The Liver – Conductor of Systemic Iron Balance

by

Delphine Meynard, Jodie L. Babitt, and Herbert Y. Lin*

Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

Corresponding author:
Herbert Y. Lin, MD, PhD, FASN
185 Cambridge Street, CPZN-8216
Boston, MA 02114
lin.herbert@mgh.harvard.edu
Abstract:

Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. Iron is a metal that exists in multiple redox states, including the divalent ferrous (Fe^{2+}) and the trivalent ferric (Fe^{3+}) species. The multiple oxidation states of iron made it excellent for electron transfer, allowing iron to be selected during evolution to serve as a cofactor for many proteins involved in central cellular process including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H_{2}O_{2}, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA and other cellular components. Therefore, in order to meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here, we will review how the liver is the central conductor of systemic iron balance. We will show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We will then review how the liver receives and integrates the many signals that report the body’s iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis.
Iron in the body

The total body iron content is approximately 3 to 5 g in the average adult human. The greatest amount of iron found in the body is complexed as Fe^{2+} in heme in hemoglobin of red blood cells and myoglobin of muscles (2 to 3 g). Body iron balance is maintained by a daily intake of 1-2 mg from dietary iron to compensate for the losses of iron through the sloughing of skin, mucosal cells, and occasional blood loss. Since 20 to 25 mg of iron are required for red blood cell production and cellular metabolism the amount of iron absorbed from alimentation is insufficient to meet daily catabolic needs. Thus the bulk of iron for daily body needs is provided by the macrophages that recycle senescent red blood cells. Other organs, primarily the liver, serve as reservoirs of iron. There is no regulated pathway to excrete iron from the body, and thus iron balance is primarily preserved by the regulation of iron absorption from the duodenum and iron recycling from macrophages and other tissue stores.

Absorption of iron from food takes place at the brush border of the enterocytes in the duodenum. The mechanisms of absorption of inorganic iron (through the divalent metal transporter 1 (DMT1/SLC11A2, solute carrier family 11, member 2) and iron complexes to heme have been described in detail in previously published reviews\(^1\),\(^2\).

Cytosolic iron that is not directly utilized by the cell is either stored in ferritin, or exported into the plasma by the basolateral transmembrane iron exporter, ferroportin/SLC40A1\(^3\),\(^4\) and loaded onto transferrin.

Aged or damaged erythrocytes are permanently degraded by macrophages primarily in the spleen, liver, and bone marrow through erythrophagocytosis and iron is exported from phagocytic vesicles via NRAMP1 (natural resistance-associated macrophages protein 1), a divalent metal transporter homologous to DMT1 expressed at the phagolysosomal membrane\(^5\). Iron is then stored in ferritin, and when needed, can be released back into circulation through ferroportin.

Iron transport to cells and absorption by cells

After export from enterocytes and macrophages, iron circulates in the bloodstream bound to transferrin (Tf)\(^6\) molecules for delivery to tissues for utilization or storage.

Cells acquire their iron from plasma iron-bound Tf by receptor-mediated endocytosis through the ubiquitous cell surface transferrin receptor 1 (TfR1)\(^7\). TfR1 is a homodimeric membrane glycoprotein that binds two molecules of Tf to deliver iron into cells. The holo-Tf complex is then internalized and iron is exported to the cytosol through DMT1 or its homologue Nramp1 in macrophages. Finally, the apo-Tf/TfR1 complex is recycled to the cell surface, where Tf is dissociated from TfR1. Tf returns to the bloodstream and is available to rebind iron whereas TfR1 remains at the plasma membrane.

TfR2 is a transferrin receptor homolog to TfR1 mainly expressed in hepatocytes. TfR2 has been primarily described to mediate iron-Tf uptake in non-hepatoma cell lines \textit{in vitro} possibly via receptor-mediated endocytosis, similar to TfR1, but with a lower affinity for Tf\(^8\). However, it is currently not clear that TfR2 truly has a role in cellular iron uptake in hepatocytes\(^9\). Nevertheless, it is now well characterized that even if TfR2 does not participate directly in iron uptake, it is still required for iron homeostasis, since mutations in the \textit{TfR2} gene induce the iron overload disorder hereditary hemochromatosis, as discussed below\(^10\).
In conditions of iron excess, when Tf becomes largely saturated with iron, another form of iron can be found in plasma, named non-tranferrin-bound-iron (NTBI). The topic of NTBI has been recently reviewed11 and will not be discussed in detail here.

The central role the liver in systemic iron homeostasis (Figure 1)

The liver secretes hepcidin

Hepcidin is a small peptide hormone mainly secreted by hepatocytes in the liver. Hepcidin is the main regulator of systemic iron homeostasis that blocks the transfer of iron into the plasma from the three main sources: dietary absorption in the duodenum, recycling by macrophages, and efflux of stored iron from hepatocytes. Hepcidin was identified simultaneously for its role as an antimicrobial peptide12 and its role in iron homeostasis13. Although hepatocytes are the main source of circulating hepcidin in the plasma, other cells to a much lower extent can also produce hepcidin (such as macrophages14 and adipocytes15), but the role of this extrahepatic secretion is still unclear. Since this review is focused on the role of the liver in iron homeostasis, we will only discuss the regulation of hepcidin expression in hepatocytes. The mature form of hepcidin is a 25 amino acid peptide generated from a 84 amino acid prepropeptide after peptidase and furin cleavage16. In plasma, the mature form of hepcidin circulates associated with α2-macroglobulin17 and albumin18 although the proportion of this associated form compared to free hepcidin is still uncertain18.

The effect of hepcidin on iron body balance is related to its direct binding to the principal iron exporter ferroportin at the cell surface, leading to ferroportin internalization and subsequent lysosomal degradation19. Degradation of ferroportin results in the loss of the ability to export iron and leads to iron sequestration in enterocytes, macrophages and hepatocytes.

The central role of hepcidin in iron metabolism has been supported by the pathological deregulation of hepcidin expression in humans and mice that results in iron overload or iron deficiency. In conditions where there is inadequately low hepcidin expression due to mutations in the gene encoding for hepcidin (*HAMP*) itself20,21 or in the known positive regulators of hepcidin expression such as bone morphogenetic protein 6 (*BMP6*, mutations only identified in mouse studies)22,23, hemoujuvelin (*HFE2*, also known as *HJV* or RGMc)24, mothers against decapentaplegic homolog 4 (*SMAD4*, confirmed only in mouse studies)25, *TFR2*10 or the hemochromatosis protein (*HFE*)26, the iron exporter ferroportin accumulates at the cell surface of enterocytes and macrophages, leading to unregulated absorption of dietary iron and supraphysiologic release of iron from macrophages. This increase of iron export into the plasma rapidly saturates circulating Tf, resulting in an accumulation of NTBI that is easily absorbed by hepatocytes and other tissues, leading to the iron overload disorder known as hereditary hemochromatosis. Although hepatocytes also exhibit higher ferroportin expression under conditions of low hepcidin27, hepatocytes accumulate iron because the uptake of iron (thought due to the high NTBI levels in plasma) supersedes the increased ferroportin iron export capacity. Conversely, in conditions of hepcidin overexpression, such as seen under inflammatory conditions28, artificial hepcidin overexpression29 and mutations in negative regulator genes of hepcidin such as *TMPRSS6*30-32, the result is iron deficiency. Indeed, high hepcidin levels induce degradation of ferroportin that block 1) dietary iron uptake from enterocytes and 2) iron release from macrophages and hepatocytes. In chronic conditions, this iron deficiency can ultimately evolve into an anemia when iron is not sufficiently available for the demands of erythropoiesis.

In addition, the central role of the liver in systemic iron homeostasis has been also recently highlighted by the study from Bardou-Jacquet et al33. The authors demonstrated that in
patients with mutations in the Hfe gene, a liver transplant could rescue the low hepcidin phenotype and prevent the iron overload.

It is now well characterized that in order to provide the appropriate amount of iron available for erythropoiesis and cell metabolism, but to prevent toxic iron overload, hepcidin expression by the liver must be tightly regulated. Hepcidin expression is induced by hepatic iron, plasma iron, inflammation, and endoplasmic reticulum stress, whereas it is downregulated by iron deficiency, erythropoiesis and hypoxia.

The BMP signaling pathway is central for hepcidin regulation (Figure 2)

It is now clearly established that the central signaling pathway involved in the regulation of hepcidin expression by iron is the BMP-SMAD pathway. The hepcidin promoter contains key BMP responsive elements, which regulate its transcription. Bone morphogenetic proteins (BMPs) represent a large subfamily belonging to the Transforming Growth Factor-beta (TGF-β) superfamily of ligands. BMPs mediate many fundamental processes such as embryonic morphogenesis, bone development and tissue repair. The specificity of the BMP-SMAD pathway in the liver and its role in iron homeostasis seems to be dependent on the combination of two factors that are mainly expressed in the liver: an iron regulated ligand BMP6 and a GPI-membrane-anchor co-receptor hemojuvelin HJV.

All TGF-β superfamily members, including BMPs, share common structural features and a common model of signaling transduction. The active form of BMPs is a disulfide-linked dimeric protein, which is cleaved from a larger precursor protein and is secreted. The essential role of BMP6 in hepcidin regulation is highlighted by the inappropriately low level of hepcidin and massive iron overload exhibited in mice lacking BMP6. However, it is worth noting that the essential role of BMP6 in the regulation of hepcidin expression has not yet been described in humans. Other endogenous BMPs are not able to compensate for the loss of BMP6 in hepcidin regulation (at least in mice) despite the capacity of exogenous BMP2, 4, 5, 7 and 9 to stimulate hepcidin expression. Once secreted, BMPs act by binding to two distinct receptor types, type I and type II. There are four type I (ALK1, ALK2, ALK3, ALK6) and three type II receptors (ACTRIIA, ACTRIIB, and BMPRII) receptors for the BMP subfamily. For hepcidin regulation in response to iron, the BMP-receptors involved are most likely ALK3, ALK2 and ACTRIIA, since liver-specific deletion of either Alk3 or (to a lesser extent) Alk2 causes iron overload in mice, and since ACTRIIA is the predominant type II receptor expressed in human liver. Upon BMP binding, the type II receptors phosphorylate the type I receptors, leading to the phosphorylation and activation of specific SMAD proteins. The receptor-regulated SMADs activated in response to BMPs binding to the signaling receptors are SMAD1, 5, and 8. These phosphorylated SMADs in turn bind SMAD4, and the SMAD complex translocates to the nucleus. In the nucleus, the SMAD complex binds to the specific promoter elements of the target genes including hepcidin to regulate their transcription. The importance of the BMP-SMAD pathway in hepcidin expression regulation has also been demonstrated in liver specific Smad4−/− mice that also present with a massive iron overload similar to the phenotype of hepcidin knock-out mice.

In order to promote signal transduction under physiologic conditions where BMP ligand levels are low, and to generate a specific signal in response to a subset of BMP ligands using a subset of BMP receptors, a BMP co-receptor is required. RGM proteins are the first known family of high affinity co-receptors that are specific for BMPs. The RGM family is composed of three members in mammals; RGMc, also known as HJV, is the one expressed in the liver that is
involved in the regulation of hepcidin expression in response to iron. This gene was identified as a hemochromatosis gene in 2004 by a positional cloning strategy for a locus associated with juvenile hemochromatosis in humans. However, the link between the regulation of hepcidin by iron and the HJV/BMP-SMAD pathway was established 2 years later by Babitt et al., when it was demonstrated that treatment of hepatoma cells with BMPs in combination with HJV overexpression results in the upregulation of hepcidin expression. Interestingly, by surface plasmon resonance, it has been demonstrated that among all RGMs, HJV has the highest affinity for BMP. Global Hjk knockout mice and human patients with HJV mutations do not present with any other phenotype of iron-unrelated BMP functions, suggesting that HJV has a role that is uniquely non-redundant for iron metabolism regulation. Although HJV is expressed in other tissues such as heart and muscle, analysis of HJV tissue specific knockout mice thus far suggests that HJV expression is predominantly important in hepatocytes.

HJV can be released from cells as soluble HJV (sHJV) and detected in the serum of several species including humans. In addition, it has been demonstrated that soluble recombinant HJV has the capacity to inhibit the BMP-SMAD signaling pathway and hepcidin expression, but the source and function of endogenous sHJV are still poorly understood. In vitro, it has been shown that full-length sHJV can be released into the cell culture media by the action of endogenous phosphatidyinositol-specific phospholipase C (PI-PLC). Furin, a pro-protein convertase, can also cleave HJV to generate a smaller fragment of sHJV. Matriptase-2, encoded by the transmembrane serine protease Tmprss6, has also been demonstrated to cleave sHJV in in vitro overexpression systems, and this has been proposed as a mechanism by which mutations in Tmprss6 lead to hepcidin excess and iron refractory iron deficiency anemia.

Neogenin, a protein of the deleted in colon cancer (DCC) family has been shown to be able to interact with HJV and Matriptase-2, and may play a role in iron metabolism since the hypomorphic neogenin mouse has iron accumulation in the liver. Neogenin has been suggested in some studies, but not others, to affect HJV secretion and BMP-SMAD signaling. The exact role and function of neogenin in iron metabolism remains to be fully elucidated. Further support that the HJV/BMP pathway plays a role in hepcidin regulation comes from work showing that SMAD7, an inhibitory SMAD protein that mediates a negative feedback loop to both TGF-β and BMP signaling, serves as an inhibitor of hepcidin expression.

Tissue iron levels are sensed by the liver to regulate hepcidin

Liver BMP6-SMAD signaling is stimulated by iron administration, and importantly, hepcidin regulation by iron is dependent on the BMP6-SMAD pathway, since BMP6-SMAD pathway inhibitors prevent hepcidin induction by iron. There appear to be multiple mechanisms by which iron stimulates liver BMP6-SMAD signaling. First, there is a tight correlation between liver iron content and liver Bmp6 mRNA expression in mice, suggesting that hepatic iron loading regulates Bmp6 mRNA expression. While the mechanism for this regulation is still unclear, it does not appear to involve the hemochromatosis proteins HFE, TfR2 or HJV, since liver Bmp6 mRNA is appropriately increased by iron loading in mice with mutations in these genes. Interestingly, it was recently reported that while non-parenchymal cells and hepatocytes produce BMP6 mRNA under basal conditions, only non-parenchymal cells increase BMP6 mRNA expression in iron overload conditions, and this increase does not correlate with increased intracellular iron content of these nonparenchymal cells. However, another study did show an increase in Bmp6 protein detected by immunohistochemistry in hepatocytes of mice with iron overload due to a high iron diet or Hfe inactivation. Future studies will be needed to...
understand the exact mechanism by which hepatic iron loading leads to increased liver Bmp6 mRNA expression.

However, as described by Ramos and al.⁶⁵, despite the absence of Bmp6, Bmp6⁻ /⁻ mice still have a partial increase in hepcidin expression in response to higher tissue iron loading, suggesting the involvement of other proteins beside Bmp6 in the regulation of hepcidin expression.

Circulating iron levels are sensed by the liver to regulate hepcidin

Hepcidin expression by hepatocytes is also stimulated by an increase in circulating iron, via mechanisms that are distinct from hepcidin induction by tissue iron stores. Increases in serum iron, in the absence of hepatic iron loading, do not stimulate BMP6 expression⁵⁸, but instead, stimulate downstream SMAD 1,5,8 phosphorylation by an as yet unknown mechanisms. Although the signaling pathway is not fully characterized, it likely involves HFE, TFR2 and HJV⁶⁵. The crucial role of HFE and TFR2 in hepcidin regulation by iron is illustrated by the hepcidin deficiency and iron overload that is induced by HFE and TFR2 mutations in humans (hemochromatosis) and mice. In addition, Hfe⁻ /⁻ and Tfr2⁻ /⁻ mice fail to increase hepcidin expression in response to an increase of circulating Tf-iron but maintain the ability to increase hepcidin in response to an increase of hepatic iron, suggesting that the specific role of these two proteins to regulate hepcidin expression is mainly in response to circulating Tf-iron⁶⁵. There is also evidence that the regulation of hepcidin expression by HFE and TFR2 involves the SMAD pathway since humans and mice lacking HFE, TFR2 or both, exhibit reduced SMAD1/5/8 phosphorylation relative to iron and BMP6 levels⁵⁸,⁶¹,⁶⁶⁻⁶⁸. The exact link between Tf-iron, HFE, TFR2 and the SMAD pathway is still unclear. HFE has been shown to bind to TFR1⁶⁹, and Tf-iron competes with HFE for binding to TFR1 due to overlapping binding sites on TIR1⁷⁰. It has been suggested that in the presence of high Tf saturation, HFE is released from TFR1 and interacts with TFR2 (via domains that differ from those involved in HFE/TIR1 interaction⁷¹,⁷²) to activate hepcidin transcription. An in vitro over expression study has recently suggested that in response to Tf-iron, HFE and TFR2 could be part of the HJV-BMP receptor complex to regulate hepcidin⁷³. Whether this interaction occurs in vivo in the liver has not yet been verified.

Iron deficiency and the regulation of hepcidin expression

While iron stimulates hepcidin expression, iron deficiency inhibits hepcidin expression through a mechanism that may involve matriptase-2 as suggested by Zhang et al.⁷⁴. Encoded by the gene named TMPRSS6, matriptase-2 belongs to the family of type II transmembrane serine proteases. Matriptase-2 shares a number of structural features with the other members of the family: a short cytoplasmic domain, a type II transmembrane sequence, a central region with several modular structural domains including two CUB (complement factor C1s/C1r, urchin embryonic growth factor, bone morphogenetic protein) domains and three low density lipoprotein receptor tandem repeats, and finally, a C-terminal catalytic domain with all the typical features of serine proteinases⁷⁵.

Despite the identification of human matriptase-2 cDNA in 2002⁷⁵ and exploration of a suspected role as a tumor suppressor, its true physiologic role remained unclear until 2008, when 3 laboratories demonstrated that matriptase-2 is essential for iron homeostasis. Two studies in mice showed that the absence of matriptase-2 resulted in an inappropriately high level of hepcidin, leading to ferroportin degradation and the inhibition of iron absorption, and finally resulting in a severe microcytic anemia. A third study described that in humans, Iron Refractory Iron Deficiency Anemia (IRIDA) is caused by mutations in the TMPRSS6 gene leading to a severe microcytic anemia with a high urinary hepcidin level. Together these results
indicate that matriptase-2 is a potent inhibitor of hepcidin expression in response to iron deficiency.

In parallel, genome-wide association studies identified common Tmprss6 single nucleotide polymorphisms (such as A736V) associated with iron status, erythrocyte level, and hemoglobin level, suggesting that Tmprss6 is crucial in the control of iron homeostasis and normal erythropoiesis. The polymorphism A736V has also been shown to be a modifier of iron overload in hereditary hemochromatosis patients. This result is also supported in mice models where Tmprss6 is known to be a genetic modifier of the Hfe-hemochromatosis phenotype.

It has been proposed by Silvestri et al. that matriptase-2 could regulate hepcidin expression by cleaving HJV to decrease BMP-SMAD signaling. Indeed, the authors demonstrated that in vitro matriptase-2 does interact with HJV at the membrane cell surface and has the capacity to cleave HJV preventing the induction of hepcidin expression during BMP2 treatment. Moreover, interplay between matriptase-2 and the BMP-HJV-SMAD signaling pathway to regulate hepcidin expression is supported by double mutant mouse models Hjv^-/- Tmprss6^-/- and Bmp6^-/- Tmprss6^-/-, which exhibit a low hepcidin mRNA level similar to that of the simple Hjv^-/- or Bmp6^-/- single knockout mice, suggesting at least a genetic interaction between Tmprss6 and the BMP6-HJV-SMAD pathway. However, two recent studies performed in vivo provide results that do not support a role for HJV in Tmprss6 action. Analysis of Tmprss6^-/- mice reveals that compared to wild-type mice, HJV levels at the cell membrane surface are unexpectedly decreased and soluble hemoujuvelin in the serum is unchanged, suggesting that HJV may not be the natural substrate of matriptase-2 in vivo. In addition, Gibert et al. provided evidence in a zebrafish model suggesting that matriptase-2 could regulate hepcidin expression independently of HJV, since knockdown of matriptase-2 leads to high levels of the Hamp transcript in an Hjv-independent manner. Thus, more work is needed to fully understand the mechanism of hepcidin regulation by matriptase-2.

Study of the regulation of matriptase-2 expression has recently demonstrated a link between matriptase-2 and hepcidin expression regulation in response to BMP6 and hepatic iron. Injection of BMP6 or administration of an iron-enriched diet each induced an up regulation of Tmprss6 expression in mice. In addition, the authors demonstrated that in vitro, this regulation is dependent on expression of Id1 mRNA, a transcript up regulated by the BMP-SMAD pathway and iron. Modulation of Tmprss6 expression could serve as a negative feedback inhibitor to avoid excessive hepcidin increases by iron to help maintain tight homeostatic balance of systemic iron levels.

Another mechanism to lower hepcidin expression in response to iron deprivation is to decrease the BMP6-SMAD pathway activity, as suggested by the decrease of Bmp6 mRNA observed in this condition.

Inflammatory signals are sensed by the liver to regulate hepcidin (Figure 3)

Inflammation due to infection, autoimmune disease, or cancers stimulates the synthesis of many proinflammatory cytokines, such as interferon-γ, interleukin-1 (IL-1), and interleukin-6 (IL-6) leading to a stimulation of hepcidin expression by the liver as well as white blood cells. This induction of hepcidin production causes hypoferrremia and accumulation of iron in macrophages. This early host defense mechanism might be an advantage against specific infections such as malaria by preventing the iron availability for pathogens. However, this innate immune response is also a disadvantage for the host in conditions of chronic inflammation.
Indeed, the iron sequestration also limits the availability of iron for erythropoiesis and contributes to the anemia of chronic disease. The signaling pathways controlling hepcidin expression in hepatocytes under inflammatory condition are now well characterized. Inflammation stimulates IL-6 production that in turn activates the Janus kinase 2/signal transducer and activator of transcription 3 (STAT3) pathway, leading to the phosphorylation of STAT3. Translocation of phosphorylated STAT3 into the nucleus and binding to the canonical STAT3 binding site in the proximal hepcidin promoter results in upregulation of hepcidin mRNA expression. Interestingly, interplay between the STAT3 pathway and the BMP-SMAD pathway is required in order to regulate hepcidin expression in response to inflammation. Thus, mice lacking SMAD4 (common mediator of the BMP-SMAD pathway) lose the ability to induce hepcidin expression in response IL-6 injection. Moreover, in cells, the presence of the proximal BMP response element in addition to the STAT3 response element on the hepcidin promoter is crucial to induce hepcidin expression during IL-6 treatment. Indeed, increased liver SMAD1/5/8 phosphorylation has been observed in mice with anemia of inflammation in addition to increased STAT3 phosphorylation. More recently, Besson-Fournier et al. have suggested that the BMP/TGF-β superfamily ligand participating in the SMAD1/5/8 pathway activation in response to LPS injection in mice is Activin B.

Erythropoiesis and hypoxia are sensed by the liver to regulate hepcidin

Because erythropoiesis, i.e. production of red blood cells, is dependent on iron availability in the body, erythroid activity and iron absorption need to be coordinated. This coordination occurs through the down regulation of hepcidin expression in hepatocytes, which results in an increase of iron absorption. The regulatory mechanism of hepcidin inhibition by erythropoiesis is still unclear, but it has recently been established that bone marrow cells are involved. GDF15 (growth differentiation factor 15) and TWSG1 (twisted gastrulation-1) are potentials mediators of bone marrow signaling since their expression is stimulated under ineffective erythropoiesis conditions. However, a non-redundant role for these proteins as erythroid regulators is excluded. Indeed, GDF15 is not required to balance iron homeostasis in response to blood loss and the involvement of TWSG1 has only been reported in thalassemia. Further studies are still needed to identify the erythroid regulator of hepcidin expression and to characterize the molecular mechanism of its hepcidin regulation in hepatocytes.

Under hypoxia, hepcidin is also reduced. In mice, stabilization of HIF1 and HIF2 (hypoxia inducible factors) both inhibit hepcidin expression. A direct regulation of hepcidin expression by the binding of HIF on hepcidin promoter was suggested by a study published by Peyssonaux et al., but has not been confirmed by subsequent studies. In vivo, hypoxia stimulates erythropoietin production that in turn could decrease hepcidin expression. This hypothesis is supported by recent findings showing that hepatic HIF2 is not directly involved in hepcidin repression but contributes to the repression of hepcidin through erythropoietin-mediated increased erythropoiesis.
Signaling pathways that down regulate hepcidin in the liver

Several factors have been shown to down regulate hepcidin expression, in particular EGF (epidermal growth factor), HGF (hepatocyte growth factor)106, TNFα107 and estrogen108. The role, if any, of these pathways in iron homeostasis remains unknown. In addition, recently, two laboratories showed independently that testosterone down-regulates hepcidin109,110 explaining the difference seen in tissue iron loading between male and female animals. Latour et al. also demonstrated that the hepcidin regulation by testosterone was mediated through EGFR. Alcohol is also an inhibitor of hepcidin expression. This inhibition is dependent on both HIF-1α and HIF-2α that leads to a decrease of C/EBPα111, a transcription factor critical in maintaining basal hepcidin expression112. In the same manner, it is now well established that hepatitis C infection results in a decrease of hepcidin expression and that this regulation occurs through a destabilization of C/EBPα and STAT3 on the hepcidin promoter113

Conclusion

In order to provide the appropriate amount of iron available for erythropoiesis and cell metabolism, but to prevent toxic iron overload, hepcidin expression by the liver must be tightly regulated. The liver is the central organ that senses a variety of signals related to iron, oxygenation and erythropoiesis for the purpose of regulating hepcidin expression. The HJV/BMP/SMAD and IL6/STAT3 seem to be the main pathways involved in the regulation of hepcidin expression in response to multiple stimuli. However, the important pathway modulating hepcidin in response to erythropoiesis and hypoxia in hepatocytes is still unknown and needs to be elucidated. The liver interprets and integrates these disparate signals to regulate the production of hepcidin mRNA and subsequently systemic iron homeostasis.

The identification of the liver as a central regulator of iron homeostasis and especially the discovery of hepcidin and its regulation were important steps for the development of new promising therapeutic strategies for the management of iron disorders. All the strategies for the treatment of anemia of chronic disease or anemia of inflammation have been recently well summarized in the review by Sun et al.91, such as antihepcidin antibodies, short interference RNA and antisense oligonucleotides against hepcidin, BMP6–HJV–SMAD pathway inhibitors, and IL-6 pathway inhibitors.

For iron disorders associated with an iron overload induced by a low hepcidin state, such as hemochromatosis or β-thalassemia, new therapeutic strategies are also under study114,115. Minihepcidins, small drug-like hepcidin agonists are a new promising approach for the prevention and treatment of iron overload that have been tested in hepcidin-deficient mice. In this mouse model, administration of large doses of minihepcidins could prevent the iron overload. With lower doses, there is a more moderate effect and partial redistribution of iron from the liver to the spleen116. Another strategy currently under study is the activation of the hepcidin pathway by the inhibition of TMPRSS6 expression to inhibit hepcidin expression. Indeed, two groups have recently demonstrated that inhibition of Tmprss6 expression by injection of silencing RNA formulated in lipid nanoparticles117 or antisense oligonucleotides118 into Hfe−/− mice and HBB(θ3+/+) mice achieved knockdown of Tmprss6 expression leading to an elevation of hepcidin level. These therapies were both efficient in reducing liver iron concentrations in both mouse models.

Because increasing hepcidin does not cause the removal or excretion of iron, these potential new treatments are not likely to be sufficient to replace current treatments (i.e. iron
chelation and phlebotomy) in patients. They may rather be considered as an additional treatment to be used in combination with current strategies to decrease the frequency of iron chelation or phlebotomy, which have undesirable side effects.
Acknowledgements
JLB was supported in part by NIH grant RO1 DK087727 and by a Howard Goodman Fellowship from the Massachusetts General Hospital. HYL is supported in part by NIH grant RO1 DK069533 and RO1 DK071837.

Authorship Contributions
DM wrote the initial draft of the Review and generated the Figures. JLB edited and helped write the Review. HYL edited and wrote key sections of the Review.

Disclosures
JLB and HYL have ownership interest in a start-up company Ferrumax Pharmaceuticals, which has licensed technology from the Massachusetts General Hospital based on the work cited here and in prior publications.
References

10.1016/j.bcmd.2007.06.023.

10.1074/jbc.M110.183160.

10.1074/jbc.M506207200.

10.1074/jbc.M112.363937.

10.1074/jbc.M710527200.

10.1182/blood-2009-09-238105.

10.1182/blood-2008-03-143354.

PONE-D-11-25882 [pii].

Figure Legends:

Figure 1: The liver is the major source of hepcidin production. Iron and inflammation stimulate, while erythropoiesis, hormones and growth factors decrease hepcidin production. Hepcidin downregulates ferroportin in macrophages, enterocytes and hepatocytes leading to decreased iron release into the serum that is subsequently bound to transferrin (Fe\(^{3+}\)-Tf).

Figure 2: The liver responds to iron signals to regulate hepcidin production. Hepatic iron accumulation leads to increased BMP6 production, which is an important ligand for the HJV/BMP receptor complex on the surface of hepatocytes. The activation of the BMP signaling pathway leads to nuclear translocation of SMAD1/5/8 with SMAD4 and subsequent activation of hepcidin transcription. Circulating iron bound transferrin (Fe\(^{3+}\)-Tf) also stimulates hepcidin production by activating the BMP/HJV/SMAD signaling pathway. However, the exact details of the necessary and sufficient interactions of iron bound transferrin with transferrin receptor 1 (TFR1), transferrin receptor 2 (TFR2) and HFE at the surface of hepatocytes to stimulate hepcidin expression are still unknown. Other modulators such as Matriptase-2 are important for regulating iron-induced signals that affect hepcidin production.

Figure 3: The liver responds to inflammatory signals to regulate hepcidin production. Inflammatory signals such as IL-6 and Activin B stimulate the production of hepcidin by the liver. IL-6 increases phospho-STAT3 levels and subsequently stimulates transcription of hepcidin. Activin B may stimulate the BMP receptor complex directly. Matriptase-2 may also regulate inflammatory stimulation of hepcidin. Importantly, the proximal BMP responsive element in the hepcidin promoter is necessary for the full effect of STAT-3 stimulation on hepcidin transcription.
Iron recycling

- Iron
- Inflammation

Liver

- Erythropoiesis-hypoxia
- Testosterone-estrogen
- Growth Factors

Hepcidin

Fe³⁺-Tf

Fpn

Macrophage

Senescent Red Blood Cells
iron recycling

Duodenum

Iron from diet
Figure 2

Hepatocytes

Fe³⁺-Tf → HEPATOCYTE

Hepatic iron → Hepcidin

Matriptase-2

Plasma membrane

Cytoplasm

BMPR complex

SMAD1/5/8

SMAD4

HJV

sHJV

TFR1

TFR2

HFE

BMP6

Nucleus

Hepcidin

ID1

TFR2

HFE

Fe³⁺-Tf

Hepcidin

ID1

Nucleus

For personal use only.on October 24, 2017. by guest

www.bloodjournal.orgFrom
Hepatocytes

BMPR complex

Matriptase-2

Activin B

IL-6

STAT3

P

SMAD-1/5/8

SMAD4

Heptcidin

Nucleus

cytoplasm

Plasma membrane

Figure 3
The liver: conductor of systemic iron regulation

Delphine Meynard, Jodie L. Babitt and Herbert Y. Lin

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.