shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance

Jamshid S. Khorashad1*, Anna M. Eiring1*, Clinton C. Mason1*, Kevin C. Gantz1, Amber D. Bowler1, Hannah M. Redwine1, Fan Yu1,2, Ira L. Kraft1, Anthony D. Pomicter1, Kimberly R. Reynolds1, Anthony J. Iovino1, Matthew S. Zabriskie1, William L. Heaton1, Srinivas K. Tantravahi1,5, Michael Kauffman3, Sharon Shacham3, Alex Chenchik4, Kyle Bonneau4, Katharine S. Ullman1, Thomas O’Hare1,5, Michael W. Deininger1,5

1Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
2Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
3Karyopharm Therapeutics, Natick, MA, USA
4Cellecta, Mountain View, CA, USA
5Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT, USA
*Equal Contributors
Contact: Michael W. Deininger, MD, PhD; 2000 Circle of Hope, Room 4280, Salt Lake City, Utah 84112; Ph: 801-213-5684; E-Mail: michael.deininger@hci.utah.edu

Running Title: Nucleocytoplasmic transport in TKI resistance

Scientific Category: Myeloid Neoplasia
Key Points

- A function-first shRNA library screen identifies pathways involved in BCR-ABL1 kinase-independent TKI resistance
- RAN or XPO1 inhibition impairs survival of progenitors from newly diagnosed or TKI-resistant CML patients

Abstract

The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral shRNA library targeting ~5,000 cell signaling genes into K562^R, a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562^R cells compared to TKI-sensitive controls. Among the top candidates were two components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (SelinexorTM), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34⁺ cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34⁺ cells from normal cord blood or from a patient harboring the BCR-ABL1^{T315I} mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance, and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML.
Introduction

Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy caused by BCR-ABL1, a constitutively active tyrosine kinase derived from a reciprocal translocation between chromosomes 9 and 22. In the chronic phase of CML (CML-CP), myeloid cell differentiation and function remain intact. However, without effective therapy, CML-CP progresses to a treatment refractory acute leukemia termed blastic phase (CML-BP). CML-CP is effectively managed with the BCR-ABL1 tyrosine kinase inhibitors (TKIs), imatinib, nilotinib, or dasatinib. Despite impressive results, ~20% of newly diagnosed CML-CP patients fail imatinib due to drug resistance, with lower resistance rates recently reported for dasatinib and nilotinib. BCR-ABL1 kinase domain mutations that impair drug binding are the best-characterized mechanism of resistance. However, many patients develop TKI resistance with native BCR-ABL1 or kinase domain mutations predicted to be TKI sensitive. In these patients, resistance involves activation of survival signals by either intrinsic, cell autonomous mechanisms or extrinsic, bone marrow-derived factors, and targeting these signals may resensitize CML cells to TKIs. The mechanisms responsible for BCR-ABL1 kinase-independent TKI resistance are incompletely understood. Genome-wide scanning techniques such as gene expression arrays and whole genome sequencing have been previously used to search for resistance mechanisms. While powerful, these assays are not function-based and may miss critical genes if they are neither mutated nor characterized by changes in expression. Here, we used a function-first, shRNA-based forward screen in BCR-ABL1-positive cell lines and primary CML CD34+ cells to identify nucleocytoplasmic transport as a critical feature of BCR-ABL1 kinase-independent resistance in CML.
Materials and Methods

Imatinib-sensitive and -resistant cell lines. All cell lines were cultured in RPMI medium supplemented with 10% FBS, 2 mM L-glutamine, and 100 U/mL penicillin/streptomycin (RF10). Imatinib-sensitive K562 and AR230 (K562S and AR230S) cells were cultured in escalating concentrations of imatinib over several months, resulting in imatinib-resistant derivative lines (K562R and AR230R), as described15. Imatinib-resistant K562R and AR230R cells are resistant to multiple TKIs, including dasatinib and nilotinib16. Steady state conditions for TKI-sensitive cells are culture without imatinib. Steady state conditions for TKI-resistant cells are culture with 1.0 μM imatinib. See also Supplemental Materials and Methods.

Patient samples. Prior to use in assays, fresh or frozen CD34+ cells were cultured in IMDM supplemented with 10% BIT9500 (StemCell Technologies, Vancouver, BC) supplemented with cytokines (CC100; StemCell Technologies) for 24-48 h at 37 °C. All donors gave informed consent and The University of Utah Institutional Review Board approved all studies. See also Supplemental Materials and Methods and Supplemental Table S1.

Library module and packaging. Cellecta provided the Human Module 1 (HM1) lentiviral shRNA library containing ~27,500 shRNAs targeting ~5,000 genes involved in cell signaling with 5-6 shRNAs per gene (http://www.cellecta.com/index.php). The lentiviral expression vector contains a puromycin-resistance gene (PuroR) and an RFP marker (TagRFP). Each shRNA is linked to a unique 18-bp barcode identifiable by sequencing. For virus production see Supplemental Materials and Methods.
shRNA library screen. Steady state K562\(^R\) (cultured in 1 \(\mu\)M imatinib) or K562\(^S\) cells were suspended in RF10 and distributed to 6-well plates at \(10^6/\text{well}\) with polybrene (2 \(\mu\)g) and 15 mM HEPES buffer (pH: 7.2). K562\(^R\) or K562\(^S\) cells were then infected with virus at a multiplicity of infection (MOI) of 1, followed by spinoculation; see Supplemental Materials and Methods. At 72 h, cells were analyzed for RFP expression, and half were snap frozen for use as controls. Puromycin (1 \(\mu\)g/ml) was added to the second half to eliminate uninfected cells, followed by a 9-day culture in RF10 \(\pm\) 1 \(\mu\)M imatinib with medium changes and expansions to maintain exponential growth. After 9 days, cells were collected, DNA extracted and barcodes amplified as recommended by Cellecta (Pooled Barcoded Lentiviral shRNA library v5, http://www.cellecta.com/resources/protocols). Amplification was done with the lowest possible number of cycles (<14 cycles for each step) to minimize biased amplification of barcodes. Amplicons sizes were checked on a 3% agarose gel using GeneRuler Ultra Low Range DNA Ladder (ThermoScientific, Waltham, MA), then purified (PCR Clean-Up Kit, Qiagen, Valencia, CA). PCR products were sequenced to high depth (Illumina HiSeq 2000). Refer to Kampmann et al. for additional information regarding genome-wide screening techniques utilizing shRNA libraries\(^{17}\).

Bioinformatics analysis. Fastq files were processed with Decipher’s BarCode Deconvoluter x64 program. Output consisted of TAB files for each sample harboring all sequences matching exactly one of the 27,495 18-bp barcodes present in the HM1 library file. Internal code was developed to count frequencies of each barcode present in each sample, with subsequent merging of barcode and gene name identified within the library file. There were 5-6 barcodes (unique shRNAs) for 5,034 genes and 2 barcodes for one gene (an additional 9 overrepresented genes were removed from consideration; luciferase controls were also overrepresented) yielding a total
of 27,246 useable barcodes. A median read depth of 4,711-5,153 was obtained for matching barcodes across samples. As total reads per lane (and hence sample) vary, each sample's reads were adjusted to equalize the total read counts across samples prior to fold-change calculations. No sample was adjusted by more than 4.2%. Distinct bimodal distributions were observed for read depth in each sample, with 99.98% of reads falling in the lower mode (<~1000 reads) corresponding to non-specific binding, and 99.64% of reads in the upper mode corresponding to HM1 barcodes (Supplemental Figure S1). Fold-change between captured reads on day 9 in the sensitive line and the median of reads on day 9 in the corresponding resistant line were calculated with additive adjustments of 20 to both numerator and denominator to mitigate potential low-read bias in fold-change calculations. For correlation between trials run at the HCI versus trials run at Cellecta, both Spearman and Pearson methods were used.

Tetracycline-inducible constructs and mRNA expression analysis. For select candidate genes, shRNAs with the highest depletion during the screening were inserted into a tetracycline-inducible vector (pRSIT12-U6Tet-CMV-TetR-2A-TagRFP-2A-Puro, Cellecta) containing the wild-type tetracycline repressor (tetR), which blocks transcription unless 0.1 μg/mL doxycycline is added. Constructs were packaged and used individually for infection. Non-transduced cells were eliminated by treatment with 1 μg/ml puromycin for 72 h. See also Supplemental Materials and Methods, Supplemental Table S2, and Supplemental Table S3.

Philarmacologic inhibitors. See Supplemental Materials and Methods.

Cell proliferation assay. 5x10^3 cells were suspended in 100 μl RF10 ± inhibitor and cultured in triplicate in a 96-well plate. Where indicated, cells were treated with imatinib or KPT-330 at indicated concentrations. Following 72 h, CellTiter 96® AQueous One Solution MTS Reagent
(Promega) was added according to the manufacturer’s instructions. Viable cells were quantified by measuring dye absorption in each well at 490 nm using an Epoch Microplate Spectrophotometer (BioTek Instruments, Winooski, VT).

Colonies formation assay. Primary CML CD34+ cells and cell lines were suspended in MethoCult™ H4230 (StemCell Technologies) under the indicated conditions and colony forming unit granulocyte-macrophage colonies (CFU-GM) were counted under an inverted microscope after 10-15 days. See also Supplemental Materials and Methods.

Apoptosis assays. Apoptosis was assayed by staining with APC-conjugated Annexin V in combination with 7-AAD (BD Biosciences, San Jose, CA, USA). Cells were analyzed for fluorescence on a Guava easyCyte HT Flow Cytometer (Millipore).

Nucleocytoplasmic fractionation. Supernatant containing the cytoplasmic fraction was diluted in 10 mM HEPES, 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM DTT, pH 7.9, 0.2% NP-40 followed by centrifugation (7,500 rpm, 2 minutes). Nuclei were lysed in standard RIPA buffer. See also Supplemental Materials and Methods.

Immunoblot analysis. Antibodies used were: rabbit anti-lamin B1 (Abcam), mouse anti-phospho-c-ABL (recognizing Y412) and rabbit anti-RAN (Cell Signaling Technology, Danvers, MA); goat anti-I2PP2A (SET) and mouse anti-α-tubulin (Sigma, St. Louis, MO); mouse anti-c-ABL (Calbiochem, San Diego, CA); and mouse anti-p53 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA). Antibodies against c-ABL and phospho-c-ABL were used to measure total versus activated BCR-ABL1, respectively. See also Supplemental Materials and Methods.
Nucleofection. For ectopic expression of RanGAP in K562^S and AR230^S cells, the pDsRed1-N1 RanGAP plasmid (Addgene, Cambridge, MA)¹⁸ was used in comparison with pDsRed1-N1 empty vector or pmaxGFP Vector (Amxa Biosystems, Lonza Group) as control. Nucleofection was performed as described in Supplemental Materials and Methods.

Statistics. For assays with cell lines and patient samples showing equivocal variance, a two-tailed Student’s t-test was used. For MTS assays, three independent experiments each with 3 replicates per concentration were performed on unique plates with untreated controls. A 4-parameter variable-slope logistic equation: \[y = \min + \frac{(\text{max} - \text{min})}{1 + 10^{(\log IC_{50} - \text{HillSlope})}} \] was used to calculate IC₅₀ values (Prism GraphPad Software, La Jolla, CA). Significant differences in IC₅₀ values were assessed by Welch’s t-test.

Results

K562^R and AR230^R cells exhibit BCR-ABL1 kinase-independent TKI resistance. K562^S and AR230^S cells and imatinib-resistant derivatives, K562^R and AR230^R, were cultured with and without 1 μM imatinib for 24 h followed by immunoblot analysis of BCR-ABL1 (Figure 1A). BCR-ABL1 expression was increased in K562^R compared to K562^S cells, but equal in AR230^R versus AR230^S cells¹⁶. In both model systems, 1 μM imatinib reduced BCR-ABL1 phosphorylation (Figure 1A), implicating BCR-ABL1 kinase-independent mechanisms of TKI resistance. No kinase domain mutations were detected upon sequencing of the BCR-ABL1 kinase domain (data not shown)¹⁶. The imatinib IC₅₀ in TKI-resistant versus TKI-sensitive K562 and AR230 cells was measured by treating with graded concentrations of imatinib for 72 h and quantifying cell viability. As expected, the IC₅₀ for imatinib was ~10-fold higher in K562^R and
AR230R cells when compared to TKI-sensitive parental controls (Figure 1B). Together, these data indicate that K562R and AR230R cells are suitable in vitro models for studying BCR-ABL1 kinase-independent TKI resistance16.

shRNA library screening of parental K562S cells yields consistent results in intra- and inter-laboratory experiments. Equal numbers (1.8x10^7) of K562S and K562R cells in steady state were transduced with the HM1 library, with experiments in K562R cells performed in triplicate (Figure 2A). FACS analysis revealed ≤30% RFP-positive cells, consistent with an MOI of 1. Half of the cells were collected 72 h after transduction as a baseline control for barcode abundance. The second half was puromycin-selected for 3 days then cultured for an additional 9 days. Approximately 27,000 unique barcodes were recovered in each experiment, consistent with comprehensive representation of library complexity. We next ascertained reproducibility of the screen, and determined that fold-changes in barcode abundance were highly correlated in both intra-laboratory (three independent experiments on K562R cells) and inter-laboratory (experiments conducted at the Huntsman Cancer Institute with K562S cells were compared to Cellecta) comparisons (Figure 2B). These data show that the approach yields reproducible results, even if performed in different laboratories.

Identification and validation of resistance genes. To prioritize genes with a potential role in BCR-ABL1 kinase-independent resistance, we selected candidates based on: (i) fold-change of barcode abundance in K562R cells ≥2-fold compared to K562S cells, and (ii) this degree of fold-change was observed in at least 2 shRNAs targeting the same gene. Based on these considerations, the customized algorithm identified and ranked 50 genes putatively associated with BCR-ABL1 kinase-independent imatinib resistance in K562R cells (Supplemental Table
Major protein functions represented included nucleocytoplasmic transport, proteasomal protein degradation, chromatin remodeling, protein biosynthesis, cell cycle regulation, apoptosis, antioxidation, ubiquitination, and DNA repair (Supplemental Table S4). As a negative control, a large number of luciferase shRNA sequences (21 compared to the maximum of 6 sequences for any other single gene) were assessed; none of these resulted in even a 35% fold-change. We next arbitrarily selected 5 of the 30 highest-ranking genes and 1 gene with a lower rank (RAD54L, rank: 92) for further validation, in each case using the shRNA with the highest percent reduction during the library screen. K562 and K562R cells were transduced with tetracycline-inducible constructs for expression of individual candidate shRNAs (see Supplemental Table S2). Cells were infected with lentivirus, RFP-selected and cultured ± 0.1 μg/mL doxycycline for 72 h followed by qRT-PCR to assess knockdown. Expression was reduced by at least 60% in all cases (range: 60-95%), confirming shRNA functionality (Figure 3A). To investigate shRNA effects on cell growth, cells were analyzed by MTS assay 72 h after addition of doxycycline. In 5 of the 6 genes (83%) selected for validation, shRNA knockdown significantly reduced viable cell numbers in K562R cells (Figure 3B). Downregulation of these five genes (BCL2L1, CIP29, GATA1, RAD54L, and RPS6) led to a greater reduction of viability in K562R compared to K562S cells; only the shRNA targeting RPS6 had significant effects on K562S cells (Figure 3B). These data confirm that the library screen predominantly identified genes with a critical role in TKI resistance.

RAN is a critical mediator of BCR-ABL1 kinase-independent resistance. Two genes involved in nucleocytoplasmic protein transport, RAN (rank: 4) and XPO1 (rank: 5), were among the top candidate resistance genes identified by the shRNA library screen (Supplemental Table S4). Since RAN is known to regulate XPO1, we further investigated its role as a regulator of
nucleocytoplasmic transport in BCR-ABL1 kinase-independent TKI resistance. Of note, XPO1 was recently shown to play a role in TKI resistance and blastic transformation19. Importantly, RAN knockdown in the shRNA library screen resulted in 4-fold reduction of barcode abundance in K562R compared to K562S cells (Supplemental Table S4). We first analyzed RAN protein expression in four cell lines, K562S, K562R, AR230S and AR230R, by immunoblot analysis. RAN protein levels in steady state TKI-resistant cells (1 \(\mu\)M imatinib) were equal to that of TKI-sensitive cells (no imatinib) (Figure 4A, whole cell lysate). However, when we assessed the nucleocytoplasmic localization of RAN, higher levels were seen in the cytoplasm of TKI-resistant compared to TKI-sensitive cells (Figure 4A, fractionation), suggesting a potential role of RAN in TKI resistance. We next measured the effects of shRNA-mediated RAN downregulation in K562S vs. K562R and AR230S vs. AR230R cells. shRAN reduced RAN mRNA expression by 40-60\% in all cell lines tested (Figure 4B). RAN knockdown following exposure to doxycycline (72 h, 0.1 \(\mu\)g/mL) induced apoptosis in TKI-sensitive and -resistant K562 and AR230 cells in vitro (Figure 4C). To isolate the effects of RAN knockdown on imatinib sensitivity, we determined the ratio of viable cells in doxycycline-treated vs. untreated cells cultured in graded concentrations of imatinib. In consideration of the sensitivity of K562S and AR230S cells to imatinib, the experiment was performed in low imatinib concentrations (0.1 - 0.8 \(\mu\)M), with viable cells quantified by MTS assay 72 h following addition of doxycycline. Consistent with apoptosis data, RAN knockdown suppressed cell proliferation at low imatinib concentrations in K562S and K562R cells (Figure 4D, left). However, at higher concentrations of imatinib (\(\geq\)0.4 \(\mu\)M), shRAN continued to reduce viable cell numbers in K562R cells, with no additional effects in K562S cells, which are already being killed by imatinib alone. A similar, less pronounced effect was observed in AR230R vs. AR230S cells (Figure 4D, right). These data are
consistent with the observation that the TKI-resistant lines maintain levels of RAN in the presence of imatinib that are comparable with that of TKI-sensitive lines in the absence of imatinib (Figure 4A-B). At the highest concentration of imatinib (0.8 μM), RAN knockdown reduced growth of K562R and AR230R cells, but had no additional effects on K562S and AR230S cells, consistent with a critical role of RAN in the resistant cells. We therefore investigated the effects of RAN knockdown on the resistant cell lines at higher imatinib concentrations. RAN shRNA-transduced K562R and AR230R cells were treated with imatinib (1-64 μM) ± doxycycline, and proliferation was measured at 72 h by MTS assay. RAN knockdown reduced the IC\textsubscript{50} of imatinib by >2-fold in K562R and AR230R cells compared to controls not treated with doxycycline (Figure 4E). Taken together, these data suggest that imatinib resistance in K562R and AR230R cells is, at least in part, dependent on RAN, while RAN knockdown does not add to the effect of sufficiently high imatinib concentrations on TKI-sensitive K562S and AR230S cells.

Ectopic expression of RAN-GTPase activating protein (RanGAP) enhances imatinib resistance. Nucleocytoplasmic transport is dependent on a RAN-GTP/GDP gradient between the nucleus and cytoplasm, facilitated by the RAN guanine nucleotide exchange factor, RCC120-22. GTP-bound RAN associates with the nucleocytoplasmic shuttling protein, XPO1, which then binds cargo proteins such as p5319,21,23,24. Once the complex has been transported to the cytoplasm, RAN-GTP is converted to RAN-GDP by RanGAP, promoting release of cargo into the cytoplasm. To test the hypothesis that ectopic expression of RanGAP would enhance RAN nucleocytoplasmic shuttling, thereby inducing imatinib resistance in K562S cells, we transduced K562S cells with a RanGAP expression vector (pDsRed1-N1-RanGAP) or empty vector and tested for sensitivity to graded concentrations of imatinib by viable cell counting 120 h following transduction. RanGAP overexpression was confirmed by qRT-PCR (Figure 5A). Ectopic
expression of RanGAP increased the viability and number of K562S cells compared to empty vector controls up to a maximum of 3-fold at 2 μM imatinib (Figure 5B). These experiments were confirmed in the TKI-sensitive AR230S cell line, in which ectopic RanGAP expression abolished the effects of 2.0 μM imatinib (Supplementary Figure S2). These data support a direct role for RAN in promoting BCR-ABL1 kinase-independent TKI resistance19.

Inhibition of the RAN-XPO1-SET pathway impairs survival of CML cells with BCR-ABL1 kinase-independent TKI resistance. Since RAN-dependent nucleocytoplasmic transport is involved in BCR-ABL1 kinase-independent TKI resistance, and XPO1 regulates SET subcellular localization19, we hypothesized that RAN may be part of the XPO1-SET pathway in BCR-ABL1 kinase-independent TKI resistance19,25. We initially analyzed SET protein levels in TKI-resistant versus TKI-sensitive K562 and AR230 cells by immunoblot. Similar to RAN, SET protein levels in steady state TKI-resistant cells (in the presence of imatinib) were equal to that of TKI-sensitive parental controls (no imatinib) (Figure 6A, whole cell lysate). However, when we assessed nucleocytoplasmic localization of SET, higher levels were seen in cytoplasm of TKI-resistant compared to TKI-sensitive cells (Figure 6A, fractionation), consistent with its reported role in TKI resistance19. We next analyzed the effects of RAN knockdown on expression and subcellular localization of SET in TKI-sensitive versus TKI-resistant CML cells. Consistent with RAN knockdown at the mRNA level, doxycycline (72 h, 0.1 μg/mL) reduced RAN protein levels by 40-60% in all cell lines tested (Figure 6B). Importantly, shRAN reduced levels of cytoplasmic SET in TKI-resistant K562R and AR230R cells (Figure 6B); some reduction was also observed in K562S cells. These data suggest that RAN is required for increased cytoplasmic SET expression, supporting a role for RAN in SET-mediated TKI resistance.
KPT-330 (Selinexor) is an inhibitor of XPO1 that irreversibly binds to cysteine-528, the critical XPO1 cargo-binding residue. Similar to shRNA-mediated RAN knockdown (Figure 4C), KPT-330 (72 h, 50 nM) induced apoptosis of TKI-sensitive and TKI-resistant K562 and AR230 cells in vitro (Supplementary Figure S3). However, when CML cell lines were treated with graded concentrations of KPT-330 for 72 h, the IC₅₀ was 2- and 1.4-fold lower in K562 and AR230 cells, respectively, compared to parental counterparts (Supplementary Table S5), suggesting that TKI-resistant cells are indeed more sensitive to XPO1 inhibition than TKI-sensitive cells. Therefore, KPT-330 was used to inhibit XPO1 in subsequent experiments. Importantly, the highest concentration of KPT-330 with no effect on colony formation (Figure 7A, middle) or apoptosis (Supplementary Figure S4A) of cord blood CD34⁺ cells, 50 nM, was chosen for experiments with CD34⁺ cells from newly diagnosed and TKI-resistant CML patients. In addition, shRAN had no effect on colony formation by normal cord blood CD34⁺ cells (Figure 7A, left).

We next tested the effects of shRAN on CD34⁺ cells from newly diagnosed CML patients (n=4). RAN knockdown was confirmed by quantitative real-time PCR analyses (Supplementary Figure S4B). While RAN knockdown alone had no effect on survival (Figure 7B, left) or apoptosis (Supplementary Figure S4C) of CD34⁺ cells from newly diagnosed CML patients, it significantly enhanced the effects of imatinib, reducing colony formation and increasing apoptosis by 46% (p<0.005) and 44% (p<0.001), respectively, compared to controls treated with imatinib alone. A similar set of experiments was performed using KPT-330 to pharmacologically inhibit RAN/XPO1-mediated nucleocytoplasmic transport. KPT-330 reduced colony formation by 37% (p=0.06) in the absence of imatinib, with no observed changes in apoptosis (Supplementary Figure S4D). In contrast, combination of KPT-330 with imatinib enhanced this
effect to 55% compared to KPT-330 alone (p<0.02; **Figure 7B, middle**), with an associated 51% increase of apoptosis compared to cells treated with imatinib alone. Next we assessed the effect of KPT-330 on the subcellular localization of RAN and SET in CD34+ cells from newly diagnosed CML-CP patients harboring native BCR-ABL1. While imatinib treatment had no effect on nucleocytoplasmic distribution of RAN or SET (**Figure 7B, right**), inhibition of XPO1 with KPT-330 resulted in increased nuclear localization of each protein, in addition to nuclear accumulation of p53 (a known target of this pathway); thus, p53 induction may be in part responsible for the observed effects of KPT-330 on survival of CML CD34+ cells. CML CD34+ cells treated with both imatinib and KPT-330 exhibited a high level of cell death, precluding assessment of protein localization by immunoblot analysis.

We next assessed the effects of RAN and XPO1 inhibition on CD34+ cells from CML patients with TKI resistance (n=4). Sanger sequencing revealed exclusively native BCR-ABL1 in three patient samples, indicating kinase-independent resistance. A fourth patient harbored the T315I gatekeeper kinase domain mutation (see **Supplemental Table S1**), and thus exhibits kinase-dependent TKI resistance with respect to imatinib, nilotinib and dasatinib. In samples from two patients with kinase-independent resistance, shRAN significantly reduced colony formation in the presence of 2.5 μM imatinib (p<0.01). A reduction of colonies was also observed in the absence of imatinib, but did not reach statistical significance (p>0.1) (**Figure 7C, left**). Similarly, addition of 50 nM KPT-330 to colony forming assays significantly reduced survival in the presence (p<0.001) but not absence (p>0.1) of imatinib in all three samples tested (**Figure 7C, left**). Neither shRAN nor KPT-330 had any effect alone or in combination with imatinib on colony formation by CD34+ cells from the patient with BCR-ABL1T315I (**Figure 7C, right**). These data link RAN to the XPO1-SET pathway and indicate that inhibition of either
RAN or XPO1 reduces survival of primary CML cells from newly diagnosed and TKI-resistant patients. In both settings, the effects are partially dependent on simultaneous inhibition of BCR-ABL1 kinase activity.

DISCUSSION

Many patients with CML-CP who start imatinib attain stable complete cytogenetic and major molecular responses. However, it is estimated that approximately 20-40% of newly diagnosed CML-CP patients eventually require alternative therapies due to intolerance or resistance. Missense mutations in the BCR-ABL1 kinase domain explain only 30-40% of clinical imatinib resistance cases. BCR-ABL1 kinase-independent mechanisms that are currently not well understood activate alternative pathways that underlie resistance in patients without explanatory BCR-ABL1 mutations. This phenomenon is not limited to CML, as FLT3-independent mechanisms have been implicated in acute myeloid leukemia (AML) resistance to FLT3 targeting drugs.

To identify signaling pathways associated with BCR-ABL1 kinase-independent TKI resistance, we performed a lentiviral shRNA library screen on K562 cells (K562, imatinib-sensitive) and an imatinib-resistant derivative line (K562) that maintains viability despite suppression of BCR-ABL1 kinase activity (Figure 1). Genes with a potential role in resistance were selected based on criteria designed to minimize false-positive results. RAN and XPO1 (CRM1), two interacting proteins with key functions in nucleocytoplasmic transport, were among the top 5 candidates, suggesting a role for this pathway in TKI resistance. RAN and XPO1 synergize to promote nucleocytoplasmic shuttling of cargo proteins through the nuclear pore complex. While binding of XPO1 to either RAN or cargo protein alone is weak, simultaneous binding of RAN and cargo to XPO1 increases its affinity to both by 1000-fold.
XPO1/RAN-mediated export is increased in a variety of cancers. Mechanistically, overexpression of XPO1 enhances export of nuclear tumor suppressor proteins such as p53, BRCA1, APC, and NMP1, resulting in drug resistance33. Overexpression of XPO1 has also been associated with drug resistance and poor outcome in many solid tumors such as glioblastoma, cervical and ovarian cancer35-37, and various hematologic malignancies, including myeloma38, chronic lymphocytic leukemia26, T-cell acute lymphoblastic leukemia, acute myeloid leukemia39-41 and BCR-ABL1-driven blastic transformation19,42.

In the shRNA library screen, shRAN-infected cells were depleted by 4-fold in K562R compared to K562S cells (Supplemental Table S4) following 9 days in culture. As K562R cells are grown in 1 μM imatinib, we performed a series of experiments to assess the effect of RAN knockdown on sensitivity to imatinib. We found that RAN knockdown alone induced apoptosis to comparable levels in TKI-sensitive and TKI-resistant cells (Figure 4C). However, RAN knockdown enhanced the effects of imatinib on TKI-resistant cells to a greater degree than on TKI-sensitive cells (Figure 4D-E), indicating that upon imatinib challenge, resistant cells become more dependent on RAN than sensitive cells. Importantly, targeting the RAN/XPO1 shuttling pathway enhanced the effects of imatinib on primary CML-CP cells, with no effect on normal CD34+ cord blood cells (Figure 7). The fact that both our TKI-resistant cell lines16 and primary CML patient samples (Supplementary Table S1) demonstrate cross-resistance to the second-generation TKIs, dasatinib and nilotinib, suggests the RAN/XPO1 shuttling pathway may also be responsible for resistance to TKIs other than imatinib.

Our data establish a link between RAN and the XPO1-SET pathway in CML and TKI resistance. Cytoplasmic SET promotes leukemogenesis in CML and other leukemias by inhibiting PP2A, a tumor suppressor phosphatase that dephosphorylates critical proteins such as...
STAT525. Thus, it is conceivable that reduced PP2A activity plays a role in BCR-ABL1 kinase-independent TKI resistance of CML-CP cells with native BCR-ABL1. Moreover, Balabanov et al. demonstrated that altered phosphorylation of several RAN pathway-associated proteins may play a role in survival of BCR-ABL1-positive leukemic stem cells43, implicating RAN in the TKI resistance of CML stem cells.

Interestingly, the shRNA library screen identified many other pathways whose roles in TKI resistance are yet to be experimentally validated. Among these pathways are genes involved in proteasomal protein degradation, chromatin remodeling, protein biosynthesis, cell cycle regulation, apoptosis, antioxidation, ubiquitination, and DNA repair. In particular, 5 of the top 50 genes (PSMA1, UBE1, NEDD8, PSMD3, and PSMD1) are associated with proteasome-dependent protein degradation, which has been implicated in TKI resistance of CML stem and progenitor cells44. In addition, 3 of the top 50 genes (TXN, RPA3, and MUS81) are associated with DNA damage or repair pathways, adding to the observation of increased homologous recombination repair in samples from imatinib non-responders45, and a report implicating RAD52 as a target to enhance the effects of TKIs on CML cells46.

Drug resistance remains a significant clinical problem in targeted cancer therapy. In the case of CML, our function-first shRNA library approach led to the identification of RAN and XPO1 as critical mediators of BCR-ABL1 kinase-independent TKI resistance. The shRNA library approach described here may be useful for clinical situations in which drug resistance develops in the absence of mutations in the primary drug target, and may prove useful for personalized diagnostics and drug therapy.

Acknowledgements
We acknowledge Candice Ott and Jenny Ottley for clerical assistance. This work was supported by a Translational Research Program Award (6086-12 to M.W.D) and Specialized Center of Research Program Award (GCNCR0314A-UTAH to M.W.D) from The Leukemia & Lymphoma Society (LLS), National Institutes of Health (NIH) P01CA049639 (to M.W.D.), National Cancer Institute (NCI) R01CA178397 (to M.W.D. and T.O.), NCI 5P30CA042014-24, and by the V Foundation for Cancer Research (to M.W.D. and T.O.). J.S.K. is a Special Fellow of LLS and was supported by a Translational Research Training in Hematology Award from the American Society of Hematology. A.M.E. was supported by a NCI T32CA093247, a Career Development Award from LLS (5090-12), and is currently funded through a Scholar Award from the American Society of Hematology. A.M.E. acknowledges support from the NIH Loan Repayment Program. We acknowledge support of funds in conjunction with grant P30 CA042014 awarded to Huntsman Cancer Institute.

Authorship

Conflict-of-interest disclosure: K.B. and A.C. are employees of and hold stock in Cellecta, Inc. Details are available at http://www.cellecta.com/company/grants. S.S. and M.K. are founders and executives of Karyopharm Therapeutics Inc., where they receive compensation and hold equity
positions. M.W.D. is a paid consultant funded by Novartis, Celgene, Genzyme, and Gilead. He is a consultant/advisory board member of Bristol-Myers Squibb, Novartis, Pfizer, ARIAD, and Incyte. The other authors disclosed no potential conflicts of interest.
References

Figure Legends

Figure 1. K562R and AR230R cells are resistant to imatinib despite inhibition of BCR-ABL1 kinase. (A) Whole cell extracts were resolved by SDS-PAGE and probed with antibodies directed against ABL1 and phospho-ABL1; \(\alpha\)-tubulin was analyzed as a control. (B) Bar graphs represent imatinib IC\textsubscript{50} for K562S, K562R, AR230S and AR230R cells measured by treating these cells with increasing concentrations of imatinib and quantifying cell proliferation by MTS assay after 72 h. Errors bars represent standard error of the mean (SEM); *p<0.05.

Figure 2. Experimental design and reproducibility. (A) Flow diagram showing the experimental designs of the lentiviral shRNA screen and validation experiments. (B) K562S and K562R cells were infected with the Cellecta Human Module 1 library and cultured in puromycin (see Materials and Methods). Independent experiments were performed at the Huntsman Cancer Institute (R1, R2, R3 and HCI) or Cellecta. Comparison of the fold-change of barcodes between experiments using either K562S or K562R cells reveals a high level of correlation.

Figure 3. Validation of selected candidates from the lentiviral screen. (A) K562S and K562R cells were lentivirally infected with tetracycline-inducible constructs for expression of the top-scoring shRNA for each indicated gene. Expression of the candidate gene was measured by qRT-PCR 72 h after addition of doxycycline to the culture medium (n=3). (B) K562S and K562R cells stably expressing the doxycycline-inducible constructs were analyzed by MTS assay 72 h after addition of doxycycline (n=3). Error bars represent SEM; *p<0.05.
Figure 4. Cytoplasmic RAN contributes to BCR-ABL1 kinase-independent TKI resistance.

(A) Whole cell, nuclear, and cytoplasmic lysates of K562S, K562R, AR230S and AR230R cells (n=3) either untreated or treated with 1 μM imatinib were separated by SDS-PAGE and analyzed for RAN expression and subcellular localization by immunoblot analyses. (B) qRT-PCR quantitation of RAN mRNA in shRAN-expressing cells (n=3) either untreated or treated with doxycycline (72 h, 0.1 μg/mL). (C) shRAN-induced apoptosis was assessed by staining with Annexin V followed by flow cytometric analysis (n=6). (D) Parental and TKI-resistant K562 and AR230 cells were incubated with and without doxycycline at graded imatinib concentrations, followed by quantification of viable cells by MTS assay at 72 h (n=3). (E) Table shows imatinib IC50 (nM) of K562R and AR230R cells expressing shRAN in the presence or absence of 0.1 μg/mL doxycycline, as measured by MTS assay following treatment for 72 h. Error bars represent SEM; *p<0.05.

Figure 5. Ectopic expression of RanGAP confers resistance to imatinib. (A, B) K562S cells were nucleofected with the pDsRed1-N1 RanGAP plasmid for expression of RanGAP or control vector, followed by culture in graded concentrations of imatinib. RanGAP expression was confirmed by qRT-PCR (A). At 120 h the viable cells were quantified by flow cytometric analyses (B).

Figure 6. Enhanced RAN/XPO1 shuttling activity is associated with enhanced levels of cytoplasmic SET in TKI-resistant CML cell lines. (A) Whole cell, nuclear, and cytoplasmic lysates of K562S, K562R, AR230S and AR230R cells (n=3) either untreated or treated with 1 μM imatinib were separated by SDS-PAGE and analyzed for SET expression and subcellular...
localization by immunoblot analyses. The α-tubulin and lamin B fractionation blots overlap with that of Figure 4A. (B) Whole cell, nuclear, and cytoplasmic lysates of K562^S, K562^R, AR230^S and AR230^R cells (n=3) expressing shRAN in the presence or absence of doxycycline were separated by SDS-PAGE and analyzed for SET expression and subcellular localization.

Figure 7. Inhibition of RAN/XPO1 impairs survival of CML but not normal CD34^+ cord blood cells. (A) CD34^+ cells from normal cord blood (n=2) were either infected with doxycycline-inducible shRAN and plated in semisolid medium with and without 2.5 µM imatinib (left), or plated in semisolid medium in the presence or absence of graded concentrations of KPT-330 (middle and right). Colonies were counted after 14 days. RAN inhibition had no effect on survival of normal CD34^+ cord blood cells. (B) CD34^+ cells from newly diagnosed CML patients were either infected with shRAN (left) or treated with KPT-330 (middle) and analyzed for colony formation in the indicated conditions. Inhibition of XPO1 by treatment with KPT-330 also resulted in enhanced levels of nuclear RAN, SET, and p53 in CD34^+ cells from newly diagnosed CML patients. Lamin B was analyzed to control for nuclear fractionation and α-tubulin for cytoplasmic fractionation. (C) CD34^+ cells from patients with clinical TKI resistance were either infected with shRAN or treated with KPT-330 and analyzed for colony forming ability. shRAN and KPT-330 significantly reduced survival of CML CD34^+ cells from TKI-resistant patients with wild-type BCR-ABL1 (left), but not from a patient with BCR-ABL1^{T315I} (right). Error bars represent SEM; *p<0.05. Since only one BCR-ABL1^{T315I} patient sample was analyzed, standard errors are not provided.
Figure 1.
A

For personal use only.

No Imatinib

K562^s
N=1

Lentiviral infection (MOI~1)
50% of cells stored as control
Puromycin selection for 72 h

K562^s >95%
RFP^+

Cultured
for 9 days

Imatinib

K562^r
N=3

K562^r >95%
RFP^+

Cultured
for 9 days

DNA extraction

High throughput sequencing of bar codes

Selection of candidates and validation
using inducible shRNA constructs

B

K562^r replicates (R1 vs. R2)

r=0.64 (Pearson)
r=0.53 (Spearman)

log2 fold-change R1 vs. log2 fold-change R2

K562^r replicates (R1 vs. R3)

r=0.64 (Pearson)
r=0.52 (Spearman)

log2 fold-change R1 vs. log2 fold-change R3

K562^r replicates (R2 vs. R3)

r=0.64 (Pearson)
r=0.53 (Spearman)

log2 fold-change R2 vs. log2 fold-change R3

K562^s (HCl vs. Cellecta)

r=0.57 (Pearson)
r=0.44 (Spearman)

log2 fold-change K562^s

log2 fold-change HCl

log2 fold-change K562^s

log2 fold-change Cellecta

Figure 2.
Figure 3.
Figure 4.
Figure 5.

(A) Normalized RanGAP expression (compared to GUS)

(B) Normalized cell counts (% of untreated) vs. Imatinib concentration (µM)
For personal use only.

A

K562

- - + +
- - + +
- - + +
- - + +

Imatinib (1.0 μM)

SET

1.7 1.4 1

α-Tubulin

Whole Cell Lysate

Lamin B

N C N C N C N C

Fractionation

AR230

- - + +
- - + +
- - + +
- - + +

Imatinib (1.0 μM)

SET

1.1 1 1

α-Tubulin

Whole Cell Lysate

Lamin B

N C N C N C N C

Fractionation

B

K562-shRAN

- - + +
- - + +
- - + +
- - + +

Imatinib (1.0 μM)

Doxycycline (0.1 μg/mL)

RAN

1.3 1.4

α-Tubulin

Whole Cell Lysate

Lamin B

N C N C N C N C

Fractionation

AR230-shRAN

- - + +
- - + +
- - + +
- - + +

Imatinib (1.0 μM)

Doxycycline (0.1 μg/mL)

RAN

1.2 1.4

α-Tubulin

Whole Cell Lysate

Lamin B

N C N C N C N C

Fractionation

Figure 6.
Figure 7.
shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.