophages and iron trafficking at the birth and death of red cells
Tamara Korolnek and Iqbal Hamza