A MOUSE MODEL OF ANEMIA OF INFLAMMATION: COMPLEX PATHOGENESIS WITH PARTIAL DEPENDENCE ON HEPcidIN

Airie Kim¹²*, Eileen Fung¹*, Sona G. Parikh¹, Erika V. Valore¹, Victoria Gabayan¹, Elizabeta Nemeth¹ and Tomas Ganz¹²

Departments of Medicine¹ and Pathology², David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA

*authors contributed equally

Short title: Anemia of inflammation

Corresponding author:

Tomas Ganz

37-055 CHS, Department of Medicine, UCLA

10833 Le Conte Ave., Los Angeles, CA 90095

E-mail: tganz@mednet.ucla.edu

Phone: (310) 825-6112

FAX: (310) 206-8766

Scientific Category: Iron and Red Cells
Key Points

- An injection of heat-killed *Brucella abortus* in mice causes prolonged anemia with features similar to human anemia of inflammation
- Ablation of hepcidin ameliorates anemia of inflammation in this model and allows faster recovery

ABSTRACT

Anemia is a common complication of infections and inflammatory diseases, but the few mouse models of this condition are not well characterized. We analyzed in detail the pathogenesis of anemia induced by an injection of heat-killed *Brucella abortus* (BA), and examined the contribution of hepcidin by comparing wild-type (WT) to iron-depleted hepcidin-1 KO (*Hamp*-KO) mice. BA-treated WT mice developed severe anemia with a Hb nadir at 14 d and partial recovery by 28 d. After an early increase in inflammatory markers and hepcidin, WT mice manifested hypoferremia, despite iron accumulation in the liver. Erythropoiesis was suppressed between days 1 and 7, and erythrocyte destruction was increased as evidenced by schistocytes on blood smears and shortened RBC lifespan. Erythropoietic recovery began after 14 d but was iron-restricted. In BA-treated *Hamp*-KO compared to WT mice, anemia was milder, not iron-restricted and with faster recovery. Similarly to severe human anemia of inflammation, the BA model shows multifactorial pathogenesis of inflammatory anemia including iron restriction from increased hepcidin, transient suppression of erythropoiesis and shortened erythrocyte lifespan. Ablation of hepcidin relieves iron restriction and improves the anemia.
INTRODUCTION

Anemia of inflammation (AI) is a feature of a wide spectrum of inflammatory disorders, including connective tissue disease, infections, certain malignancies, and chronic kidney disease\(^1\). AI is typically a normocytic normochromic anemia with a shortened erythrocyte lifespan and suppressed erythropoiesis, despite adequate levels of circulating erythropoietin\(^2\). Perhaps the most consistent feature of AI is a derangement of systemic iron homeostasis characterized by hypoferremia with intact iron stores\(^1\) and decreased availability of iron for erythrocyte production.

Hepcidin, a 25-amino acid peptide hormone produced primarily by hepatocytes\(^3\), is the principal regulator of iron homeostasis in health and during inflammation\(^4\). Excessive production of this hormone causes iron sequestration in macrophages and hypoferremia, as was shown in transgenic mice with hepcidin overexpression\(^5\) and in the human genetic syndrome of hepcidin excess, iron-refractory iron-deficiency anemia due to mutations in matriptase-2/TMPRSS6\(^6\). Hepcidin acts by binding to ferroportin, the sole known cellular iron exporter, displayed on the surface of macrophages, hepatocytes, and the basolateral membranes of enterocytes. Hepcidin binding to ferroportin causes ferroportin endocytosis and degradation\(^7\). During inflammation or infection, hepcidin is strongly induced, largely by IL-6\(^8\) via the JAK-STAT pathway\(^9-11\). The extent to which increased production of hepcidin contributes to anemia of inflammation has not been directly tested by genetic ablation of hepcidin, in part because of the lack of robust mouse models of AI.

Multiple mouse models of inflammation have been developed to facilitate the testing of interventions in AI, but these models are limited by poor reproducibility and very mild anemia. Turpentine\(^12,13\), zymosan/lipopolysaccharide (LPS)\(^14\), *Staphylococcus epidermidis*\(^15\), and complete Freund’s adjuvant\(^15\) treatments all cause AI in mice but with a mild anemia (Hgb ≥11). LPS injections alone have been shown to cause an acute inflammatory response with hepcidin elevation, but the hematologic effects have not been fully elucidated\(^16\). Cecal ligation and puncture (CLP) is another potential method for studying AI, but its technical difficulty, variable outcomes, and associated morbidity make it cumbersome for routine use.

In response to the need for a robust mouse model of AI, we have adapted and characterized a model of AI previously described by Sasu, et al.\(^17\), generated with a single intraperitoneal injection of heat-killed *Brucella abortus* (BA). After a comprehensive examination of hematologic, iron, and inflammatory parameters of this model, we investigated the extent of hepcidin involvement in BA-induced AI by comparing wild-type C57BL/6 mice to hepcidin-1\(^-\) mice on the same strain background.
METHODS

Animal model of anemia of inflammation

All animal studies were approved by the Animal Research Committee at University of California, Los Angeles (UCLA). Only male mice were used in the study to avoid the effects of gender-related differences in iron parameters and hepcidin. C57BL/6J mice were obtained from Charles River Laboratories (Wilmington, MA) or The Jackson Laboratories (Bar Harbor, ME). Wild-type (WT) mice were maintained on a standard chow (approx. 270 ppm iron, Harlan Teklad, Indianapolis, IN) until 6 weeks of age and they were then switched to an adequate-iron diet (50 ppm iron, Harlan Teklad) for 2 weeks before injection of BA or saline. The same iron-adequate diet was used through the remainder of the experiment. The dietary conditioning was applied because high iron content of standard chow maximally stimulates hepcidin expression and renders it unresponsive to inflammatory stimuli, and because dietary iron absorption in humans accounts for ~5-10% of the daily iron fluxes but as much as ~50% in mice fed standard chow. High dietary iron absorption in mice may obscure the contribution of iron recycling by macrophages and leads to progressive iron loading. Reducing the dietary iron content of mouse chow was designed to model iron fluxes of human homeostasis.

To induce anemia of inflammation, animals were injected intraperitoneally with 5 x 10^8 particles/mouse of heat-killed Brucella abortus (BA; strain 1119-3; US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories) as previously described. Control mice were injected intraperitoneally with normal saline (NS). Mice were euthanized over a time-course (0-28 days) and blood, liver, spleen, pancreas and kidney were collected at necropsy. For each time point, 8 saline and 8 BA-injected mice came from the same cohort and were processed simultaneously to minimize cohort-to-cohort variability, yielding 4-8 evaluable samples per group per time point.

For the study of the role of hepcidin in anemia of inflammation, we used male hepcidin-1 knockout mice (Hamp1^-/- or Hamp-KO). Hamp-KO mice were originally provided to our laboratory by Dr. Sophie Vaulont and were backcrossed onto the C57BL/6 background as previously described using marker-assisted accelerated backcrossing. For this study, Hamp-KO mice underwent dietary iron conditioning to prevent the development of iron overload and maintain iron levels comparable to those of WT mice. At weaning (3-4 wks of age), Hamp-KO mice were placed on a low-iron diet (4 ppm) for 2 weeks followed by a 20 ppm iron diet for 2 weeks. This regimen allows for iron depletion without development of anemia. At 7-8 wks of age, the mice were injected with B. abortus or saline and switched to an adequate-iron diet (50 ppm) to match the experimental conditions used for WT mice. Hamp-KO mice (3-8 evaluable per group and time point) were analyzed before as well as 7, 14, 21 and 28 d after BA or saline injection.

Measurement of iron parameters and erythropoietin

Serum iron and liver non-heme iron concentrations were determined by a colorimetric assay for iron quantification (Sekisui Diagnostics; Lexington, MA) as previously described. Serum
erythropoietin was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions (R&D; Minneapolis, MN).

Hematologic studies

Complete blood counts were obtained with a HemaVet blood analyzer (Drew Scientific; Waterbury, CT). To assess iron-restricted erythropoiesis, zinc protoporphyrin (ZPP) was measured using a hematofluorometer (AVIV; Lakewood, NJ).

Reticulocytes were counted by flow cytometry. Blood (5 µl) was added to 1 ml of thiazole orange in phosphate buffered saline with 0.1% sodium azide (PBS-azide, BD Bioscience; San Jose, CA) and incubated at room temperature for 1-3 h. As an unstained control, blood was added to PBS-azide without thiazole orange. The percentage of red-fluorescent reticulocytes (Retic %), was measured by flow cytometry at the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility that is supported by National Institutes of Health awards CA-16042 and AI-28697, and by the JCCC, the UCLA AIDS Institute, and the David Geffen School of Medicine at UCLA. Unstained controls were used to establish a gate to exclude background fluorescence. The results are expressed as the reticulocyte product index: RPI = Retic % x Hgb / 14.46, where 14.46 g/dL is a mean baseline Hgb level of healthy WT mice.

In vivo erythrocyte biotinylation

WT mice were injected intraperitoneally with saline or BA. On days 5 and 6, the mice were administered NHS-PEG4-Biotin (500 µg, Pierce; Rockford, IL) in PBS by retro-orbital injection. A total of 5 injections were given to maximize biotinylation efficiency. Over the subsequent two weeks, periodic retro-orbital bleeds (25-50 µl) were obtained to quantify the fraction of biotinylated erythrocytes (timeline indicated in Supplemental Figure 1). Each sample was divided into two aliquots: one to be labeled with anti-TER-119 (unstained) and the other with anti-TER-119 and streptavidin (stained). The labeling was performed as follows: 5 µL whole blood was diluted to 500 µL with Hank’s Balanced Salt Solution (HBSS) (Invitrogen; Carlsbad, CA) and 1% bovine serum albumin (BSA) (Rockland; Gilbertsville, PA), and 2.5 µL rat anti-mouse TER-119-phycocerythrin added (BD Pharmingen; San Jose, CA). The stained group was also treated with 0.5 µL streptavidin-Alexa 488 (Molecular Probes; Eugene, OR). After incubation at room temperature for 1 h, the samples were centrifuged and resuspended with HBSS/BSA. Flow cytometry was used to determine the % biotinylated erythrocytes (% stained – % unstained).

Serum hepcidin measurement

Mouse serum hepcidin-1 was measured by a sandwich ELISA (courtesy of B. Sasu and K. Cooke, Amgen, Thousand Oaks, CA). The assay was physiologically validated in our laboratory as described in Supplemental Data (Experimental Validation of the Amgen sandwich ELISA for mouse hepcidin-1).
RNA isolation and real-time quantitative PCR

Total RNA was isolated from liver and analyzed by real-time RT-PCR as described previously. Primers are listed in Supplemental Table 1.

Histocytology

Peripheral blood smears were performed using 10 μL whole blood at the time of necropsy, and prepared with Wright-Giemsa stain (Fisher; Hampton, NH). Formalin-fixed, paraffin-embedded liver and kidney tissues were stained with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) or Masson’s trichrome stain at the UCLA Translational Pathology Core Laboratory. Immunoperoxidase staining with 1 μg/ml rat anti-mouse monoclonal antibody to the macrophage marker F4/80 (AbD Serotec, Kidlington, UK) was performed on deparaffinized sections after unmasking for 3 min with 20 μg/ml proteinase K. Sections were incubated overnight with the anti-F4/80 Mab solution, developed and counterstained with hematoxylin, all using the Vectastain ABC kit (Vector Laboratories, Burlingame, CA).

Statistics

SigmaStat 11 was used for all statistical analyses (Systat Software; Point Richmond, CA). Normally distributed data were compared using Student t-test. Measurements that were not normally distributed were compared by the nonparametric Mann-Whitney rank sum test. P<0.05 was considered statistically significant, except for multiple comparisons where the Bonferroni correction was applied.

RESULTS

BA-treated WT mice develop severe anemia with iron restriction

A single treatment with the inflammatory agent BA caused a dramatic hemoglobin decrease by 7 d with a nadir at 14 d (Figure 1A, mean BA Hgb 6.8 g/dL vs. saline Hgb 15.0 g/dL; p<0.001 by Mann-Whitney rank sum test). Afterwards, there was a gradual but incomplete hemoglobin recovery by day 28 (BA Hgb 10.7 g/dL vs. saline Hgb 14.7 g/dL; p<0.001 by t-test).

BA-injected mice rapidly developed a prolonged hypoferremia as compared to saline-treated mice (Figure 1B). There was a transient increase in serum iron at 3 d, which was attributed to transient erythroid suppression and underutilization of circulating iron, as documented by subsequent data. However, all other time points showed a significant decrease in serum iron (p<0.05 by t-test). Additionally, within the first week, the mean corpuscular volume (MCV) was lower in the BA-treated mice, consistent with iron-restricted anemia (Figure 1C). Later MCV measurements (14-28 days) in the BA group were not significantly different from the control group likely because of the increased number of larger stress reticulocytes in BA mice.

Erythrocyte ZPP levels were measured to further assess iron-restricted erythropoiesis (Figure 1D). When insufficient iron is available for erythropoiesis, increased amounts of zinc are incorporated into the protoporphyrin ring. The BA-treated mice had comparable ZPP levels to
untreated mice until a dramatic increase by 14 d (mean BA ZPP 319 vs. saline ZPP 140; p<0.001 by t-test), with an eventual peak at 21 d (BA ZPP 462 vs. saline ZPP 152; p<0.001 by Mann-Whitney rank sum test) and a partial recovery of BA ZPP by 28 d. As will be seen further on, the ZPP increase coincides with accelerated erythropoiesis during recovery from anemia.

BA-treated WT mice develop acute and chronic inflammation, with an early rise in hepcidin

We assessed the acute phase response to BA by measuring serum amyloid A1 (SAA1) mRNA, which like hepcidin, is regulated by IL-627. BA-treated mice developed an early-onset and persistent SAA1 mRNA elevation starting by 3 h and lasting through 14 d (Figure 2A). In parallel with the increase in SAA1, hepcidin mRNA levels (Figure 2B) peaked at 6 h with >6-fold increase over their saline counterparts (p<0.05 by t-test), and serum hepcidin protein levels (Figure 2C, see Supplemental Data for assay validation) were increased >3-fold at 6 hours (p<0.001 by t-test). Subsequently, hepcidin mRNA levels fell rapidly to levels similar to those of the saline-treated mice, perhaps responding to the developing hypoferremia (Figure 1B). However, “normal” hepcidin levels at 7 d are probably inappropriately high28 considering the profound anemia and very high Epo production in BA mice (shown in Figure 3) at that time point. By 14 d, BA-treated mice had significantly decreased hepcidin mRNA (<10% as compared to saline controls; p<0.001 by t-test), presumably secondary to the known suppressive effect of increased erythropoiesis on hepcidin production28.

The BA-treated mice also developed chronic inflammation. By 7 d, the BA-treated mice developed a dramatic leukocytosis (BA WBC 29.6 K/μL vs. saline WBC 8.2 K/μL; p<0.001 by t-test) which incompletely resolved by day 28 (BA WBC 11.6 K/μL vs. saline WBC 6.7 K/μL; p<0.05 by t-test) (Figure 2D). Figure 2E demonstrates the hepatic perivascular infiltration of inflammatory cells in BA-treated mice at 7 d which is contemporaneous with the increase in circulating white blood cells. By 14 d, hepatic granulomas were observed containing predominantly F4/80-positive macrophages (Supplemental Figure 2A, B).

Suppression and recovery of erythropoietic response in BA-treated mice

By 7 d, serum erythropoietin levels were increased in BA-treated mice (Figure 3A) (>12-fold increase over controls; p<0.001 by t-test) consistent with anemia (Figure 1A). By 21 d, as the anemia began to resolve, serum erythropoietin of the BA-treated mice started to fall (<8-fold increase over controls; p<0.001 by Mann-Whitney rank sum test).

Reticulocyte measurements showed initial reticulocytosis at 3 h after BA injection (Figure 3B) but this is likely due to massive release of stored near-mature reticulocytes rather than new production. During the first week, reticulocyte production decreased in BA mice (Figure 3B) indicating erythropoietic suppression. By 14 d, corresponding to the time of the highest erythropoietin levels and lowest hepcidin expression, reticulocytosis increased and peaked at 21 d (>3-fold increase over controls; p<0.001 by Mann-Whitney rank sum test). Because “stress” reticulocytes produced during stress erythropoiesis are significantly larger than mature erythrocytes, an increased percentage of reticulocytes effectively increased the RDW between days 14 and 28 (Figure 3C).
Shortened RBC lifespan and increased RBC hemolysis contribute to BA-induced anemia

An RBC biotinylation assay to compare the RBC lifespans of BA-treated and saline control mice (Figure 4A) demonstrated a 2.5-fold shortening of the erythrocyte lifespan in BA-treated mice, indicating that increased RBC destruction was contributing to the anemia. Erythrocyte abnormalities in BA-treated mice were most prominent at 14 d (Figure 4B), with schistocytes and RBC membrane irregularities indicative of membrane damage. However, the condition was relatively mild, as indicated by schistocytes comprising less than 1% of erythrocytes even at 14 d (see the next section). For comparison, in a human disorder with prominent microangiopathic hemolysis such as the hemolytic-uremic syndrome, the % schistocytes ranged from 2-9%29

Microscopic examination of H&E, PAS and Masson trichrome stains of liver, kidney, spleen and pancreas sections obtained at autopsies of BA- and saline-treated mice revealed foci of thrombosis in small arteries and veins in the liver and the kidneys (Supplemental Figure 2C, D) as well as in peripancreatic adipose tissue (not shown), indicative of endothelial injury and microthrombosis that could cause microangiopathic hemolysis.

The contribution of hepcidin to BA-induced hypoferremia and anemia

We next examined the development of hypoferremia and anemia in BA-treated hepcidin KO mice (Hamp-KO). Prior to use in this study, Hamp-KO mice were placed for 4 weeks on an iron-restricted diet to prevent the massive iron overload characteristic of Hamp-KO mice, so that they were as similar as possible to WT mice except for the effect of hepcidin during inflammation in the latter. Iron-depleted Hamp-KO mice had similar blood hemoglobin as their WT counterparts (Figure 5A). Like WT mice, BA-treated Hamp-KO mice became inflamed, as indicated by increased SAA-1 mRNA levels and leukocytosis (Supplemental Figure 3). Like WT mice, Hamp-KO mice showed erythrocyte fragments on blood smears, most prominently at 14 d (0.7% ± 0.5% of erythrocytes in WT, 0.5% ± 0.1% in Hamp-KO, n = 4 mice each group, difference not significant by t-test). Both BA-treated groups (Hamp-KO and WT) reached their hemoglobin nadir at 14 d, but the anemia of the Hamp-KO mice was much milder than in the WT mice (Hamp-KO BA Hgb 9.8 g/dL vs. WT BA Hgb 6.8 g/dL; p<0.001 by Mann-Whitney rank sum test). Moreover, the Hamp-KO BA-treated mice recovered completely by 28 d, while the WT BA mice did not (Hamp-KO BA Hgb 15.1 g/dL vs. WT BA Hgb 10.7 g/dL; p<0.001 by t-test).

As expected, compared to WT mice, serum iron in Hamp-KO mice remained elevated even on an iron-restricted diet that substantially depleted their iron stores (Figure 5B). Unlike WT mice, the BA-treated Hamp-KO mice did not develop hypoferremia but on the contrary, showed increased serum iron. At 14 d, the BA-treated Hamp-KO mice had a nearly two-fold increase in serum iron as compared to saline-treated Hamp-KO mice (p<0.05 by Mann-Whitney rank sum test). Higher serum iron is likely due to increased destruction of RBCs after BA treatment and recycling of their iron content. ZPP, an index of iron-restricted erythropoiesis, changed very little in BA-treated Hamp-KO mice as compared to WT mice (Figure 5C).

Compared to the saline Hamp-KO group, BA-treated Hamp-KO mice transiently decreased their liver iron stores at 7 d and 14 d, indicating that Hamp-KO mice mobilized iron from stores in response to anemia. In contrast, despite anemia and increased erythropoietic activity, BA-
treated WT mice had increased liver iron stores compared to their saline counterparts suggesting that hepcidin prevented efficient mobilization of iron from the liver (Figure 5D).

Interestingly, Hamp-KO mice had significantly decreased survival compared to their WT counterparts (Supplemental Figure 4). Thus, while hepcidin ablation was protective against the development of severe anemia and iron restriction, hepcidin deficiency or the associated iron redistribution may have impacted BA-induced inflammation or its damaging effects on tissues and organs.

DISCUSSION

Anemia of inflammation (AI, also called anemia of chronic disease) is a mild to moderate, usually normocytic anemia seen in the context of infections and systemic inflammatory disorders including rheumatologic disorders, inflammatory bowel diseases and malignant neoplasms. In addition, chronic kidney diseases often manifest inflammation and associated features of AI. A related condition, anemia of critical illness, develops in ICU settings within days. The pathogenesis of AI is thought to involve a prominent component of inflammation-induced iron restriction as well as impaired proliferation of erythroid precursors, resistance to erythropoietin, and shortened erythrocyte survival and may be further exacerbated by blood loss and iron deficiency. Progress in understanding these and additional mechanisms has been hampered by the lack of a simple and reproducible animal model that can be genetically manipulated.

In this study, we extensively characterized a mouse model of AI induced by heat-killed Brucella abortus. In contrast to other mouse models of AI, where anemia was generally very mild, the BA-induced anemia results in a nadir hemoglobin that is <50% of the controls. Remarkably, the BA model is technically simple, requiring only a single injection, and it is robust and reproducible at each time point, with small standard deviations for most hematologic, iron and inflammatory parameters measured. The model has features of both acute and chronic inflammation, as evidenced by the early SAA-1 increase and the delayed leukocytosis and hepatic perivascular infiltration of inflammatory cells.

Clinically, this subacute mouse model of moderately severe AI resembles human AI in severe infections, or in critically ill patients in intensive care units or in patients with severe exacerbations of systemic autoimmune diseases. It remains to be tested whether lower dosing of heat-killed BA with repeated administration would result in a less severe and more chronic model, with steady state anemia similar to classical anemia of chronic disease.

Our mouse model manifests the key mechanisms implicated in human AI, including hypoferremia and iron-restricted erythropoiesis with preserved iron stores, shortened erythrocyte lifespan and depressed erythropoiesis. Hypoferremia developed rapidly, probably as a consequence of acute increase in hepcidin mRNA and plasma levels driven by inflammation after BA injection. Although following the initial rise hepcidin fell to control levels during the first week, this may not have been sufficiently low in the face of the developing anemia, further contributing to iron restriction. Elevated liver iron in BA-treated WT mice compared to their
saline counterparts further supports the role of hepcidin in preventing effective iron mobilization for the recovery from anemia.

The shortened erythrocyte lifespan in the BA mouse model may be a consequence of macrophage activation by cytokines and/or microangiopathic hemolysis. In support of the latter mechanism, arteriolar and venous microthrombosis was observed in multiple tissues and fragmented red cells were apparent on blood smears. However, we did not detect the characteristic deposition of fibrin in renal glomerular capillaries, and schistocytes were relatively rare suggesting that the condition was not severe. Increased erythrophagocytosis by inflammation-activated macrophages was documented in the companion manuscript, and may well be the predominant mechanism shortening the erythrocyte lifespan.

Depressed erythropoiesis is evidenced in our model by a transient suppression of reticulocyte counts despite adequate levels of circulating erythropoietin. The blunted response of the bone marrow to the erythropoietic hormone has been seen in other inflammatory mouse models, including a turpentine-induced sterile abscess model and a chronic IFN-γ overproduction model. Libregts et al. demonstrated that IFN-γ stimulation promotes monocytic differentiation at the expense of erythroid differentiation, suggesting that erythroid suppression may be a side effect of the increased production of defensive myeloid cells during infection. Interestingly, we observed significantly increased leukocytosis in WT BA as compared to Hamp-KO BA mice (Supplemental Figure 3B). Following recent suggestions, we suspect that the increase in IFN-γ together with hepcidin-mediated iron restriction may promote erythropoietic suppression and a shift to leukocyte production. We speculate that delayed or inadequate shift to leukocyte production in Hamp-KO mice may have interfered with the neutralization of BA-associated pathogenic molecules thereby increasing mortality. Although leukocytes are usually thought of as cells that mediate host defense against live microbes, a leukocyte defect that delayed the breakdown of heat-killed Aspergillus hyphae administered to mice worsened inflammatory tissue injury.

Importantly, we were able to demonstrate that our mouse model of AI was partially hepcidin-dependent. The ablation of the hepcidin gene resulted in a dramatic reduction of iron-restricted erythropoiesis, and improved mobilization of iron from tissue stores. At the nadir, the hepcidin-1 KO mice had hemoglobin measurements that were 3 g/dL higher than in their WT counterparts, with a faster recovery to normal values. However, the Brucella-treated hepcidin-1 KO mice were still markedly anemic at their nadir, with a hemoglobin level 5.8 g/dL below that of controls. While hepcidin appears to play an important role in the development of AI in this model, other mechanisms contribute significantly.

The companion paper by Gardenghi et al. shows strikingly similar findings with the same mouse model of AI. They observed a similar pattern of early hepcidin increases followed by marked iron-restricted anemia and a slow recovery. Using complementary studies, Gardenghi et al. also demonstrated erythropoietic suppression and shortened erythrocyte lifespan. Flow cytometry confirmed an absence of early erythroid progenitor cells in the bone marrow, and a biotinylation assay showed an increased rate of erythrocyte elimination in the BA-treated mice. Hepcidin-1 KO mice in their experiments also had a milder anemia with an accelerated recovery.
Erythrocyte survival in BA-treated hepcidin-1 KO mice was shortened similarly to that of WT mice. Interestingly, Gardenghi et al. found that the ablation of IL-6 also offered a protective effect against AI, albeit weaker than the effect of hepcidin-1 ablation.

As illustrated by its original use17 and the current studies by us and Gardenghi et al, the \textit{Brucella abortus} model of AI should be useful for the exploration of the mechanisms and possible treatments of AI.
ACKNOWLEDGEMENTS

This study was supported by research funding from Xenon Pharmaceuticals Inc. to T.G. and E.N. We are grateful to Dr. Charles Lassman, Department of Pathology, UCLA, for his patient guidance in interpreting the histopathology sections. We are also grateful to Drs. Tara Arvedson, Barbra Sasu and Keegan Cooke for introducing us to the mouse model described in this manuscript and for sharing with us the mouse hepcidin immunoassay. We thank all our colleagues at Xenon Pharmaceuticals Inc. for many helpful discussions and for providing financial support that made this work possible.

AUTHOR CONTRIBUTIONS

A.K., E.F. E.V.V., E.N and T.G. designed the studies, analyzed the data and wrote or edited the manuscript. A.K, E.F., S.P., E.V.V. and V.G. performed and analyzed the experiments.

DISCLOSURE OF CONFLICTS OF INTEREST

T.G. and E.N. are cofounders, shareholders and officers of Intrinsic LifeSciences, a company developing hepcidin diagnostics, and shareholders in Merganser Biotech, engaged in the development of hepcidin-based therapeutics. In the last two years, they have received research funding from Amgen and Xenon and were consultants for Xenon. T.G. is a consultant to Keryx. E.N. and T.G. hold patents related to the therapeutic use of hepcidin and its regulators.
REFERENCES

Figures and Legends

Figure 1. The BA-injected mice develop anemia and iron restriction. Compared to saline-injected mice, the BA-injected mice develop: (A) a significantly lower hemoglobin by 7 d, with a nadir at 14 d and partial recovery by 28 d; (B) decreased serum iron concentrations through most time points, beginning at 3 h, except for the transient underutilization of iron around day 3 during erythropoiesis suppression; (C) decreased mean corpuscular volumes within the first week; and (D) elevated zinc protoporphyrin levels between 14 and 28 d during the time of recovery from anemia. Saline and BA groups each included 4-8 evaluable male mice per time point. Means ± SD are shown, *p<0.05, **p<0.001; p by t-test or Mann-Whitney rank sum test.
Figure 2. The BA-injected mice develop both acute and chronic inflammation, with an early rise in hepcidin mRNA. Compared to saline-injected mice, the BA-injected mice develop: (A) increased SAA-1 mRNA by 3 h, peaking at 1 d, and a gradual return to normal by 21 d; (B) increased hepcidin mRNA, with a peak at 6 hours, a slight but consistent increase though 7 d, followed by significant decrease at 14 and 28 d; (C) increased serum hepcidin protein at 6 h; (D) increased WBC by 7 d, with partial recovery by 28 d; (E) hepatic perivascular infiltration of inflammatory cells by 7 d. Panels A and B: Means ± SE, with each BA-treated group referenced to contemporaneous saline-treated group, C and D: Means ± SD, *p<0.05, **p<0.001; p by t-test or Mann-Whitney rank sum test.
Figure 3. Suppression and recovery of erythropoiesis in BA-treated mice. (A) Serum erythropoietin concentrations in BA-treated mice increase to a peak by 7 d, with a decline approaching normal values by 28 d. (B) After the initial release of reticulocytes at 3 h, reticulocytes decrease significantly below those of saline-treated mice from 12 h to 7 d, followed by reticulocytosis on days 14-28. (C) Consistent with decreased reticulocytes in BA-treated mice, the red cell distribution width is suppressed at 12 h-3 d but increases by 14 d. Means ± SD are shown, *p<0.05, **p<0.001; p by t-test or Mann-Whitney rank sum test.
Figure 4. **BA-treated mice have shortened RBC lifespan and evidence of hemolysis.** (A) The RBC biotinylation assay indicates a 2.7-fold increase in RBC destruction in BA-treated mice (-4%/day vs -1.7%/day). Means ± SD, *p<0.05, **p<0.001; p by t-test or Mann-Whitney rank sum test. Overall difference between the two sets of measurements is significant at p<0.001 by 2-way ANOVA (Holm-Sidak method) (B) Peripheral blood smears of BA-injected mice 2 wks after show schistocytes and erythrocyte membrane irregularities, consistent with mild microangiopathic hemolysis. Arrows point to damaged erythrocytes, shown magnified in the right margin.
Figure 5. Hepcidin ablation attenuates BA-induced anemia and iron restriction. (A) BA-treated Hamp-KO mice (HKO) develop milder anemia than their WT counterparts, and completely recover by 28 d. Hamp-KO BA vs WT BA, day 7 or 21, p<0.05; Hamp-KO BA vs WT BA, day 14 or 28, p<0.001, n=3-8 per time point. (B) Unlike their WT counterparts, BA-injected Hamp-KO mice increase their serum iron levels. Hamp-KO BA vs Hamp-KO Saline, day 14, p<0.05; WT BA vs WT Saline, days 7, 14, 21 and 28, p<0.05. (C) BA-treated WT mice have dramatically increased RBC zinc protoporphyrin, indicating iron-restricted erythropoiesis, as compared to the very modest increases of ZPP in Hamp-KO mice. (D) BA-treated Hamp-KO mice mobilize iron from liver iron stores, while their WT counterparts mildly increase their stores in the face of anemia. Hamp-KO BA vs Hamp-KO Saline, day 14, p<0.001; day 28, p<0.05. WT BA vs WT Saline, days 7 or 14, p<0.001; day 21, p<0.05. Means ± SD are shown, p by t-test or Mann-Whitney rank sum test. WT data shown in A, B and C are identical to those from Figure 1A, B and D.
A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin

Airie Kim, Eileen Fung, Sona G. Parikh, Erika V. Valore, Victoria Gabayan, Elizabeta Nemeth and Tomas Ganz