Cardiovascular risk in patients with hemophilia

Pieter W. Kamphuisen¹ and Hugo ten Cate²,³

¹Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

²Lab Clinical Thrombosis and Hemostasis, Cardiovascular Research Institute Maastricht, and

³Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands

Correspondence

Pieter W. Kamphuisen

Department of Vascular Medicine

University Medical Center Groningen

Hanzeplein 1

9713 GZ Groningen

The Netherlands

e-mail p.w.kamphuisen@umcg.nl
Abstract

Patients with hemophilia, who have a lifelong hypocoagulability, seem to have a lower cardiovascular mortality than the general population. Nevertheless, the prevalence of cardiovascular risk factors in patients with hemophilia is as prevalent as the general population, and hypertension is even more common. Furthermore, hemophiliacs have the same degree of atherosclerosis as the general population. The reduced cardiovascular mortality may be explained by reduced thrombus formation due to hypocoagulability. On the other hand, hemophilia, which is associated with reduced thrombin generation, may also increase atherosclerotic plaque stability, as has been shown in mice. Since treatment of these events is extremely challenging in patients with increased bleeding tendency, detection and aggressive treatment of risk factors is mandatory.
Introduction

The concept of risk factors in cardiovascular disease (CVD) has been well established. Smoking, hypertension, obesity, hypercholesterolemia, diabetes mellitus, and a positive family history for CVD are all associated with an increased risk of morbidity and mortality due to CVD. A prothrombotic state also contributes to the development of CVD.\(^1\) Increased levels of fibrinogen, von Willebrand factor (VWF), and factor VIII have all been linked to arterial thrombosis.\(^2,3\) VWF is essential for platelet adhesion and aggregation. Furthermore, VWF acts as the carrier protein for coagulation factor VIII. Factor VIII contributes to the formation of a fibrin-rich clot, and also has a role in the formation of occluding thrombi in stenotic vessels. Several observational studies have suggested that patients with hemophilia A, who have a congenital deficiency of clotting factor VIII, may have a lower mortality due to arterial thrombosis compared to the general population.\(^4,5\) This protection may be due to hypocoagulability, which is associated with decreased thrombin generation and results in inhibition of thrombus formation.

Recently, several studies found that hemophilia A patients, like the general population, have a high prevalence of atherosclerotic plaques.\(^6,7\) Furthermore, classical cardiovascular risk factors, such as hypertension seems even more prevalent in hemophilia patients. Indeed, in clinical practice an increasing number of hemophilia patients are diagnosed with CVD. The antithrombotic treatment of patients with a lifelong hypocoagulability and consequently a higher bleeding risk is a major challenge in clinical practice.

In this review we discuss recent developments of cardiovascular risk factors and atherosclerosis in patients with hemophilia.
Hemophilia and cardiovascular disease

Since both elevated levels of clotting factor VIII and von Willebrand factor increase the risk of arterial thrombosis, hemophilia, which is associated with a lifelong hypocoagulable state, may theoretically offer protection against cardiovascular disease (CVD), i.e., acute coronary syndrome, stroke or peripheral vascular disease. A decrease in factor VIII reduces thrombin generation and to a lesser extent platelet function, two important mediators in the formation of occluding thrombi in stenotic vessels.

Indeed, several surveys and cohorts of patients with hemophilia showed that cardiovascular mortality was lower compared to the general population. A systematic review summarized the results of 15 longitudinal and cross-sectional studies consisting of 19,242 patients, 14,754 with hemophilia A, 3408 with hemophilia B, 965 carriers of hemophilia A and B, and 115 VWD patients. Mortality due to CVD was non-significantly reduced in patients with hemophilia compared to the general population, with a standardized mortality ratio of 0.51 (95% confidence interval (CI) 0.24-1.09) (Figure 1). Six studies consistently found a reduced cardiovascular mortality in patients with hemophilia compared to the general male population. Only the study by Soucie et al. found a threefold increased cardiovascular mortality of hemophilia patients. The reason for the difference is unclear. A more recent study comes from Sweden, where 1431 patients with haemophilia A or B were compared with 7150 controls by using a registry. 13% of the hemophiliacs died due to cardiovascular mortality compared to 29% of the controls. Mortality due to cerebrovascular disease was not different between the two groups.

The influence of hemophilia on non-fatal CVD was investigated in the National Hospital Discharge survey in the US. Among 45- to 64-year old hemophiliacs, the discharge
rate (per 1000) of CVD was 24.1, 50% lower compared to that of U.S males (48.9/1000). This difference was 30% among patients of 64 years and older (127.3 versus 175.3, respectively). In addition, the incidence of CVD was higher in patients with mild hemophilia (3.4%) than in moderate-severe (0.7%) or severe (0.4%) type of hemophilia (p<0.001). In a retrospective single center analysis from the Netherlands, data from 408 hemophilia patients (204 severe, 204 non-severe) born before 1971, where compared with the Dutch age-matched general male population. The incidence of CVD was 2.5% in the hemophiliacs compared to 4.8% in the general population, which was statistically different. Occurrence of stroke was not different, around 1% in both groups. A third study from a US hemophilia centre, found that the lifetime risk of CVD for 185 patients with hemophilia was 19.5%. Of note, CVD was defined as related to diseases of the heart and blood vessels, which is much broader than only cardiovascular events, and also included valvular heart disease, rhythm disturbances, and congestive cardiomyopathy. However, the rate of cardiovascular events (1.75 fold higher) and of stroke (2.27 fold higher) was higher in hemophiliacs than in the general population. Notably, nearly 40% of the hemophilia patients were older than 55 years, which is higher than in most other studies and can therefore better assess the true prevalence of CVD among patients with hemophilia. Unfortunately, there were no matched control subjects in this study, which weakens the comparisons.

Although mortality due to CVD may be 50% lower in patients with hemophilia compared to the general population, most studies were not developed to assess cardiovascular risk. Furthermore, the average age of the population ranged between 44 and 54 years, and consequently the number of fatal cardiovascular events was low in these cohorts. Finally, in the registries, mortality was in most cases obtained by death certificates,
which is clearly less reliable than autopsy. There is a need of prospective data on CVD and cardiovascular mortality in patients with hemophilia, especially since the life expectancy of the hemophilia population is increasing.

Cardiovascular risk factors in hemophilia

The lower cardiovascular mortality in patients with hemophilia may be caused by a beneficial cardiovascular risk profile. In clinical practice, patients with hemophilia are regularly controlled in a hemophilia treatment center, which could result in a more health-conscious lifestyle, such as a healthy diet and regular exercise. On the other hand, reduced mobility due to arthropathy as a result of frequent bleeding could result in a higher prevalence of obesity, diabetes and dyslipidemia. Several studies assessed the presence of hypertension in hemophilia. In a survey among Dutch patients with hemophilia, hypertension was doubled compared to the general population.\(^{14}\) In a Dutch case-control study, 57% of hemophilia A and B patients older than 18 years had hypertension, defined as a blood pressure >140/90 mmHg, compared to 37.5% in healthy controls.\(^{15}\) An analysis of 386 Dutch and 315 UK hemophilia patients older than 30 years showed that 49% of the hemophilia patients had hypertension compared to 40% in the general age-matched male population.\(^{16}\) A recent study from the US found similar figures: prevalence of hypertension in patients with hemophilia older than 18 years was 49.1%, compared to 31.7% in the general population.\(^{17}\) It is not completely clear why hypertension is more prevalent in patients with hemophilia. Interestingly, in the last two studies, hypertension seemed to be more prevalent in patients with a more severe type of hemophilia. Furthermore, in the US study, hypertension was associated with a decreased renal function and increased creatinine level.\(^{17}\) Although speculative, patients with hemophilia may suffer from
(micro)bleeds in the kidneys, resulting in renovascular hypertension and fibrosis.18 This hypothesis needs further exploration.

The prevalence of diabetes mellitus and smoking is not different between patients with hemophilia and the general population.16 Total cholesterol and HDL levels were lower in hemophiliacs in the Dutch and UK cohorts compared to the general population, especially in the patients with severe hemophilia.16 56\% of the patients with hemophilia had total cholesterol levels <5.0 mmol/l and 32\% had HDL levels <1.0 mmol/l, compared to 32\% and 8\% in the general population, respectively. In the same study, 15\% of the hemophiliacs were obese (body mass index >30 kg/m2) compared to 20\% in the general population. Figure 2 shows the clustering of cardiovascular risk factors in patients with hemophilia and healthy controls.15 It clearly shows that many hemophilia patients have multiple risk factors for CVD. The expected 10-year mortality risk due to cardiovascular disease can be calculated with different scoring systems, such as the Systemic Coronary Risk Evaluation (SCORE).19 This risk score is based on the cardiovascular risk factors and estimates the total mortality due to CVD and stroke. A score of higher than 10\% confers a high risk, necessitating intervention. The percentage of hemophilia patients with such a high cardiovascular mortality risk score was 12\% compared to 7\% in the controls (p=0.18).15 The mean 10-year QRISK\textregistered2–2011 score, a specific UK CVD risk score, was 8.9\% (CI 8.1–9.8) in patients with hemophilia, higher than in the general population (6.7\%, CI 6.1–7.2, p-value < 0.001).16

In conclusion, the CVD risk of patients with hemophilia is as least as high as in the general population, whereas hypertension is more common. Furthermore, patients with hemophilia may suffer from HIV or hepatitis C infection, conditions associated with an increased risk of CVD.20,21 In two registries however, hepatitis C or HIV did not increase cardiovascular mortality in patients with hemophilia,10,11
Atherosclerosis in patients with hemophilia

Hemostasis not only contributes to clot formation, it is also involved in the process of atherosclerosis.22 Thrombin is the well known key player in both fibrin formation and platelet activation. However, thrombin is also involved in atherogenic processes, such as endothelial dysfunction and barrier disruption, oxidative stress, apoptosis, inflammation, activation of platelets and leukocytes, and proliferation of smooth muscle cells, partly through protease-activated receptors (PAR) 1 and 4.22,23 Patients with hemophilia, who have a decreased thrombin formation, may have reduced formation of atherosclerosis.

Apolipoprotein E knockout (apoE−/−) mice that have accelerated atherosclerosis, developed less early-stage atherosclerotic lesions when they were also factor VIII deficient.24 On the other hand, in mice with a LDL receptor null mutation, another accelerated atherosclerosis model, the protective effect of factor VIII deficiency was not observed.25 In humans, several earlier studies analysed the presence of subclinical atherosclerosis, by measuring the carotid and femoral intima media thickness (IMT) in patients with hemophilia or VWD.26-29 Overall, there was no difference in the mean IMT of either the carotid artery (0.75 mm vs 0.74 mm) or femoral artery (0.75 mm vs 0.79 mm) in patients and age-matched healthy controls.8

Recently, two studies investigated whether hypocoagulability is associated with decreased atherogenesis, by evaluating subclinical atherosclerosis and endothelial function in hemophilia patients and in matched unaffected controls.6,7 The first study, a multicenter study from The Netherlands and Belgium, compared 51 hemophilia A and B patients with obesity, as a proxy for increased cardiovascular risk, with 47 normal weight hemophiliacs, and healthy age-matched controls with (42) and without (50) obesity.6 The mean age of the subjects was 50 years and none had previous CVD. Carotid IMT was increased in obese
(0.77±0.22 mm) compared to non-obese subjects (0.69±0.16 mm). When comparing obese hemophilia patients with obese controls, no difference in carotid IMT was apparent (IMT 0.78 ± 0.23 mm and 0.76 ± 0.22 mm, respectively, mean difference 0.02 mm, 95% CI -0.07-0.11, \(p=0.67 \)). The mean carotid IMT was not different in severe and moderate hemophilia patients compared to controls. Interestingly, 33% of the hemophilia patients had an atherosclerotic plaque in the carotid artery, compared to 25% of the controls (\(p=0.25 \)). In the second study, from The Netherlands, 69 hemophilia A and B patients were analysed, of which 9 had previous CVD. Mean age was 52 years. Mean carotid IMT was 0.80 mm, comparable with age-specific reference values. In both studies there was no difference between hemophilia A and B. Finally, subclinical atherosclerosis was analysed by coronary artery calcification (CAC) with multi detector-row computed tomography in 42 men, ≥59 years, with severe or moderate hemophilia A (factor VIII <5%), and 613 non-hemophilic men.\(^3\) None of the subjects had a history of CVD and mean age of the study population was 66.5 years. The results showed that 24% of the subjects in both groups had severe calcification of the coronary arteries, despite the fact that patients had severe or moderate hemophilia, which again challenges the protective effect of factor VIII deficiency on the development of atherosclerosis.

In summary, these recent studies clearly show that patients with hemophilia have the same degree of atherosclerosis burden as the general population. How does this correspond with a reduced CVD and cardiovascular mortality in hemophiliacs with the apparent lack of protection against atherosclerosis burden? The experimental work may point to a possible explanation. While the protective effect of factor VIII deficiency on atherosclerosis development in mice is inconsistent, the opposite phenotype of hypercoagulability appears to stimulate atherosclerosis, not only by affecting plaque
burden, but also by affecting plaque phenotype. Thus, in mice with an apoE^{-/-} background crossed with mice with a mutation in the thrombomodulin gene, causing a defect in protein C activation, increased atherosclerosis with a more stable plaque phenotype was seen in relatively young mice,³¹ while in another study in older mice of the same genetic background similarly advanced atherosclerosis was associated with clear evidence of instability.³² These findings suggest that while, based on the burden of atherosclerosis, hypercoagulability may seem to be of equal impact, the actual plaque phenotype may markedly differ. For genetic hypocoagulability, there is insufficient data to show effects on plaque phenotype. Interestingly, pharmacological treatment of mice on an apoE^{-/-} background with the selective thrombin inhibitor dabigatran, or with one of the factor Xa inhibitors melagatran or rivaroxaban, clearly indicates that targeting one coagulation protease diminishes atherogenic features of vascular endothelium and reduces plaque burden.³²⁻³⁴⁻²⁹ Collectively, one may postulate that in the case of hemophilia, where the lack of factor VIII reduces basal levels of thrombin generation, this may (favorably) affect the plaque phenotype rather than the plaque load, which is driven by stronger factors including hypertension. Both the strength and the direction of the effect of hypocoagulability will be influenced by age, gender, genetic background and cardiovascular risk factors. This might also explain that while the extent of atherosclerosis assessed by IMT measurement may be increased in hemophilia patients, increased stability of the plaque lesions may still have a net beneficial effect with regard to cardiovascular mortality. Obviously, this postulate needs further experimental and clinical testing, since the lower risk of CVD may also be explained by a reduced formation of occluding thrombi.
Clinical consequences of cardiovascular risk in patients with hemophilia

In today’s clinical practice, we see more and more hemophilia patients with cardiovascular events. The treatment of these events is extremely challenging, as described previously in this journal, since the core treatment consists of antiplatelet therapy, which will further increase the bleeding tendency of the hemophilia patient. Next, cardiologists are unfamiliar with hemophilia, and vice versa, hematologists usually don’t treat patients with acute CVD. This necessitates multidisciplinary teams, and the development of guidelines. But above all and irrespective of the underlying mechanisms, prevention of CVD in adult hemophilia patients is crucial. Physicians who treat these patients should actively look for cardiovascular risk factors, most notably hypertension, and promote a healthy lifestyle. Treatment of the risk factors should follow international guidelines, where treatment goals are clearly defined.

Conclusions

Patients with hemophilia may have a lower cardiovascular mortality, but have the same high prevalence of subclinical atherosclerosis as the general population. Furthermore, of all cardiovascular risk factors, hypertension is more common in hemophilia, which not only increases CVD, but also the risk of intracerebral bleeding. Cardiovascular prevention with medication and healthy lifestyle is mandatory and begins with an active search for risk factors. Furthermore, more information is needed on the long-term CVD risk of adult hemophilia patients, atherosclerotic plaque stability, and on the optimal treatment of cardiovascular events.
Authorship

Contribution: PWK and HTC wrote and reviewed the manuscript

Conflict of interest disclosures: The authors declare no competing financial interests.
References

Figure 1 Association between hemophilia and cardiovascular mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>obs</th>
<th>exp</th>
<th>SMR</th>
<th>95% CI</th>
<th>Standardized mortality ratio, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosendaal 1989</td>
<td>1</td>
<td>5</td>
<td>0.20</td>
<td>95% CI 0.0 - 1.1</td>
<td></td>
</tr>
<tr>
<td>Koumbarakis 1994</td>
<td>1</td>
<td>4</td>
<td>0.25</td>
<td>95% CI 0.0 - 1.4</td>
<td></td>
</tr>
<tr>
<td>Triemstra 1995</td>
<td>0</td>
<td>5.2</td>
<td>0</td>
<td>95% CI 0.0 - 0.58</td>
<td></td>
</tr>
<tr>
<td>Soucie 2000</td>
<td>8</td>
<td>2.7</td>
<td>3</td>
<td>95% CI 1.50 - 5.60</td>
<td></td>
</tr>
<tr>
<td>Stamek 2003</td>
<td>30</td>
<td>80.5</td>
<td>0.64</td>
<td>95% CI 0.47 - 0.88</td>
<td></td>
</tr>
<tr>
<td>Plug 2005</td>
<td>6</td>
<td>12</td>
<td>0.50</td>
<td>95% CI 0.20 - 1.10</td>
<td></td>
</tr>
<tr>
<td>Darby 2007</td>
<td>104</td>
<td>167</td>
<td>0.62</td>
<td>95% CI 0.51 - 0.76</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity p=0.12

Overall SMR 0.51 95% CI 0.24-1.09

SMR: Standardized Mortality Ratio
Figure 2 Clustering of cardiovascular risk factors in patients with hemophilia and matched control subjects

![Bar chart showing clustering of risk factors in cases and controls](chart.png)
Cardiovascular risk in patients with hemophilia

Pieter W. Kamphuisen and Hugo ten Cate