The genomic landscape of Waldenström’s Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis.

Zachary Hunter¹,², Lian Xu¹, Guang Yang¹, Yangsheng Zhou¹, Xia Liu¹, Yang Cao¹, Robert J. Manning¹, Christina Tripsas¹, Christopher J. Patterson¹, Patricia Sheehy¹, and Steven P. Treon¹,³

¹Bing Center for Waldenström’s Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA 02115, USA; ²Department of Pathology and Laboratory Medicine, Boston University School of Graduate Medical Sciences, Boston, MA 02118, USA; ³Harvard Medical School, Boston, MA 02115, USA.

Corresponding author:
Steven P. Treon M.D., M.A., Ph.D.
Bing Center for Waldenström’s Macroglobulinemia
Dana Farber Cancer Institute
M547, 450 Brookline Avenue, Boston MA 02215 USA
Tel: (617) 632-2681 Fax: (617) 632-4862
Email: steven_treon@dfci.harvard.edu

Short Title: Genomic Landscape of Waldenström’s Macroglobulinemia.
Keywords: Waldenström’s Macroglobulinemia, Lymphoplasmacytic Lymphoma, WHIM Syndrome, MYD88, CXCR4, ARID1A, BTG1, HIVEP2, LYN, PRDM2, ARID1B, PLEKHG1, MKLN1.
KEY POINTS

- Highly recurring mutations are present in WM, including MYD88 L265P, WHIM-syndrome like mutations in CXCR4, and ARID1A.
- Small previously undetected copy number alterations affecting B-cell regulatory genes are highly prevalent in WM.

ABSTRACT

The genetic basis for Waldenström’s Macroglobulinemia (WM) remains to be clarified. 6q losses are commonly present, though recurring gene losses in this region remain to be defined. We therefore performed whole genome sequencing (WGS) in 30 WM patients, which included germline/tumor sequencing for 10 patients. Validated somatic mutations occurring in >10% of patients included MYD88, CXCR4 and ARID1A that were present in 90%, 27%, and 17% of patients, respectively, and included the activating mutation L265P in MYD88, and WHIM-syndrome like mutations in CXCR4 which previously have only been described in the germline. WGS also delineated copy number alterations (CNA) and structural variants in the 10 paired patients. The CXCR4 and CNA findings were validated in independent expansion cohorts of 147 and 30 WM patients respectively. Validated gene losses due to CNAs involved PRDM2 (93%), BTG1 (87%), HIVEP2 (77%), MKLN1 (77%), PLEKHG1 (70%), LYN (60%), ARID1B (50%), and FOXP1 (37%). Losses in PLEKHG1, HIVEP2, ARID1B, and BCLAF1 constituted the most common deletions within chromosome 6. While no recurrent translocations were observed, in 2 patients deletions in 6q corresponded with translocation events. These studies evidence highly recurring somatic events, and provide a genomic basis for understanding the pathogenesis of WM.
INTRODUCTION

Waldenström’s Macroglobulinemia (WM) is a distinct indolent B-cell malignancy in the World Health Organization classification. WM shares many clinical and pathological features with other B-cell lymphomas and multiple myeloma (MM), which often complicates the diagnosis of this entity. IgM Monoclonal Gammopathy of Unknown Significance (MGUS) is a precursor state for WM. Approximately 2% of IgM MGUS patients evolve to a B-cell malignancy per year, with most of these individuals progressing to WM.1–3 Since the initial description of Waldenström’s Macroglobulinemia by Jan Waldenström in 1944, the genetic basis for WM has been elusive. We therefore employed whole genome sequencing (WGS) utilizing tumor derived DNA from 30 patients, which included paired germline/tumor sequencing for 10 patients. The initial findings of this study resulted in the identification of a recurrent somatic mutation, L265P, in \textit{MYD88} in over 90% of WM patients that distinguished WM from other overlapping entities such as marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), and multiple myeloma wherein \textit{MYD88} L265P was either absent or infrequently observed (<10%).4,5,6 Importantly, \textit{MYD88} L265P was present in IgM MGUS with a frequency of 50-80\% using allele specific (AS) polymerase chain reaction (PCR) suggesting an early oncogenic event for this mutation, and that other genomic events are likely to be responsible for WM disease progression. Activating \textit{MYD88} mutations are not unique to WM and appear in other B-cell lymphomas including primary central nervous system lymphoma (50\%), and activated B-cell (ABC) subtype diffuse large B-cell lymphoma (DLBCL) (8\%-29\%).7,8,9 A multi-hit model would also help explain why no significant differences in treatment response, progression free and overall survival based solely on \textit{MYD88} mutation status determination were observed in a large series of WM patients.10

Little is known about genetic structural variant (SV) changes such as copy number alterations (CNA) or translocations in WM. By fluorescence in situ
hybridization (FISH) and array comparative genomic hybridization (aCGH) deletions in chromosome 6q21-23 have been identified in 40%-60% of WM patients, with concordant gains in 6p in 41% of those with 6q deletions.11–13 Gains in chromosomes 3q, 4, 18, 8q and Xq as well as losses of 11q23, 13q14, and 17p have also been described in up to 20% of WM cases.14,15 We therefore sought to more fully characterize the molecular events responsible for WM pathogenesis using WGS.
METHODS

Sample Collection and Preparation

Bone marrow aspirates and peripheral blood (PB) samples were collected in heparinized syringes from thirty patients with the clinicopathological diagnosis of WM as defined by the Second International Workshop on WM.16 Participants provided informed consent prior to sample collection in accordance with the Dana-Farber Cancer Institute Institutional Review Board. This study was conducted in accordance with the Declaration of Helsinki. Relevant clinical characteristics and blood work are presented in Supplemental Table 1. Bone marrow and PB mononuclear cells were isolated by density gradient centrifugation using Ficoll-Paque (Amersham-Pharmacia Biotech, Piscataway, NJ). WM lymphoplasmacytic cells (LPC) were isolated from the BM mononuclear cells by CD19+ selection using immunomagnetic MACS micro-beads (Miltenyi-Biotech, Auburn, CA). To minimize potential contamination from circulating WM LPC, PB MCs were depleted of CD19+ cells using CD19+ MACS micro-beads.

Complete methodology for the WGS analysis and validation is available in the supplementary methods.
RESULTS

Thirty patients meeting the International Consensus Criteria for WM diagnosis were evaluated in this study.16 The clinical characteristics were typical of WM of this cohort are presented in Supplemental Table 1. Tumor DNA from CD19+ BM lymphoplasmacytic cells (LPL) cells was isolated from 30 patients, along with DNA from CD19-depleted peripheral blood mononuclear cells (PBMC) for use in germline analysis. All 30 tumor and 10 PBMC samples were submitted for WGS with Complete Genomics as previously described.4

Coding variant analysis

WGS findings were filtered for novel non-synonymous variants as described in the Supplementary Methods. This identified 5,835 variants in 4,427 genes. The 10-paired genomes were used to identify genes containing at least one somatic variant. Variant data from all 30 WM tumor genomes were then fit to this model wherein each affected gene was categorized as potentially somatic, germline, or unclassified if variants were only observed within the 20 unpaired samples (Supplementary Table S2). Genes were further categorized by mutational frequency and validated based on bioinformatic strength and biological relevance, using Sanger sequencing of both tumor and germline DNA (Table 1). These cut off scores were significantly lower than our previous analysis allowing for the detection of a number of additional mutations. Primers and representative chromatograms are provided in Supplementary Table S3. A full list of somatic, and germline mutations affecting genes in the COSMIC cancer gene census are shown in Supplementary Tables S4 and S5, respectively.17

As previously described, a somatic T/C mutation in \textit{MYD88} resulting in an L265P substitution was observed in 27/30 samples. In addition to the L/P activating substitution in the primary transcript, this mutation results in a stop loss in two of
the alternative isoforms. The potential functional significance for these shorter transcripts in MYD88 L265P is not known. A subclonal C/G mutation was found in MYD88 resulting in an amino acid substitution (S219C) in one patient who also had the L265P mutation. No other mutations in MYD88 were observed in the study population.

To better understand the MYD88 wild type (WT) population, we identified somatic mutations found exclusively in the 3 MYD88 WT patients. Cross listing these genes with COSMIC, we observed that 2 of these 3 (67%) patients had damaging mutations in MLL2 while mutations in the genes JAK2, PRCC, SUZ12, BCL10, KDM6A, and SETD2 were each observed once. Sanger sequencing confirmed the somatic presence of MLL2 mutations in these patients as previously described. While a larger sample size is needed to determine if the high frequency of MLL2 mutations is typical of the MYD88 WT WM population, it nonetheless represents a gene of great interest since MLL2 mutations are highly recurrent in follicular lymphoma and DLBCL patients.18

The next most common somatic mutation was observed in the G-protein coupled receptor (GPCR) CXCR4. CXCR4 is a chemokine receptor that promotes WM survival, migration, and adhesion to the bone marrow (BM) stroma through interactions with its ligand CXCL12.19 Eight of 30 (27%) patients harbored one of 5 somatic variants in CXCR4, each of which were identical or functionally similar to mutations associated with Warts, Hypogammaglobulinemia, Infection, and Myelokathexis (WHIM) syndrome (Figure 1).20,21 WHIM syndrome is a rare, autosomal dominant genetic disorder that is caused by frame shift or nonsense mutations in the carboxyl-terminal cytoplasmic tail (c-tail) of CXCR4. These mutations occur after the last of the seven transmembrane helices, destroying the c-tail but leaving the regions responsible for ligand binding and downstream signaling via g-proteins intact.22 These c-tail mutations result in the loss of regulatory serines resulting in impaired internalization and prolonged activation.23–25 To validate this finding, we screened an independent cohort of
147 WM patients for CXCR4 mutations by Sanger sequencing. Combined with the 30 patients in the WGS cohort whose results were validated by Sanger sequencing, 51/177 (28.8%) patients had c-terminal mutations in CXCR4. Among these 177 patients, 160 demonstrated the MYD88 L265P mutation. Importantly, 50/51 (98%) of the patients with CXCR4 c-terminal mutations were also MYD88 L265P positive. Conversely, 16/17 (94.1%) of the MYD88 wild-type patients were wild-type for CXCR4 (p=0.026).

Other genes with validated somatic mutations in this series included ARID1A (5/30; 17%), CD79B (2/30; 7%), TP53 (2/30; 7%), MYBBP1A (2/30; 7%), MUC16 (1/30; 3%), TRAF2 (1/30; 3%), TRAF3 (1/30; 3%), RAG2 (1/30; 3%), and NOTCH2 (1/30; 3%) of patient samples (Figure 2).

Structural Variant Analysis

Structural variants were inferred from high confidence discordant mate-pair and relative coverage data supplied by Complete Genomics. To gain further insight into the SV events underling WM, we combined individual patient data for lesser allele fraction (LAF), heterozygous call rate, normalized relative coverage, somatic CNAs, and somatic SV calculations with cohort wide small variant distribution and CNA regions of statistical significance (Supplementary Figure S1). These analyses aid in the detection of complex events such as acquired uniparental disomies (aUPD), which can be observed in chromosomes 3p and 21 in Supplementary Figure S1. The most common aUPD was at 3p, occurring in 4/30 (13%) of patients and whose location and size were highly conserved between the samples (Figure 3). This locus included the MYD88 L265P locus, resulting in homozygous somatic mutation in these patients. Additional large aUPDs were observed on chromosomes 1, 2, 5, 9, 17, 21, and X with many of these affecting the validated small variant findings (Table 2).
Translocations were rare events, and we were unable to demonstrate any recurrent translocations in the 10-paired samples (Supplementary Table S5). One patient had two distinct t(2;17) translocations disrupting both alleles of RNF213. A t(6;X) translocation disrupting the gene BIA3 was responsible for the chromosome 6q deletion observed in another patient (Supplementary Figure S1). A third patient had a chromothriptic event centered on chromosome 6 which made up over half of all translocations observed in this study (Supplementary Figure S2), and contributed to 6q deletions observed in this patient’s tumor cells. In this patient, we performed PCR for t(6;7) predicted to disrupt BMP5 and ANKRD7, as well as t(6;11) predicted to disrupt GRIA4 and PKHD1 respectively, and validated both of these findings. For 2 of 5 patients with paired normal/tumor genomes and in whom 6q deletions were identified, translocations were responsible for these regional losses. Macro-level analysis of normalized coverage for all 30 WM samples demonstrated that large deletions in 6q were present in 13/30 (43%) with corresponding gains in 6p in 3/13 (23%) cases. The next most common alteration observed was an amplification of chromosome 4 which occurred in 7/30 (23%) patients confirming previous FISH and aCGH findings.14,15

Small Somatic Copy Number Alterations

To detect small somatic deletions and amplifications, we calculated 100Kb blocks of the log-transformed ratio of tumor to germline relative coverage in each of the paired genomes. Significant CNAs were then compared across all 10 patients in order to identify statistically significant regions. CNAs consisted mostly of isolated 100Kb blocks both within and outside of chromosome 6 (Supplementary Table S6 and Supplementary Figure S1E). To investigate the biological relevance of these non-chromosome 6 CNAs, we performed functional enrichment analysis on the gene set affected by these alterations. Unique functional annotation results are listed in order of significance in Figure 4A.
To better characterize these highly recurrent deletions, consecutive blocks of equal significance were merged together to form 194 statistically significant regions with a median length 100Kb (range 100Kb-4,900Kb). Of these regions, 134 (69%) were found outside of chromosome 6 with a median length of 100Kb (range 100Kb-300Kb), of which 126 of 134 (94%) were restricted to a single 100Kb region. Within chromosome 6, CNAs were larger with only 30/60 (50%) CNAs constituting single 100Kb regions (p=7.709x10^{-12}). CNAs targeted COSMIC census genes for 14 of 172 (8.14%) genes outside of chromosome 6, versus 4 of 239 (1.67%) genes within chromosome 6 respectively (p=0.0024). To determine the probability of generating these results as a random by-product of genomic instability, we calculated the number of total genes affected by these deletions (N=411) and the number of these genes found in the COSMIC database (N=18). We randomly distributed matching deletion sets across the genome and enumerated the total number of overlapping genes and the number of those genes listed in the COSMIC census (Figure 4B). These simulations revealed a statistically significant increase in targeting of COSMIC genes by CNAs outside of chromosome 6. Affected genes in the COSMIC census were BTG1 (9/10; 90%), FOXP1 (7/10; 70%), FNBP1 (7/10; 70%), CD74 (7/10; 70%), TOP1 (6/10; 60%), MYB (5/10; 50%), CBLB (5/10; 50%), ETV6 (5/10; 50%), TNFAIP3 (5/10; 50%), FBXW7 (5/10; 50%), PRDM1 (5/10; 50%), TFE3 (4/10; 40%), JAK1 (4/10; 40%), MAML2 (4/10; 40%), FAM46C (4/10; 40%), EBF1 (4/10; 40%), STL (4/10; 40%), and BIRC3 (4/10; 40%). Other affected genes of interest included PRDM2 (8/10; 80%), HIVEP2 (8/10; 80%), ARID1B (7/10; 70%) as well as LYN (7/10; 70%).

There were no singular regions of statistical significance in 6q. Some patients had multifocal deletions in this region suggesting multiple target genes (Figure 5). Neither of the previously suspected target genes for 6q loss, i.e. PRDM1 and TNFAIP3 were included in the regions of highest statistical significance. The relative coverage data from all 10-paired patients is shown in Figure 6b.
illustrating that only 3 patients had highly clonal deletions in 6q. Two additional patients had subclonal deletions in 6q, therefore 5/10 (50%) paired patients had at least subclonal loss. Deletions in \textit{HIVEP2} (8/10; 80\%) as well as \textit{ARID1B} (7/10; 70\%) and \textit{BCLAF1} (7/10; 70\%) constituted the most common deletions in chromosome 6, and were present in patients with and without visible 6q losses.

To test our validation system and examine the accuracy of the GC normalized relative coverage data, we used a PCR based copy number assay to validate the established 6q22 deletion in a subset of patients (Figure 6A). Having recapitulated the expected results, we conducted additional validation studies for eight of our top targets in the same five patients using commercially available assays. While many results appeared subclonal, we observed a strong correlation between the PCR relative copy number and WGS coverage predictions (Figure 6D). To establish the frequency of these CNAs, we validated these eight findings in an independent cohort of 30 WM patients revealing somatic losses in \textit{PDRM2} (28/30; 93\%) at 1p36.21, \textit{BTG1} (26/30; 87\%) in Chr. 12q21.33, \textit{HIVEP2} (23/30; 77\%) at 6q24.2, \textit{MKLN1} (23/30; 77\%) at 7q32, \textit{PLEKHG1} (21/30; 70\%) at 6q25.1, \textit{LYN} (18/30; 60\%) at 8q12.1, \textit{ARID1B} (15/30; 50\%) at 6q25.1, and \textit{FOXP1} (11/30; 37\%) at 3p13, and (Figure 2). For \textit{MKLN1} and \textit{HIVEP2}, germline CNAs were significant, and therefore tumor to germline relative coverage should be interpreted accordingly (Figure 6C).

CXCR4 and MYD88 L265P mutation status was determined for in bone marrow samples for all 30 patients by Sanger sequencing and AS-PCR respectively. There were fewer median validated deletions in CXCR4 mutated patients (5) compared to WT (7; \textit{p}=0.002) and with the median total number of 6q CNAs (2) compared to WT (3; \textit{p}=0.007; Figure 2). This was also true for any combination of two of the three validated 6q genes ruling out possible biasing by a single gene (\textit{p}<0.023 for all).
DISCUSSION

The most pronounced finding from this work was the discovery of a somatic mutation in MYD88 (L265P), which was present in 90% of patients with WM. The details for this discovery were previously published following the preliminary examination of our whole genome sequencing results.4 MYD88 serves as an adaptor molecule in Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling mediating IRAK4 and IRAK1 activation and down stream signaling through NFκB.4,8,26 Mutations in MYD88 are significant given the importance of NFκB signaling in WM cell growth and survival.27 We recently demonstrated that MYD88 L265P can trigger NFκB signaling through an IRAK-independent pathway by direct interaction with Bruton’s Tyrosine Kinase (BTK) in WM cells, suggesting parallel pathways for NFκB activation.28 In contrast to the findings by Ngo et al who observed multiple MYD88 mutations (L265P, V217F, S219C, M232T, S243N, T294P) in ABC subtyped DLBCL patients, our findings were limited to the identification of L265P, and S219C as a subclonal event in one WM patient with a L265P mutation.8 We also did not observe mutations in CARD11 in WM patients, demonstrating differences in potential oncogenic drivers and dependence on TLR signaling for WM versus ABC subtyped DLBCL.

The next most common somatic variant after MYD88 L265P was in CXCR4, present in 27% of the patients. The mutations identified in WM tumor cells recapitulated those found in the germline of patients with WHIM syndrome. To our knowledge, this is the first time WHIM like mutations have ever appeared as somatic mutations, and also associated with a malignant disease. In WHIM syndrome, loss of regulatory serines in the c-tail of CXCR4 are known to impair receptor internalization, thereby prolonging G-protein and β-arrestin signaling.25 CXCR4 stimulation by its ligand CXCL12 is known to activate AKT1 and MAPK family signaling, as well as facilitate cell migration and homing in WM cells.19 The prolonged activation of CXCR4 signaling due to WHIM mutations may therefore exaggerate these effects in WM cells, and deserves further study. Nearly all
patients with CXCR4 mutations also had carried the MYD88 L265P mutation, and comprehensive studies will be required to delineate the relative impact of these mutations on WM clinical and treatment response characteristics. The presence of CXCR4 mutations may also offer a targeted approach to therapy of WM by use of CXCR4 antagonists given their successful employment in the treatment of WHIM syndrome patients.29 Several antagonists to CXCR4 have been developed and are in clinical trials including plerixafor, BMS-936564, AMD-070, TG-0054 and others and warrant investigation alone and/or in combination in WM patients.

While most WM cases in our series did not have mutations in CXCR4, it is possible that CXCR4 signaling may still be critical for many of these patients and offer an opportunity for targeted therapy with CXCR4 antagonists.21 In WM, polymorphisms of the CXCR4 ligand, CXCL12, have been associated with poor post treatment clinical outcomes.30 Copy loss of RGS17 that was observed in 5 of 10 (50\%) of patients in our series may also affect this pathway. CXCR4 signals downstream through G_i G-proteins increasing phosphorylated AKT1 levels and promoting cell survival while RGS17 inhibits G_i G-proteins by promoting GTP hydrolysis.31,32 In an analogous case, RGS17 inactivation was observed in ovarian cancer affecting G_i GPCR downstream signaling in response to lysophosphatidic acid.31

The other major pathway identified in this study was the loss of the chromatin remodeling proteins, ARID1A and ARID1B.33 ARID1A was the third most common SNV variant target in WM, with 5/30 (17\%) of patients having validated nonsense or frame shift mutations. In one patient, a mutation in ARID1A (Y551 frameshift) was homozygous as a result of an aUPD, whereas in another patient a nonsense mutation (Q2037*) was opposite CNA loss resulting in biallelic inactivation (Table 2). Loss of the alternate family member ARID1B was present in 7/10 (70\%) of the paired patient samples making it a more frequent 6q target than either PRDM1 or TNFAIP3 (5/10; 50\% for both).33 One potential target for
this pathway is the B-cell development regulator \textit{EBF1} which itself was affected
by CNV deletions in 4/10 (40\%) patients.34,35 Both ARID1A and ARID1B are
members of the SWI/SNF family of proteins which are known to be mutated in
other neoplastic malignancies wherein they are thought to exert their effects via
p53 and CDKN1A regulation.36,37,38 \textit{TP53} itself was mutated in 2/30 (7\%)
of the sequenced genomes including one case of biallelic mutation. PRDM2 and TOP1
both participate in TP53 related signaling and were deleted in 8/10 (80\%; 28/30
in validation) and 6/10 (60\%) of patients respectively.39,40 Taken together, these
findings would imply that multiple mutations exist in the genome of WM patients
which dysregulate the DNA damage response.

Loss of additional cancer associated genes was observed including \textit{ETV6}, which
was deleted in 6/10 (60\%) of the samples analyzed. Deletions of \textit{ETV6} have
been observed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia,
and myelodysplastic syndromes.41–43 \textit{ETV6} is a member of the ETS transcription
factor family and acts primarily as a transcriptional repressor involved in
hematopoiesis and functions as a tumor suppressor in myeloid leukemias.44
\textit{FOXO3}, which was deleted in 6/10 (60\%) of patients, has been shown to
negatively regulate growth and survival in mantle cell lymphoma, B-CLL, and
natural killer cell neoplasms.45–47 In B-CLL, phosphorylation of FOXO3 by AKT1
down stream of CXCL12 and CXCR4 prevents FOXO3 nuclear translocation and
signaling.46 Upon nuclear translocation, FOXO3 can induce transcription of \textit{BTG1}
which was deleted in 9/10 (90\%; 26/30 in validation) paired patients.48 While
FOXO3 (6q21) was not explicitly validated, 6q deletions were significantly less
common in CXCR4 mutated patients and there was a trend for fewer BTG1
deletions as well. \textit{BTG1} is a nuclear co-activator that modulates transcription, a
member of the anti-proliferative TOB/BTG protein family, and was recently
demonstrated to be recurrently mutated in several studies of DLBCL.18,49,50 Small
deletions affecting \textit{BTG1} have been reported in up to 12\% of the B-cell precursor
subtype of ALL (BCP-ALL).43,51,52 \textit{BTG1} deletions in BCP-ALL were noted to
coincide with deletions in \textit{ETV6} and \textit{EBF1} both of which were recurrently deleted
in our study and suggests that these events may be functionally related.52 Preclinical studies of BTG1 in ALL have shown that loss of BTG1 is associated with glucocorticoid resistance. These findings may explain the poor responses observed to single agent steroids in WM, and warrant further investigation of BTG1 loss in treatment outcomes in patients undergoing glucocorticoid inclusive therapy.53,54 Finally, biallelic loss of \textit{RNF213} resulting from two distinct t(2;17)s was observed in 1 of 10 paired patients, and represents an interesting finding since \textit{RNF213} is a fusion partner of \textit{ALK} and \textit{MYC} in acute anaplastic large cell lymphoma. In the WM patient with the t(2;17) translocation, \textit{RNF213} was translocated to the intergenic space indicating that the loss of \textit{RNF213} itself may play an important role in oncogenesis.55,56 It is important to note that most CNAs were consistent with heterozygous loss and classical tumor suppressors require biallelic loss for oncogenesis. However, these losses could lead to pathway modulation due to altered protein levels or creation of dominant negatives by partial gene loss.

Many of the mutations identified in this study impact NFκB signaling distal to the TLR4/MYD88 pathway. \textit{MYBBP1A}, mutated in 2/30 (7\%) patients, is thought to inhibit NFκB activity by repressing RELA.57 Copy loss of \textit{HIVEP2} (8/10; 80\%; 23/30 in validation) and \textit{TNFAIP3} in 5/10 (50\%) of the paired patients is of interest since their loss results in the removal of NFκB negative regulators in WM.12,58 Chromosome 6q is often deleted in WM patients, and the apparent loss of \textit{HIVEP2} in 6q intact patients is particularly compelling for a role of this gene in the pathogenesis of WM. Likewise, \textit{BIRC3} loss in 4/10 (40\%) of patients is associated with splenic MZL and can increase activation of non-canonical NFκB signaling.59 Interestingly, both of BIRC3’s partner proteins, TRAF2 and TRAF3, that regulate non-canonical NFκB signaling were each found to be mutated in 1/30 (3\%) patients. Biallelic loss of TRAF3 has been reported by Braggio et al12 in WM patients. These findings may therefore provide an impetus for studying non-canonical NFκB signaling in WM.
The loss in 7/10 (70%; 18/30 in validation) paired patients of LYN, a kinase that plays a regulatory role for B-cell receptor (BCR) signaling along with mutations in CD79B (2/30; 7%) indicates a possible role for BCR signaling in this disease.60–62 The loss of IBTK in 4/10 (40%) of patients, and the interaction between activated MYD88 and BTK, raises the possibility for BTK mediated cross-talk with the TLR/MYD88 pathway wherein BTK plays an important role in NFκB activation.28,63–65 Moreover, CBLB, a gene disrupted in chronic myelogenous leukemia and lost in 5/10 (50%) of the paired patients has been shown to inhibit the TLR4 response during inflammation by controlling TRL4 and MYD88 association, and subsequent NFκB activation.66,67 However, there is still limited data regarding the structure of the MYD88 L265P mutant protein. Signaling pathways that are well documented in the wild type setting will need to be carefully re-examined to clarify the contribution of the L265P mutation to downstream MYD88 signaling.

Our WGS studies in WM patients have therefore identified mutations in genes involving TLR, NFκB, and CXCR4 signaling, chromatin remodeling, and cell cycle regulation. These findings may denote a multistep process for WM evolution from IgM MGUS to asymptomatic and symptomatic WM, which invariably will require comparative, and even prospective longitudinal sequencing studies. These efforts are particularly warranted since the principal mutation (MYD88 L265P) identified in these studies is also present in 50-80% of IgM MGUS patients using AS-PCR, signifying its role as an early oncogenic event.10,68,69 Other mutations therefore are likely to be acquired in the evolution of MGUS to symptomatic WM, and may offer opportunity to identify those patients at high risk for disease evolution. Lastly, these studies have also identified novel targets for rationale approach to WM treatment, including potentially the use of inhibitors targeting TLR and CXCR4 signaling.
ACKNOWLEDGEMENTS

This study would not have been possible without the generous support of the Peter S. Bing, the International Waldenström’s Macroglobulinemia Foundation, the Coyote Fund for WM, the D’Amato Family Fund for Genomic Discovery, the Edward and Linda Nelson Fund for WM Research, and the WM patients who provided their samples. The authors would like to thank Yaoyu Wang and John Quackenbush at the Center for Cancer Computational Biology at the Dana-Farber Cancer Institute for their assistance in developing the copy number analysis. Portions of this study including the identification of CXCR4 WHIM-like mutations in WM were first presented at the 48th Annual Meeting of the American Society of Clinical Oncology held June 1-5, 2012 in Chicago IL.

AUTHOR CONTRIBUTIONS

ZRH and SPT designed the study wrote the manuscript. ZRH performed the data analysis and conducted the copy number validation. ZRH and XL designed Sanger sequencing primers. GY, YZ, YC, XL, and LX prepared the samples and performed the Sanger validation studies. SPT and PS provided patient care, obtained consent and samples. RM, CT, and CP selected samples and provided clinical data analysis.

AUTHOR DISCLOSURES

The authors have no competing interests to declare.
REFERENCES

68. Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenstrom’s Macroglobulinemia, IgM Monoclonal Gammopathy, and other B-cell

Tables

Table 1: Validated somatic variants identified by WGS in WM patients.

List of all variants validated by Sanger sequencing ordered by chromosome and position.

<table>
<thead>
<tr>
<th>Gene</th>
<th>N</th>
<th>Chr</th>
<th>Position</th>
<th>Reference</th>
<th>Variant</th>
<th>Zygosity</th>
<th>Protein</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID1A</td>
<td>1</td>
<td>1</td>
<td>27057944</td>
<td>C</td>
<td>-</td>
<td>hom</td>
<td>Y551Frame Shift</td>
<td>Homozygous by aUPD</td>
</tr>
<tr>
<td>ARID1A</td>
<td>1</td>
<td>1</td>
<td>27099946</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>R1276Stop</td>
<td></td>
</tr>
<tr>
<td>ARID1A</td>
<td>1</td>
<td>1</td>
<td>27101665</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>Q1650Stop</td>
<td></td>
</tr>
<tr>
<td>ARID1A</td>
<td>1</td>
<td>1</td>
<td>27106497</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>Q2037Stop</td>
<td>Opposite Copy Loss</td>
</tr>
<tr>
<td>ARID1A</td>
<td>1</td>
<td>1</td>
<td>27107136</td>
<td>-</td>
<td>A</td>
<td>het</td>
<td>S2249Frame Shift</td>
<td></td>
</tr>
<tr>
<td>NOTCH2</td>
<td>1</td>
<td>1</td>
<td>120478125</td>
<td>A</td>
<td>C</td>
<td>het</td>
<td>F1209V</td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td>1</td>
<td>2</td>
<td>136872467</td>
<td>GAAGACTCAG</td>
<td>AC</td>
<td>het</td>
<td>S344Frame Shift</td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td>1</td>
<td>2</td>
<td>136872481</td>
<td>AGAT</td>
<td>-</td>
<td>het</td>
<td>S339Frame Shift</td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td>2</td>
<td>2</td>
<td>136872485</td>
<td>G</td>
<td>C</td>
<td>het</td>
<td>S338STOP</td>
<td>WHIM associated rs104893626</td>
</tr>
<tr>
<td>CXCR4</td>
<td>3</td>
<td>2</td>
<td>136872485</td>
<td>G</td>
<td>T</td>
<td>het</td>
<td>S338STOP</td>
<td>WHIM associated rs104893626</td>
</tr>
<tr>
<td>CXCR4</td>
<td>1</td>
<td>2</td>
<td>136872570</td>
<td>-</td>
<td>T</td>
<td>het</td>
<td>T311Frame Shift</td>
<td></td>
</tr>
<tr>
<td>MAP2</td>
<td>1</td>
<td>2</td>
<td>210557805</td>
<td>G</td>
<td>C</td>
<td>het</td>
<td>W304C</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Chromosome</td>
<td>Start</td>
<td>End</td>
<td>Ref</td>
<td>Alt</td>
<td>Heterozygosity</td>
<td>SNP Description</td>
<td>Annotation</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>MYD88</td>
<td>1</td>
<td>3</td>
<td>38182032</td>
<td>C</td>
<td>G</td>
<td>het</td>
<td>S219C</td>
<td>Homozygous by aUPD x 4</td>
</tr>
<tr>
<td>MYD88</td>
<td>27</td>
<td>3</td>
<td>38182640</td>
<td>T</td>
<td>C</td>
<td>het</td>
<td>L265P</td>
<td></td>
</tr>
<tr>
<td>MED23</td>
<td>1</td>
<td>6</td>
<td>131915434</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>E1013K</td>
<td></td>
</tr>
<tr>
<td>SYNE1</td>
<td>1</td>
<td>6</td>
<td>152708319</td>
<td>C</td>
<td>T</td>
<td>hom</td>
<td>R2792H</td>
<td>Opposite Copy Loss</td>
</tr>
<tr>
<td>TRRAP</td>
<td>1</td>
<td>7</td>
<td>98530988</td>
<td>A</td>
<td>T</td>
<td>het</td>
<td>D1326V</td>
<td></td>
</tr>
<tr>
<td>TRAF2</td>
<td>1</td>
<td>9</td>
<td>139815501</td>
<td>G</td>
<td></td>
<td>hom</td>
<td>L324Frame Shift</td>
<td>Homozygous by aUPD</td>
</tr>
<tr>
<td>RAG2</td>
<td>1</td>
<td>11</td>
<td>36615549</td>
<td>A</td>
<td>G</td>
<td>hom</td>
<td>L57P</td>
<td>Opposite Copy Loss</td>
</tr>
<tr>
<td>MLL2</td>
<td>1</td>
<td>12</td>
<td>49425598</td>
<td>A</td>
<td>G</td>
<td>het</td>
<td>S4297L</td>
<td></td>
</tr>
<tr>
<td>MLL2</td>
<td>1</td>
<td>12</td>
<td>49448412</td>
<td>C</td>
<td></td>
<td>het</td>
<td>G101Frame Shift</td>
<td></td>
</tr>
<tr>
<td>TRAF3</td>
<td>1</td>
<td>14</td>
<td>103371839</td>
<td>-</td>
<td>T</td>
<td>het</td>
<td>L448Frame Shift</td>
<td>Opposite Copy Loss</td>
</tr>
<tr>
<td>MYBBP1A</td>
<td>1</td>
<td>17</td>
<td>4457136</td>
<td>G</td>
<td>A</td>
<td>het</td>
<td>P177S</td>
<td></td>
</tr>
<tr>
<td>MYBBP1A</td>
<td>1</td>
<td>17</td>
<td>4457323</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>R148Q</td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>1</td>
<td>17</td>
<td>7577114</td>
<td>C</td>
<td>T</td>
<td>het</td>
<td>C275Y</td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>1</td>
<td>17</td>
<td>7577569</td>
<td>A</td>
<td>C</td>
<td>hom</td>
<td>C238G</td>
<td>Homozygous by aUPD</td>
</tr>
<tr>
<td>CD79B</td>
<td>1</td>
<td>17</td>
<td>62006799</td>
<td>A</td>
<td>T</td>
<td>het</td>
<td>Y197N</td>
<td></td>
</tr>
<tr>
<td>CD79B</td>
<td>1</td>
<td>17</td>
<td>62007129</td>
<td>C</td>
<td>G</td>
<td>het</td>
<td>Exon Boundry</td>
<td></td>
</tr>
<tr>
<td>MUC16</td>
<td>1</td>
<td>19</td>
<td>9014687</td>
<td>G</td>
<td>T</td>
<td>het</td>
<td>A12763E</td>
<td></td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1: Somatic CXCR4 mutations in WM are similar to those found in WHIM syndrome.

Somatic CXCR4 nonsense and frame shift mutations found in 177 WM patient samples. (A) Protein sequence for the canonical full-length transcript (NP_003458.1) demonstrates that similar to the variants responsible for WHIM syndrome, these mutations result in a truncation of the cytosolic tail containing the regulatory phospho-serines leaving the seven transmembrane helix region involved in signaling and ligand binding intact. (B) The crystal structure of homodimeric CXCR4 with the carboxyl terminal tail highlighted in yellow and indicated by the white arrows. (C) Precise location and number of WHIM-like somatic mutations in WM at transcript level and detailed mutation type summary of the most frequently mutated amino acid S338.

Figure 2: Summary of study results.

(A) Copy number results per patient for for the independent 30 patient validation cohort as determined by qPCR. Somatic MYD88 L265P and WHIM-like CXCR4 mutations were assessed in this population and annotated here for reference. The eight CNA targets selected for validation were chosen based on the 10 paired patient WGS analysis and technical validation studies. (B) Validated mutations in the 30 patient WGS cohort. Somatic status of all findings was confirmed by germline Sanger sequencing. (C) Overall frequency of validated somatic mutation (above) or CNA (below) for the independent 30 patient WGS and validation cohorts respectively.
Figure 3: Acquired uniparental disomy (aUPD) in chromosome 3p in four patients with WM.

(A) Representative excerpts from paired tumor and germline tissue documenting an aUPD on chromosome 3 for a single WM patient. The red histogram below the ideogram corresponds to the heterozygous call rate. Below that, copy number (black line) and normalized relative coverage (orange) is shown above the lesser allele fraction (LAF) measurements (blue). LAF values more than 2 standard deviations from the mean are shown in green. (B) Sanger sequencing of MYD88 L265P for this patient with a near homozygous mutant signal. © Heterozygous call rate, LAF, and relative coverage for the 4 patients with aUPDs in chromosome 3p demonstrating the near identical location of the aUPD for the 4 affected patients.

Figure 4: Characterization of somatic copy number alterations (CNA) in WM

(A) Functional annotation for genes affected by CNA found outside of chromosome 6. The list is ordered by statistical significance and filtered only for duplicated functional annotations matching more than one category. (B) Deletions of matching size were randomly distributed across the genome in 10,000 trials. The number of affected total RefSeq and COSMIC genes was calculated for each group. Results represent mean values with empirical 95% confidence intervals.
Figure 5: Somatic deletions identified on chromosome 6 by WGS in WM patients.

(A) Frequency of statistically significant chromosome 6 deletions from the 10 paired patients highlighting genes of interest. The positions of the deletions are mapped against chromosome 6 cytogenetic bands. (B) Relative coverage across chromosome 6 for each of the 10 paired samples. Losses in 6q were not always single contiguous deletions and some patients had deleted segments restricted to a subclone. The frequency of deletions for genes including HIVEP2 and ARID1B were higher than the corresponding number of large block deletions.

Figure 6: Validation results using quantitative polymerase chain reaction (qPCR) for most frequent somatic deletions identified by WGS in WM patients.

Five patient samples, 3 from the paired and 2 from the unpaired WGS cohorts were selected for validation studies using qPCR copy number assays. All assays were run in at least triplicate. Results represent median values and ranges. (A) Validation of deletion in the known 6q deletion in two patients at HINT3 (6q22.32). (B) Representative validation results normalized to germline as determined by qPCR. Deletions deemed significant by Welch’s t-test are marked with *. (C) Somatic relative copy number needs to be interpreted in context. Significant germline copy number variation was noted in both HIVEP2 and MKLN1. (D) Comparison of whole genome and qPCR validation estimates of relative somatic copy number demonstrating similar clonal estimates.
A - Germline variant in WHIM syndrome
\[\text{Somatic frame shift or nonsense WM variant} \]

LEGEND

- Transmembrane helix
- Somatic frame shift or nonsense WM variant

S338 Mutation Types

- Nonsense C/G: 21%
- Nonsense C/A: 25%
- Frame shift: 54%
A

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions Annotation</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>lymphohematopoietic cancer</td>
<td>6.07E-13</td>
</tr>
<tr>
<td>Hematological System Development and Function</td>
<td>quantity of B lymphocytes</td>
<td>1.65E-12</td>
</tr>
<tr>
<td>Cellular Growth and Proliferation</td>
<td>proliferation of immune cells</td>
<td>2.90E-12</td>
</tr>
<tr>
<td>Hematopoiesis</td>
<td>arrest in differentiation of lymphocytes</td>
<td>6.39E-12</td>
</tr>
<tr>
<td>Cellular Growth and Proliferation</td>
<td>proliferation of lymphocytes</td>
<td>8.96E-12</td>
</tr>
<tr>
<td>Hematological System Development and Function</td>
<td>quantity of blood cells</td>
<td>1.23E-11</td>
</tr>
<tr>
<td>Hematological System Development and Function</td>
<td>quantity of leukocytes</td>
<td>3.49E-11</td>
</tr>
<tr>
<td>Hematological Disease</td>
<td>hematological neoplasia</td>
<td>3.64E-11</td>
</tr>
</tbody>
</table>

B

Genes Affected by Somatic CNA

- **Expected Results**
- **Observed Results**

Number of Affected COSMIC Genes

- **Expected Results**
- **Observed Results**

COSMIC Genes as Percentage of Affected

- **Expected Results**
- **Observed Results**
The genomic landscape of Waldenstöm’s Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis

Zachary Hunter, Lian Xu, Guang Yang, Yangsheng Zhou, Xia Liu, Yang Cao, Robert J. Manning, Christina Tripsas, Christopher J. Patterson, Patricia Sheehy and Steven P. Treon