Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML

Anuhar Chaturvedi1, Michelle Maria Araujo Cruz1, Nidhi Jyotsana1, Amit Sharma1, Haiyang Yun1, Kerstin Görlich1, Martin Wichmann1, Adrian Schwarzer2, Matthias Preller3, Felicitas Thol1, Johann Meyer2, Reinhard Haemmerle2, Eduard A. Struys4, Erwin E. Jansen4, Ute Modlich2, Zhixiong Li2, Laura M. Sly5, Robert Geffers6, Robert Lindner7, Dietmar J. Manstein3, Ulrich Lehmann8, Jürgen Krauter1, Arnold Ganser1 and Michael Heuser1*

1Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625 Hannover, Germany

2Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625 Hannover, Germany

3Institute for Biophysical Chemistry and Research Division for Structural Analysis, Hannover Medical School, Hannover, 30625 Hannover, Germany

4Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands

5Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

6Department of Cell Biology and Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

7Institute of Cell Biology, Hannover Medical School, 30625 Hannover, Germany

8Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany

*Correspondence to: Michael Heuser, MD, Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover,
Germany, Tel: +49 511 532 9782, Fax: +49 511 532 9783, Email: heuser.michael@mh-hannover.de
Key Points:

1. IDH1 promotes leukemogenesis in vivo in cooperation with HoxA9.
2. Pharmacologic inhibition of mutant IDH1 efficiently inhibits AML cells of IDH1 mutated patients but not of normal CD34+ bone marrow cells.

Abstract

Mutations in the metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are frequently found in glioma, acute myeloid leukemia (AML), melanoma, thyroid cancer and chondrosarcoma patients. Mutant IDH produces 2-hydroxyglutarate (2HG), which induces histone- and DNA-hypermethylation through inhibition of epigenetic regulators. We investigated the role of mutant IDH1 using the mouse transplantation assay. Mutant IDH1 alone did not transform hematopoietic cells during 5 months of observation. However, mutant IDH1 greatly accelerated onset of myeloproliferative disease (MPD)-like myeloid leukemia in mice in cooperation with HoxA9 with a mean latency of 83 days compared to cells expressing HoxA9 and wildtype IDH1 or a control vector (167 and 210 days, respectively, P=.001). Mutant IDH1 accelerated cell cycle transition through repression of cyclin-dependent-kinase inhibitors Cdkn2a and Cdkn2b, and activated MAP-kinase signaling. By computational screening, we identified an inhibitor of mutant IDH1, which inhibited mutant IDH1 cells and lowered 2HG levels in vitro, and efficiently blocked colony formation of AML cells from IDH1 mutated patients but not of normal CD34+ bone marrow cells. These data demonstrate that mutant IDH1 has oncogenic activity in vivo and suggest that it is a promising therapeutic target in human AML cells.
Introduction

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 were originally identified in glioma,1,2 acute myeloid leukemia (AML), myeloproliferative neoplasm and myelodysplastic syndrome patients3-5 but are increasingly found in a diverse set of other tumor entities like chondrosarcoma,6 lymphoma,7 melanoma,8 and thyroid cancer.9 In cytogenetically normal AML, mutated IDH1 is found in 10.9% of patients,10 while mutated IDH2 is found in 12.1%.11 Mutations in IDH1 are almost exclusively found at amino acid arginine 132,12 and IDH2 mutations are found more frequently at position R140 and less frequently at position R172.13 All mutations affect the active site of the enzymes where isocitrate and NADPH bind.14-16 Whereas the enzymatic function of mutant IDH to convert isocitrate to α-ketoglutarate is impaired, it gains a neomorphic function to convert α-ketoglutarate to R-2-hydroxyglutarate (R-2HG, also known as D-2HG).14-16

Genome-wide methylation studies revealed a strong association of mutant IDH1 with an increased number of methylated CpGs.17 Similarly, AML patients with mutant TET2 showed a higher number of methylated CpGs, while IDH and TET2 mutations almost never occur in the same patient.17 This observation led to the hypothesis that mutant IDH inhibits TET2 function, thus leading to increased DNA methylation and leukemia.17 Indeed, the metabolite 2HG was shown to inhibit the function of TET2 resulting in DNA hypermethylation.18 Many other α-ketoglutarate-dependent dioxygenases and histone demethylases are competitively blocked by 2HG.17-21 Interestingly, a recent study showed that R-2HG, but not S-2HG, promotes cytokine-independence of a leukemia cell line through activation of the EglN1 prolyl hydroxylase.19,22

Several studies suggested that mutant IDH1 and specifically 2HG block myeloid and adipocyte differentiation.17,20 The biological function of mutant IDH1 has been recently studied in a knock-in mouse model, demonstrating an increase in the number of hematopoietic progenitor cells and increased cell proliferation and splenomegaly.23 Mutant mice did not
develop leukemia and had a similar survival as wildtype mice, suggesting that mutant IDH1 alone is not sufficient to induce leukemia. Potentially collaborating genes in AML patients are mutant \textit{NPM1} and \textit{FLT3}, as these mutations frequently co-occur with mutant \textit{IDH}. Xu et al. demonstrated that expression of \textit{HoxA} genes was increased in \textit{IDH1} mutated cells. To identify potentially collaborating partners of mutant IDH1 we investigated the ability of other oncogenes to collaborate with mutant IDH1 in leukemogenesis.

\textbf{Materials and Methods}

More information on Materials and Methods can be found in the supplementary information.

\textbf{Retroviral vectors and vector production}

Retroviral vectors MSCV-PGKneo, MSCV-\textit{HoxA9}-PGKneo, and pSF91-IRES-eGFP have been described previously. pSF91-IRES-eGFP has been modified for Gateway cloning by inserting the \textit{RfA} cassette (Invitrogen-Life Technologies, Darmstadt, Germany) as described. The 1.2 kb coding region of human \textit{IDH1} was amplified by nested PCR from cDNA of bone marrow cells from a MDS patient with a heterozygous \textit{IDH1R132C} mutation. Helper-free recombinant retrovirus produced in supernatants of transfected ecotropic Phoenix packaging cell line was used to transduce the ecotropic GP+E86 packaging cell line.

\textbf{Mice and retroviral infection of primary bone marrow cells}

6-8 weeks old female C57BL/6J mice were purchased from Charles River, Sulzfeld, Germany and kept in pathogen free conditions at the central animal laboratory of Hannover Medical School. All animal experiments were approved by the Lower Saxony state office for consumer protection, Oldenburg, Germany. Primary mouse bone marrow cells were transduced as previously described.
Bone marrow transplantation and monitoring of mice

Equal numbers of GFP-expressing, sorted bone marrow cells from C57BL/6J mice were injected intravenously in lethally irradiated syngeneic recipient mice that were irradiated with 800 cGy, accompanied by a life-sparing dose of $1 \times 10^5$ freshly isolated bone marrow cells from syngeneic mice. Donor chimerism was monitored by tail vein bleeds and FACS analysis of GFP-expressing cells every four weeks as previously described.\textsuperscript{30} Blood counts with differential WBC analysis were performed using an ABC Vet Automated Blood counter (Scil animal care company GmbH, Viernheim, Germany). Lineage distribution was determined by FACS analysis (FACS Calibur, Becton Dickinson, Heidelberg, Germany) as previously described.\textsuperscript{29}

Clonogenic progenitor assay

Colony-forming cell (CFC) units were assayed in methylcellulose (Methocult M3234; StemCell Technologies Inc., Vancouver, Canada) as described in supplementary methods.

Patient samples and CD34\textsuperscript{+} cells

Diagnostic bone marrow or peripheral blood samples were analyzed from 400 adult patients (16 to 60 years) with de novo or secondary AML (FAB M0-M2, M4-M7) who had entered the multicenter treatment trial AML-SHG 01/99 or 02/95 for mutations in $\text{IDH1}$ as previously described.\textsuperscript{10} The association of $\text{IDH1}$ mutations with expression levels of $\text{HOXA}$ and $\text{HOXB}$ cluster genes in adult AML patients up to 60 years of age were studied in 457 patients of the HOVON study group.\textsuperscript{31} The association of $\text{IDH1}$ mutations with $\text{HOXA9}$ was studied in an independent cohort.\textsuperscript{32} In brief, HG-U133-plus2 microarray data of 197 AML patients were downloaded from The Cancer Genome Atlas Data Portal (https://tcga-data.nci.nih.gov/tcga/).\textsuperscript{32} The normalized intensity signals of the two $\text{HOXA9}$-specific probes
were extracted and log$_2$ transformed. Bone marrow of healthy donors were obtained from the transplantation unit of Hannover Medical School. CD34$^+$ cells were isolated using the CD34 microbead kit (Miltenyi Biotech, Bergisch Gladbach, Germany) as per manufacturers protocol. Written informed consent was obtained according to the Declaration of Helsinki, and the study was approved by the institutional review board of Hannover Medical School.

2-hydroxyglutarate measurement
To determine intracellular R- and S-2HG levels, 5-10 million cells were sonicated for 10 minutes at intervals of 30 seconds on, 30 seconds off at 4$^0$C using the Bioruptor (Diagenode, Liege, Belgium) followed by two rounds of freeze thaw cycles. All analyses were performed on an AB Sciex 4000 Q-trap triple quadruple mass spectrometer (Applied Biosystems, Darmstadt, Germany). LC was performed on an Xterra C$_{18}$ analytical column [150 × 3.9 mm (i.d.); 5-μm bead size] with water–acetonitrile (96.5:3.5 by volume) containing 125 mg/L ammonium formate (pH adjusted to 3.6 by addition of formic acid) as mobile phase as described.$^{33}$

Cell cycle analysis in vitro and in vivo
For cell cycle analysis mice were injected i.p. with 100 μl BrdU (1mM) at 36, 24 and 12 hours before harvest. For in vitro labelling 10 μM of BrdU was added to 1 million cells for 6 hours. Cell cycle analysis was performed according to the manufacturers protocol (BD Pharmingen Cat no. 557892).

Apoptosis measurement
Cells were stained with Annexin V-APC and 7AAD according to the manufacturers protocol (BD Pharmingen Cat no. 550474).
**Immunoblotting**

Cellular lysates were prepared and immunoblotting was performed as described previously.\(^{34}\) Antibodies and methods are described in the supplement.

**Quantitative RT-PCR**

RNA was extracted and reverse transcribed as previously described.\(^{35}\) Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) was done as previously described using SYBR green (Invitrogen) for quantification of double stranded DNA on a StepOne Plus cycler (Applied Biosystems, Darmstadt, Germany).\(^{36}\) Relative expression was determined with the \(2^{-\Delta\Delta CT}\) method,\(^{37}\) and the housekeeping gene transcript \(Abl1\) was used to normalize the results.

**Methylation analysis**

Genomic DNA was isolated from cells using the Allprep DNA RNA kit (Qiagen, Hilden, Germany). One µg of genomic DNA was bisulfite converted with the EZ DNA Methylation\(^{TM}\) kit (Zymo Research, Freiburg, Germany). A PCR amplification of 50-100 ng equivalent of the starting amount of converted DNA was performed with C to T conversion-specific primers, cloned in pCR2.1-TOPO sequencing vector (Invitrogen, Darmstadt, Germany), and sequenced by Sanger sequencing.

**Gene expression profiling**

GFP+ cells were sorted from mouse bone marrow cells four weeks after transplantation and were hybridized to an identical lot of Affymetrix GeneChips. Further details are described in the supplementary methods. Gene expression profiling data can be found at the gene expression omnibus database under accession number GSE45019.
In vitro cytotoxicity assay

Cells were plated at a density of $5 \times 10^4$ cells/mL in flat bottom 96 well plates (100 µl/well) and incubated under light protective conditions. The drugs were added to the culture medium at the specified concentrations. After 64 hours 10 µl alamar blue (Abd Serotec, Raleigh, NC, USA) was added per well. Fluorescence intensity was measured after 72 hours on a microplate reader (Safire, Tecan, Männedorf, Switzerland). All experiments were performed in duplicates with three independently transduced cell lines.

H$_2$O$_2$ measurement

The measurement of hydrogen peroxide was carried out using the Amplex-red hydrogen peroxide/peroxidase assay kit as described by the manufacturer (Molecular Probes, Invitrogen, Darmstadt, Germany).

Computational Screening

IDH1mut crystal structure in the closed conformation (Protein Data Bank ID: 3INM) was built using Modeller.$^{38}$ HMS-101 was identified by in silico drug screening of approximately 500,000 compounds against mutant IDH1 using compounds of the Zinc database.$^{39}$

Statistical analysis

Pairwise comparisons were performed by Student $t$ test for continuous variables and by chi-squared test for categorical variables. The 2-sided level of significance was set at $P$ less than 0.05. Comparison of survival curves were performed using the log-rank test. A binary logistic regression model was used to analyze associations between mutation status of IDH1, NPM1, FLT3, CEBPA and expression levels HOXA9. Statistical analyses were performed with Microsoft Excel (Microsoft, Munich, Germany), GraphPad Prism 5 (GraphPad Software, La Jolla, CA), or SPSS 20.0 (IBM Deutschland, Ehningen, Germany). Graphical representation
was prepared using Adobe illustrator CS5.1 (Adobe systems GmbH, Munich, Germany).

Results

Mutant IDH1 induces a myeloproliferative-like disease in immortalized bone marrow cells.

To test whether mutant IDH1 induces a myeloid malignancy we cloned IDH1wt and IDH1mut from a MDS patient and transduced CTL, IDH1wt or IDH1mut constructs in 5-FU pre-treated bone marrow cells. The cumulative colony-forming cell (CFC) yield from sorted transgene positive cells was not increased and the cells stopped proliferating after the second replating (Figure 1A).

We transduced 5-FU pre-treated bone marrow cells with control (CTL), wildtype and mutant IDH1 constructs and confirmed transgene expression in bone marrow cells 4 weeks after transplantation (Figure 1B). A high ratio of R-2HG to S-2HG was observed in bone marrow cell lysates from IDH1mut transduced cells compared to IDH1 wildtype or control cells (Figure 1C). In vivo, when transplanting equal numbers of transgene positive cells, engraftment in peripheral blood was stable over time (Figure 1D), and complete blood counts (Figures 1E-G), immunophenotype of GFP+ cells in peripheral blood (Figure 1H), and spleen weight at 20 weeks after transplantation (Figure 1I) were similar between CTL, IDH1wt and IDH1mut mice, suggesting that retrovirally expressed mutant IDH1 alone is insufficient to induce myeloproliferation.

To identify other potentially collaborating genes we compared gene expression levels of known oncogenes between IDH1wt and IDH1mut AML patients. Eight of eleven HOXA cluster genes and six of ten HOXB cluster genes were significantly higher expressed in IDH1 mutant than in wildtype patients (Supplementary Figure S1A and S1B). Overexpression of HOXA9 in IDH1mut patients was confirmed in an independent patient cohort (Supplementary Figure S2). HOXA9 was independently overexpressed in IDH1 mutant patients in multivariate
analysis including NPM1, FLT3-ITD, and CEBPA mutation status (Supplementary Table S1). As HOXA9 was most differentially expressed between mutant and wildtype IDH1 patients (Figure 2A), and constitutive HOXA9 expression induces a long-latency myeloproliferative disease in mice,\textsuperscript{25,40} we transduced HoxA9-immortalized bone marrow cells with control (CTL), wildtype and mutant IDH1 constructs for in vivo evaluation of their leukemogenic potential (Figure 2B and Supplementary Figure S3A and B). A high ratio of R-2HG to S-2HG in cell lysates from IDH1mut transduced cells compared to IDH1 wildtype or control cells confirmed the integrity of our model (Figure 2C).

Equal numbers of sorted, GFP+ cells were injected in lethally irradiated mice with a life-sparing dose of helper cells. Engraftment of GFP+ cells in peripheral blood was higher in IDH1mut-transduced cells at 4, 8, and 12 weeks after transplantation compared to IDH1wt or CTL-transduced cells (Figure 2D). Mice receiving transplants with IDH1 mutated cells developed severe leukocytosis, anemia and thrombocytopenia after week 4 of transplantation, whereas blood counts in control mice remained normal (Figure 2E-2G). Interestingly, IDH1mut mice died with a median latency of 83 days after transplantation, whereas IDH1wt and CTL mice died significantly later (167 and 210 days after transplantation, respectively; IDH1mut vs. IDH1wt, P<0.001; IDH1mut vs. CTL, P<0.001; Figure 2H).

At time of death the majority of bone marrow cells were derived from IDH1- or CTL-transduced (GFP+) cells (Figure S4A and B). Transduced cells in bone marrow and spleen had a myeloid phenotype predominantly expressing the myeloid marker CD11b and 20-30% expressing the progenitor cell marker cKit (Figure S4C and D). Morphologic evaluation of bone marrow from moribund mice showed that the majority of bone marrow cells had monocytic morphology with an increased proportion of immature cells and slightly more blasts in IDH1mut than in wildtype or CTL mice (Figure 2I and J). Bone marrow cells from moribund mice were readily transplantable into secondary animals with a shorter median survival of IDH1mut compared to IDH1wt mice (Figure S5). At two months after
transplantation, no significant difference was observed in GFP+lin-ckit+Sca+ and GFP+lin-ckit+Sca+CD34- stem and progenitor cells from IDH1wt or IDH1mut mice (Supplementary Figure S6A and S6B). Southern blot analysis confirmed full proviral integration for each retroviral construct and showed an oligoclonal disease for IDH1mut mice and a monoclonal pattern for IDH1wt mice (Supplementary Figure S7). Thus, mutant IDH1 induced a short-latency myeloproliferative disease (MPD)-like myeloid leukemia in HoxA9-immortalized bone marrow cells, demonstrating its oncogenic potential in vivo.

**Mutant IDH1 promotes cell cycle transition**

To assess the biologic effect of mutant IDH1 we compared cell cycle phases and rate of apoptosis in mutant and wildtype IDH1 cells. Analyzing GFP+ bone marrow cells from mice at 9 weeks after transplantation, the rate of apoptosis did not differ between mutated or wildtype IDH1 or CTL transduced cells, and was similar to the rate of apoptosis in GFP cells (Supplementary Figure S8A). However, the proportion of cells in S/G2/M phases was significantly higher in bone marrow cells transduced with IDH1mut when compared to cells transduced with IDH1wt or CTL (Figure 3A). The quantitative cell cycle differences for the HoxA9 immortalised mouse bone marrow cells transduced with CTL, IDH1wt and IDH1mut cells in vivo are summarized in Figure 3B and in vitro in Supplementary Figure S8B.

Gene expression profiles suggested that cyclin-dependent kinase inhibitors were among the most downregulated genes in IDH1mut cells. We quantified gene expression levels of cyclin-dependent kinase inhibitors (Cdkn) 1a (p21), 1b (p27), 2a (p16), and 2b (p15) and found them markedly downregulated in IDH1mut when compared to IDH1wt cells (Figure 3C), providing an explanation for the enhanced cell proliferation in IDH1mut cells. 2HG was previously shown to induce DNA hypermethylation, and silencing of CDKN2A and CDKN2B expression by promoter hypermethylation has previously been reported in AML. To assess whether Cdkn2a and Cdkn2b expression was downregulated by promoter methylation in our
model, we quantified methylated promoter CpGs by sequencing alleles of bisulfite converted DNA. The CpG island in the promoter of *Cdkn2b* showed low levels of DNA methylation in IDH1wt, IDH1mut and CTL cells (Figure 3D). The CpG islands in the promoter of *Cdkn2a* showed low levels of DNA methylation in IDH1wt and CTL cells, whereas IDH1mut cells had slightly increased levels of DNA methylation (Figure 3E). These data suggest that mutated IDH1 enhances cell proliferation through reduced expression of CDK-inhibitors, however, transcriptional repression rather than gene silencing by promoter methylation seems to be the mechanism for low expression of CDK-inhibitors.

**Mutant IDH1 activates Mitogen-Activated Protein (MAP-) kinase signaling.**

To identify pathways that are dysregulated by mutant IDH1 we performed gene expression profiling with cells transduced with HoxA9 and CTL, IDH1wt, or IDH1mut. GFP-expressing cells were harvested from bone marrow four weeks after transplantation. In unsupervised hierarchical clustering mutated cells clustered together and separated from IDH1wt or CTL cells (Figure 4A). Differentially expressed genes are listed in Supplementary Table S2. We next performed gene set enrichment analysis using the gene sets from gene ontology. Most gene sets were related to membrane receptors, signalling, intracellular organelles and transport, and to cell morphogenesis and migration, several of which characterize monocytic function (Figure 4B and Supplementary Table S3).

Genes related to MAP-kinase signalling were highly enriched in IDH1 mutant cells (Figure 4C, P<.001, and Supplementary Table S3). To identify whether mutated IDH1 perturbs intracellular signalling as indicated by gene set enrichment analysis, we determined the inhibitory effect of 15 drugs that block a specific signalling pathway. IDH1mut cells were resistant to inhibition with the MEK1/2 inhibitor UO126, which inhibits MAP-kinase signalling, whereas inhibition of JNK, p38, NFkB, PI3-kinase, mTOR, PKC, PLC, PKA-CREB, GSK3β, HIF1-α, Hexokinase, and c-Met was similarly effective in IDH1mut, IDH1wt
and CTL cells (Figure 4D and Supplementary Figure S9). Further, IDH1mut cells were also resistant to MEK1/2 inhibitors AZD6244 and GSK 1120212 (Figure 4E and F). Protein levels of ERK and phospho-ERK, and specifically the ratio of phospho-p44/total-p44 were highly upregulated in HoxA9 IDH1mut cells when compared to HoxA9 IDH1wt and HoxA9 CTL cells demonstrating MAP-kinase activation on the protein level (Figure 4G, 4H and Supplementary Figure S10). We also evaluated the effect of mutant IDH1 on ERK in bone marrow cells that do not overexpress HOXA9. Transduced cells were transplanted and sorted from bone marrow after 8 weeks. Total ERK was not increased in mutant IDH1 cells. However, the ratio of phospho-ERK to total ERK was higher by trend (P=.05) in mutant IDH1 compared to wildtype IDH1 or control cells for both p44 and p42 isoforms (Supplementary Figure S11). We next studied the phosphorylation of downstream and upstream targets of ERK. No difference in phosphorylation levels of Elk-1 and p90RSK (Ser380) was observed between CTL, IDH1wt and IDH1mut cells (Figure 4I), but phosphorylation of CREB was increased in IDH1mut cells (Figure 4I). Levels of activated RAS and total RAS were similar in CTL, IDH1wt and IDH1mut cells, suggesting that other signals than RAS activate ERK (Figure 4J). We next assessed whether increased levels of reactive oxygen species (ROS) may be responsible for MEK/ERK activation in IDH1 mutated cells. Indeed, ROS levels were significantly higher in IDH1mut cells compared to IDH1wt or CTL cells (Figure 4K). In summary, mutant IDH1 is associated with enhanced MAP-kinase signalling, possibly through increased ROS levels, and induces resistance against MEK inhibitors.

A novel inhibitor of mutant IDH1 inhibits human AML cell growth

As inhibition of several signalling pathways did not selectively inhibit IDH1mut cells, we performed a computational drug screen using the ZINC library and the published crystal structure of mutant IDH1. By computational screening we identified a potential inhibitor of
mutant IDH1 termed 2-[2-[3-(4-fluorophenyl)pyrrolidin-1-yl]ethyl]-1,4-dimethylpiperazine (here termed HMS-101). Computational modeling showed that HMS-101 binds to the isocitrate-binding pocket of mutant IDH1 (Figure 5A). The IC$_{50}$ for HMS-101 was significantly lower in mouse bone marrow cells transduced with IDH1mut compared to IDH1wt (1 μM vs. 12 μM, respectively, P<.001, Figure 5B). Treatment of HoxA9+IDH1mut cells with HMS-101 at 10 μM significantly reduced intracellular R-2HG levels in vitro (Figure 5C). HMS-101 induced apoptosis in IDH1mut cells as evidenced by Annexin V staining (Figure 5D) and cell cycle analysis by BrDU (Figure 5E and F). Phospho-ERK1/2 and the ratio of phospho-ERK/total-ERK were markedly reduced in IDH1mut cells compared to IDH1wt or control cells, when treated with HMS-101 (10 μM; Figure 5G and Supplementary Figure S12). Next, we evaluated the effect of HMS-101 on human AML cells and CD34+ bone marrow cells from healthy donors. Cells were treated in vitro with HMS-101 (10 μM), the highest tolerated dose in normal CD34+ human bone marrow cells (Supplementary Figure S13) or solvent control for 72 hours to study the rate of apoptosis, or they were plated in methylcellulose in the presence of HMS-101 (10 μM) or solvent control. The percentage of apoptotic cells in HMS-101-treated cells relative to solvent-treated cells was significantly higher in cells from IDH1 mutant patients (P=.001), but not in IDH1wildtype (P=.9) or CD34+ cells from healthy controls (P=.1), and was higher in IDH1 mutant patients compared to IDH1 wildtype patients or healthy controls (P=.001 and P=.04, respectively; Figure 5H). Colony formation in HMS-101-treated cells relative to solvent-treated cells was significantly inhibited in cells from IDH1 mutant patients (P<.0001), and also to some extent in IDH1wt patients (P=.002), but was not affected in CD34+ cells from healthy controls. Colony formation in HMS-101-treated cells was lower in IDH1 mutant patients compared to IDH1 wildtype and control patients (P=.003 and P<.001, respectively; Figure 5I), suggesting a higher efficacy in IDH1 mutant than in IDH1 wildtype AML. In summary, we identified an inhibitor of mutant IDH1 which shows promising activity in
mouse bone marrow cells and in primary human AML cells, suggesting that mutant IDH1 is a relevant and druggable target in AML.

Discussion

We investigated the biologic consequences of constitutive expression of mutant IDH1 in mouse bone marrow cells and found that mutant IDH1 induces a MPD-like myeloid leukemia when combined with HoxA9. Mutant IDH1 accelerated cell cycle transition possibly by repression of CDK-inhibitors, and enhanced MAPK/ERK signaling. A novel inhibitor of mutant IDH1 decreased 2HG production and inhibited progenitor cells from IDH1 mutated AML patients, suggesting that mutant IDH1 is a relevant and druggable target in AML.

In initial experiments, we evaluated the effect of mutant IDH1 alone in vivo. Within 5 months after transplantation we did not see an engraftment benefit of mutant IDH1 and therefore decided to stop the experiment. Sasaki et al. showed that IDH1mut knock-in mice developed splenomegaly and increased levels of hematopoietic stem cells in older mice, but did not die from myeloid disease within two years of observation. Due to the relatively short observation period in our study we may have missed such an effect of mutant IDH1. However, we focused on collaborating oncogenes to mimic the physiologic situation in AML patients, where several mutations may co-occur. Based on an initial report that mutant IDHI was associated with HOX gene overexpression, we confirmed this association in two large cohorts of AML patients and selected HOXA9 as a potential cooperating oncogene.

We found that mutant IDH1 in combination with HoxA9 accelerates the onset of a myeloproliferative disease. Following Bethesda criteria we termed the disease as MPD-like myeloid leukemia. The contribution of mutant IDH1 to the disease phenotype seems to be enhanced cell proliferation as evidenced by a rapid increase in WBC counts and spleen weight in transplanted mice, an increased proportion of cells in S/G2/M phases of cell cycle in vivo and in vitro, and shorter disease latency in primary and secondary transplants. The frequency
of hematopoietic stem cells was similar between mutant and wildtype IDH1 and controls, likely due to the fairly differentiated monocytic phenotype of HoxA9-expressing cells that dominated the morphology of all groups.

We observed a slight increase in bone marrow blasts in mutant IDH1 cells, suggesting that mutant IDH1 has an inhibitory effect on differentiation. Previous studies showed that mutant IDH1 blocks myeloid and adipocyte differentiation\textsuperscript{17,20} as evidenced by an increased cKit expression in colony forming cells from mouse bone marrow transduced with mutant IDH2, when compared with wildtype IDH2,\textsuperscript{17} and reduced lipid droplet accumulation in 3T3-L1 cells transduced with IDH2R172K when compared with either wild-type IDH2 or vector control.\textsuperscript{20}

By gene set enrichment analysis in our study we found MAP-kinase signalling most upregulated in mutant IDH1 cells. Western blot analysis of ERK1/2 and pharmacologic inhibition of MAP-kinase signalling supported activation of the MAP-kinase pathway, while inhibition of many other signalling pathways did not show differential sensitivity in mutant or wildtype cells. MAP-kinase signalling was also upregulated in a previous study in melanoma cells ectopically expressing mutated IDH1.\textsuperscript{8} We found that IDH1mut cells generated increased levels of reactive oxygen species, which are known to activate MAP-kinase signalling. Previous studies have shown that elevated 2HG levels resulted in increased ROS levels\textsuperscript{43,44} and altered NADPH metabolism resulting from mutated IDH1 could further exacerbate this effect. Two previous studies measured ROS levels in IDH1 mutated cells and did not find elevated levels of ROS.\textsuperscript{8,23} This discrepancy may be due to different methods that were used in these studies. ROS levels were measured by CM-H\textsubscript{2}DCFDA staining in the negative studies, which has 35 and 39-fold lower reactivity to H\textsubscript{2}O\textsubscript{2} than to the hydroxyl radical and peroxynitrite anion, respectively,\textsuperscript{45} whereas Amplex red was used in our study reacting primarily with H\textsubscript{2}O\textsubscript{2}. Alternatively, ROS levels and MAPK signalling may be increased due to enhanced cell proliferation.\textsuperscript{46}
A recent study showed that mutant IDH1 induces cytokine independence in the leukemia cell line TF1. Interestingly, this effect was also seen when cells were treated with R-2HG, but not when treated with S-2HG, demonstrating the biologic relevance of R-2HG. To explore whether inhibition of the enzymatic function of mutated IDH1 had antileukemic effects we searched for specific IDH1 inhibitors using an in silico screening platform. One of our hits with high affinity to mutated IDH1 demonstrated promising activity in vitro on cell proliferation and ERK signaling. The specificity of the IDH1 inhibitor HMS-101 was shown by reduction of R-2HG levels in IDH1 mutant cells. The inhibitor enhanced apoptosis and inhibited colony formation in murine cells and primary AML cells from IDH1 mutated patients. Colony formation was also reduced in some AML patients with wildtype IDH1, but not in CD34+ bone marrow cells from healthy donors. This data suggest that primary AML cells depend on mutated IDH1, that targeting of IDH1 may have therapeutic benefit, and that mutant IDH1 can be effectively targeted in human AML cells.

In summary, mutant IDH1 cooperates with HOXA9 to induce a MPD-like myeloid leukemia and enhances cell proliferation possibly through repression of CDK-inhibitors. Pharmacologic inhibition of 2HG production inhibits AML cell survival and suggests that mutant IDH1 is a relevant therapeutic target in AML.
Acknowledgement

We acknowledge assistance of the Cell Sorting Core Facility of the Hannover Medical School supported in part by the Braukmann-Wittenberg-Herz-Stiftung and the Deutsche Forschungsgemeinschaft. We would like to thank the staff of the Central Animal Facility of Hannover Medical School, Rena-Mareike Struss, Manoj Balakrishna Menon, Micheal M. Morgan and Bettina Wagner for their support on this project. We thank Peter Valk, Ruud Delwel and Bob Löwenberg for provision of gene expression profiling data and Matthias Gaestel for helpful discussions. We thank the staff of the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN) for providing computational resources and support. Z.L., J.K. and J.M. were supported by the DGF grant Li 1608/2-1.

This study was supported by the Deutsche Krebshilfe e.V (grant Nos. 109003, 110284, and 110292), grant No. DJCLS R 10/22 from the Deutsche-José-Carreras Leukämie-Stiftung e.V; grant No. M 47.1 from the H. W. & J. Hector Stiftung, the German Federal Ministry of Education and Research grant 01EO0802 (Integriertes Forschungs- und Behandlungszentrum Transplantation), DFG grants HE 5240/4-1, HE 5240/5-1 and TH 1779/1-1, and HiLF grant from Hannover Medical School awarded to AC.

Gene expression profiling data was submitted to the gene expression omnibus database under accession number GSE45019.

Author contributions

Conflicts of interest

A.C., M.P. and M.H. have filed a patent for clinical and research use of drug HMS-101. The authors declare no competing financial interests.

References


Figure legends

Figure 1. Effect of constitutive expression of mutated IDH1 in primary bone marrow cells in vitro and in vivo.

(A) Cumulative CFC yield is shown for an initial plating of 1000 transgene-expressing cells (cells were sorted before plating; mean ± SEM of 3 independent experiments).

(B) Protein expression of mouse bone marrow cells transduced with a control vector (CTL), or with Flag-tagged wildtype IDH1 or mutant IDH1 using an anti-Flag-antibody. Cells were harvested from bone marrow four weeks after transplantation. β-actin was probed on the same blot as a loading control.

(C) Ratio of R-2-hydroxyglutarate (R-2HG) to S-2-hydroxyglutarate (S-2HG) in mouse bone marrow cells transduced with a control vector (CTL), or with wildtype or mutant IDH1. Cells were harvested from bone marrow four weeks after transplantation (mean ± SEM of 3 independent mice).

(D) Engraftment of transduced cells in peripheral blood at different time points after transplantation of 1x10^5 transgene-positive cells (mean ± SEM).

(E) White blood cell count in peripheral blood at different time points after transplantation of control or IDH1-transduced bone marrow cells (mean ± SEM).

(F) Hemoglobin levels in peripheral blood at different time points after transplantation of control or IDH1-transduced bone marrow cells (mean ± SEM).

(G) Platelet count in peripheral blood at different time points after transplantation of control or IDH1-transduced bone marrow cells (mean ± SEM of number of mice indicated in panel E).

(H) Immunophenotype of transduced cells in peripheral blood at 16 weeks after transplantation (mean ± SEM).

(I) Average spleen weight in mice receiving transplants of control or IDH1-transduced bone marrow cells 20 weeks after transplantation (mean ± SEM).
Figure 2. Mutant IDH1 induces a myeloproliferative-like disease in immortalized bone marrow cells.

(A) Association of IDH1 mutations with expression levels of HOXA9 in adult AML patients up to 60 years of age (n=457). Normalized expression levels of HOXA9 are shown for patients with wildtype IDH1 (grey bars) and mutant IDH1 (red bars), which were determined on an Affymetrix microarray with two different probes.31

(B) Protein expression of HoxA9-immortalized cells transduced with a control vector (CTL), or with Flag-tagged wildtype IDH1 or mutant IDH1 using an anti-Flag-antibody. β–actin was probed on the same blot as a loading control.

(C) Ratio of R-2-hydroxyglutarate (R-2HG) to S-2-hydroxyglutarate (S-2HG) in cultured HoxA9 cells transduced with CTL, IDH1wt or IDH1mut (mean ± SEM of 4 independently transduced cell lines).

(D) Engraftment of transduced cells in peripheral blood at different time points after transplantation of 1x10^6 transgene-positive cells (mean ± SEM of the indicated number of mice). #For mice that died before week 12, engraftment in peripheral blood is shown for the time point of death.

(E) White blood cell count in peripheral blood from mice that received transplants of cells transduced with the indicated constructs. Blood was taken 4, 8, and 12 weeks after transplantation (mean ± SEM of the indicated number of mice).

(F) Hemoglobin level in peripheral blood from mice that received transplants of cells transduced with the indicated constructs. Blood was taken 4, 8, and 12 weeks after transplantation (mean ± SEM of the indicated number of mice)
(G) Platelet counts in peripheral blood from mice that received transplants of cells transduced with the indicated constructs. Blood was taken 4, 8, and 12 weeks after transplantation (mean ± SEM of the indicated number of mice).

(H) Survival of mice that received transplants of cells transduced with the indicated constructs. Results from three independent experiments using independently transduced cells are shown.

(I) Percentage of blast cells in bone marrow (BM) of moribund mice (mean ± SEM of the indicated number of mice)

(J) Representative Wright-Giemsa stained cytospin preparations of bone marrow cells from moribund mice (scale bars represent 25 µm in the upper panel and 10 µm in the lower panel).

* indicates P<.05; ** indicates P<.01, ns, not significant.

Figure 3. Mutant IDH1 promotes cell cycle transition independently of 2-hydroxyglutarate.

(A) Representative FACS blots of cell cycle phases in HoxA9-immortalised vector CTL, IDH1wt, or IDH1mut transduced (GFP+) bone marrow cells 9 weeks after transplantation. (BrdU injections i.p. at 36, 24, and 12 hours before harvest). Cell cycle phases were determined by analysis of BrdU/7AAD stained cells by FACS. The upper quadrant represents cells in S phase, the lower left quadrant represents cells in G0/G1 phase and the lower right quadrant represents cells in G2/M phase of the cell cycle.

(B) Cell-cycle distribution in HoxA9-immortalised vector CTL, IDH1wt and IDH1mut transduced (GFP+) bone marrow cells 9 weeks after transplantation (BrdU injections i.p. at 36, 24, and 12 hours before harvest). Cell cycle phases were determined by analysis of BrdU/7AAD stained cells by FACS (mean ± SEM).
Gene expression levels of cyclin-dependent kinase inhibitors in in vitro cultured HoxA9 cells transduced with IDH1wt and IDH1mut. Gene expression was determined by RT-PCR relative to the housekeeping gene Abl and was normalized to gene expression in IDH1wt cells (mean ± SEM).

Methylation analysis of the CpG island in the Cdkn2b (p15) promoter in Hoxa9 cells transduced with IDH1wt and IDH1mut. DNA from in vitro cultured cells was extracted and bisulfite treated. CpG methyltransferase-treated DNA from IDH1mut cells served as a positive control. The p15 promoter CpG was amplified and subcloned. Twenty clones were sequenced per cell type. Exons are represented by vertical rectangles. White horizontal bars above the exons show CpG islands, and black horizontal bars below the exons show the tested region. An open circle indicates a non-methylated CpG, a black circle indicates a methylated CpG. The percent methylation of the CpG island is calculated by the proportion of methylated CpGs from all investigated CpGs.

Methylation analysis of the CpG island in the Cdkn2a (p16) promoter in Hoxa9 cells transduced with IDH1wt and IDH1mut. The analysis was performed as described in figure legend 3D.

* indicates P<.05; ** indicates P<.01, ns, not significant.

Figure 4. Mutant IDH1 activates MAP-kinase signaling.

Rowscaled unsupervised hierarchical clustering of cells transduced with HoxA9 and CTL, IDH1wt, or IDH1mut. Three cell lines per group were generated by independent transductions of bone marrow cells and were transplanted in one lethally irradiated mouse each. The cells were harvested from bone marrow 4 weeks after transplantation and were sorted for GFP expression. Gene expression profiling using RNA from sorted cells was performed on Affymetrix Mouse 430.2 arrays. After RMA normalization
unsupervised hierarchical clustering was performed on variance filtered genes based on a log₂ interquartile range of 1.6.

(B) Graphical representation of enriched categories of gene ontology gene sets for the indicated cell comparisons based on gene set enrichment analysis from gene chip arrays.

(C) Enrichment plot for the gene set “positive regulation of MAP-kinase signalling” comparing IDH1mut and IDH1wt cells. NES, normalized enrichment score.

(D) In vitro cytotoxicity assays using inhibitors of signalling pathways in HoxA9 cells transduced with CTL, IDH1wt, or IDH1mut (mean ± SEM of 3-5 independent experiments performed in duplicate).

(E) In vitro cytotoxicity assay using AZD6244, an inhibitor of MEK1/2 in HoxA9 cells transduced with CTL, IDH1wt, or IDH1mut (mean ± SEM of 3 independent experiments performed in duplicate).

(F) In vitro cytotoxicity assay using GSK1120212, an inhibitor of MEK1/2 in HoxA9 cells transduced with CTL, IDH1wt, or IDH1mut (mean ± SEM of 3 independent experiments performed in duplicate).

(G) Representative Western blot of in vitro cultured cells for the indicated cell lines using antibodies against ERK, phospho-ERK and β-actin, as a loading control.

(H) Ratio of phospho-p44 ERK/total-p44 ERK and phospho-p42 ERK/total-p42 ERK in HoxA9 CTL, HoxA9 IDH1wt and HoxA9 IDH1mut cells (mean ± SEM of 3 independent experiments).

(I) Representative Western blot of in vitro cultured cells for the indicated cell lines using antibodies against phospho-Elk1, total Elk1, phospho-p90RSK (Ser380), phospho-CREB and β-actin as loading control.

(J) Representative Western blot of in vitro cultured cells for the indicated cell lines using antibodies against activated RAS, total RAS and β-actin, as loading control.
(K) Hydrogen peroxide levels in cultured cells measured by fluorescence-activated cell sorting of the indicated cells that were incubated with Amplex red reaction mixture for 16 hours (mean ± SEM of 4 independent experiments measured in triplicate).

* indicates P<.05; ns, not significant.

Figure 5. A novel inhibitor of mutant IDH1 inhibits human AML cell growth

(A) Structural model of the IDH1R132H dimer showing binding of HMS-101 and NADP to the active center of IDH1.

(B) Cell viability of HoxA9+IDH1wt and HoxA9+IDHmut cells incubated with increasing concentrations of HMS-101 (mean ± SEM of 4 independent experiments).

(C) Ratio of R-2HG and S-2HG in HoxA9+IDHmut-transduced bone marrow cells incubated with 10 µM HMS-101 for 72 hours (mean ± SEM, n=3)

(D) Induction of apoptosis by HMS-101 (10 µM) indicated by the proportion of annexin V positive cells in murine bone marrow cells transduced with HoxA9 CTL, HoxA9 IDH1wt and HoxA9 IDH1mut after 72 hours of treatment (mean ± SEM, n=3).

(E) Representative FACS blots of cell cycle phases in HoxA9 CTL, HoxA9 IDH1wt and HoxA9 IDH1mut cells treated with HMS-101 (10 µM) for 72 hours. Cell cycle phases were determined by analysis of BrdU/7AAD stained cells by FACS. The upper quadrant represents cells in S phase, the lower left quadrant represents apoptotic cells, lower middle quadrant represent cells in G0/G1 phase and the lower right quadrant represents cells in G2/M phase of the cell cycle.

(F) Quantitative analysis of cell cycle distribution after treatment with HMS-101 (10 µM) in the HoxA9 CTL, HoxA9 IDH1wt and HoxA9 IDH1mut cell lines for 72-hours as described in legend 5E (mean ± SEM, n=3).
(G) Representative Western blot of in vitro cultured cells treated with HMS-101 for the indicated murine cell lines using antibodies against phospho-ERK, total-ERK and β-actin, as loading control.

(H) Induction of apoptosis by HMS-101 (10 µM) in the indicated cell types relative to DMSO-treated cells after suspension culture for 72-hours.

(I) Inhibition of colony-formation in CFC assays using human cells from healthy donors or AML patients with wildtype or mutant IDH1 by HMS-101 relative to DMSO-treated cells (mean ± SEM).

* indicates P<.05; ** indicates P<.01, ns, not significant.
Figure 1

A

Cumulative cell units

Number of platings

B

WB:

IDH1

β-actin

C

R23/GS-2H2G ratio in cell lysates

D

CF+ cells in peripheral blood (%)

Time from transplantation (weeks)

E

White blood cells in peripheral blood (10^6/μL)

Time from transplantation (weeks)

F

Hemoglobin (g/dL)

Time from transplantation (weeks)

G

Platelet count (10^9/μL)

Time from transplantation (weeks)

H

Percentage of positive cells in peripheral blood

I

Spleen weight at 20 weeks (mg)
Figure 2
Figure 3

A Gate: GFP+ bone marrow cells in vivo

B Percentage of GFP
bone marrow

C Gene expression
relative to ABL

D Cdkn2b

E Cdkn2a

For personal use only.on April 28, 2017. For personal use only.
Figure 4

A

B

HoxA9 IDH1wt vs HoxA9 IDH1mut

C

“Positive regulation of MAP-kinase signalling”

D

E

F

G

H

I

J

K
Figure 5
Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML

Anuhar Chaturvedi, Michelle Maria Araujo Cruz, Nidhi Jyotsana, Amit Sharma, Haiyang Yun, Kerstin Görlich, Martin Wichmann, Adrian Schwarzer, Matthias Preller, Felicitas Thol, Johann Meyer, Reinhard Haemmerle, Eduard A. Struys, Erwin E. Jansen, Ute Modlich, Zhixiong Li, Laura M. Sly, Robert Geffers, Robert Lindner, Dietmar J. Manstein, Ulrich Lehmann, Jürgen Krauter, Arnold Ganser and Michael Heuser