Clinical drug resistance linked to inter-convertible phenotypic and functional states of tumor-propagating cells in multiple myeloma

Aristeidis Chaidos¹,², Chris P Barnes³, Gillian Cowan¹, Philippa C May², Valeria Melo², Evdokia Hatjiharissi⁴, Maria Papaioannou¹,⁶, Heather Harrington⁶, Helen Doolittle¹, Evangelos Terpos¹,⁷, Meletios Dimopoulos⁷, Saad Abdalla¹,², Helen Yarranton⁸, Kikkeri Naresh¹,⁹, Letizia Foroni¹,², Alistair Reid¹,², Amin Rahemtulla¹,², Michael Stumpf⁶, Irene Roberts¹,², Anastasios Karadimitris¹,²

¹Centre for Haematology, Department of Medicine, Imperial College London, London, UK
²Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
³Department of Cell and Developmental Biology, University College London, UK
⁴Department of Haematology, Theagenio Cancer Hospital, Thessaloniki, Greece
⁵AHEPA Hospital, 1st Department of Internal Medicine, Aristotle University of Thessaloniki, Greece
⁶Centre for Bioinformatics and Institute of Mathematical Sciences, Imperial College London, UK
⁷Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
⁸Department of Haematology, Chelsea and Westminster Hospital NHS Trust, London, UK
⁹Department of Histopathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK

Running Title: Myeloma-propagating cells and drug resistance

Correspondence: Anastasios Karadimitris
Centre for Haematology, Department of Medicine
Imperial College London
Hammersmith Hospital
Du Cane Road, London W12 0NN, UK
Tel: +44(0) 208 383 8438
Fax: +44(0) 20 3313 8223
e-mail: a.karadimitris@imperial.ac.uk
ABSTRACT

The phenotype and function of cells enriched in tumor-propagating activity and their relationship to the phenotypic architecture in multiple myeloma (MM) are controversial. Here, in a cohort of 30 patients we show that MM comprises four hierarchically organised, clonally-related sub-populations which, although phenotypically distinct, share the same oncogenic chromosomal abnormalities as well as immunoglobulin heavy chain complementarity region 3 area sequence. Assessed in xenograft assays, myeloma-propagating activity is the exclusive property of a population characterized by its ability for bi-directional transition between the dominant CD19-CD138+ plasma cell (PC) and a low frequency CD19-CD138- subpopulation (termed Pre-PC); in addition, Pre-PC are more quiescent and unlike PC, are primarily localized at extramedullary sites. As shown by gene expression profiling, compared to PC, Pre-PC are enriched in epigenetic regulators, suggesting that epigenetic plasticity underpins the phenotypic diversification of myeloma-propagating cells. Prospective assessment in paired, pre- and post-treatment bone marrow samples shows that Pre-PC are up to 300-fold more drug-resistant than PC. Thus, clinical drug resistance in MM is linked to reversible, bi-directional phenotypic transition of myeloma-propagating cells. These novel biological insights have important clinical implications in relation to assessment of minimal residual disease and development of alternative therapeutic strategies in MM.
INTRODUCTION

Multiple myeloma (MM) is an incurable plasma cell (PC) malignancy of the bone marrow (BM). Although acquired genetic events and the tumor microenvironment are well established regulators of myeloma cell survival and proliferation pathways, the identity and functional properties of the myeloma-propagating cells have been a matter of controversy1,2.

The terminal differentiation of normal mature B lymphocytes to immunoglobulin (Ig)-secreting PC entails conversion of antigen-naïve to antigen-experienced B cells in the germinal centre of secondary lymphoid organs and their subsequent differentiation to either memory B cells or PC3,4. Each stage of B cell differentiation can be defined by surface markers with naïve and memory B cells expressing CD19 and terminally differentiated normal and malignant PC, but not B cells, expressing CD138 (Syndecan-1)5,6.

Given this linear B cell lineage developmental process, it was suggested that myeloma cell growth is sustained by a minority of cells more immature than the PC. This hypothesis is supported by the presence of CD19+CD138- clonotypic B cells [i.e. cells sharing the same Ig heavy chain (IgH) complementarity region 3 (CDR3) sequence with the myeloma PC] in peripheral blood (PB) and BM of patients with MM7-10. Indeed, since CD138- but not CD138+ PC were found to lead to myeloma engraftment in NOD/SCID mice it was proposed that CD138- cells were the principal myeloma-propagating or “myeloma stem” cells11-14. Earlier studies though, using a huSCID mouse model, had concluded that mature PC (defined as CD38hiCD45-), and not the CD19+ B cell fraction, contained the entire myeloma-propagating activity15, while more recently, CD19-CD138- as well as CD138+ cells engrafted SCID-rab mice with myeloma16. Furthermore, while earlier studies reported that the myeloma side population (SP) is enriched in clongenic activity and identifies with CD138- but not CD138+ myeloma cells13, recent evidence shows that both CD138+ and CD138- cells are included in the highly clonogenic myeloma SP17. Whether these discrepancies result from different animal models and phenotypic definitions of PC is not clear. Here, through a
detailed phenotypic and genetic analysis of primary human myeloma cells and a prospective, dynamic ex vivo and in vivo study of the constituents of the myeloma cellular architecture we show that a phenotypic and functional inter-convertible state between CD138+ and CD138- cells underpins myeloma–propagating activity and clinical drug resistance.

METHODS

Patient and normal donor bone marrow and peripheral blood samples

Patient bone marrow (BM) and peripheral blood (PB) samples were obtained after written informed consent and appropriate institutional ethics committee approval. Patient characteristics are shown in Suppl Table 1. Diagnosis, remission and relapse of MM were defined according to previously described criteria18. Normal BM samples were surplus material from cryopreserved bone marrow harvests, collected from healthy sibling adult donors, for use in allogeneic transplantation. Cells were collected and stored in the John Goldman Centre for Cellular Therapy at the Hammersmith Hospital, under JACIE-approved procedures and released with donor’s written informed consent. This study was conducted in accordance with the Declaration of Helsinki.

IgH CDR3 characterization of the myeloma clone and patient-specific IgH CDR3 qPCR for myeloma clonotypic cells

The IgH CDR3 characterization of the myeloma clone was performed as previously described19. A customised genomic DNA qPCR assay was used for detection and quantification of clonotypic cells (Suppl Fig 1C). For this purpose, patient-specific IgH CDR3 forward primer was designed in the D-N2-JH area. IgH hydrolysis probes (TaqMan®) labelled with FAM in 5'-end and with TAMRA in the 3’-end were complementary to the 3’-end of the JH exon, as previously published20. The reverse primer for qPCR was designed complementary to the intron downstream the JH gene segment. Unlike other B cell malignancies, we found that in MM this intronic area is usually heavily affected by somatic
hypermutation. Therefore, this intronic area was amplified in each case with a PCR using the patient specific IgH CDR3 forward primer and a JH reverse primer complementary to the downstream JH gene. The PCR product was characterized by nucleotide sequencing and a patient specific reverse primer was designed to improve the efficiency and specificity of qPCR (Suppl Fig 1D). In selected cases, a patient-specific probe had to be designed for the same reasons. qPCR sensitivity was tested using serial dilutions of patient CD138+ cell gDNA into gDNA extracted from a pool (n=10) of normal donor B cells. The ΔΔCq method was used for the relative quantitation of the myeloma clonotypic cells within the flow-sorted cell populations. The reference gene used was albumin (see also Supplementary Data).

Flow-cytometry analysis and cell-sorting

BM cells and PBMC were prepared in single cell suspension in PBS plus 0.5% BSA solution. Non-specific staining was reduced using a Fc blocking reagent (Myltenyi Biotec) and 4',6-diamidino-2-phenylindole (DAPI) was used for dead cell exclusion. Doublet cells were excluded based on FSC-W/FSC-A values. We used 12-colour flow cytometry for analysis in a BD LSRFortessa analyser and 10-colour staining for cell sorting in a BD FACSAria II cell sorter (both from BD Bioscience). The monoclonal antibodies used are listed in the Supplementary Data file. For cell cycle analysis, cells were first stained for surface markers followed by fixation for 30mins, using a fixation buffer from eBiosciences. Cells were then incubated for 20min in DAPI staining solution (DAPI 1μg/ml, Triton-X 0.1%). A 355nm UV laser in a BD LSRFortessa analyser was used for DAPI excitation. For Rhodamine 123 dye exclusion, cells were first stained for surface markers and then incubated in alphaMEM culture medium plus 12.5μM Rhodamine 123 for 10mins. Cells were then washed and placed in 37°C for 45mins before analysis. Data were analysed using the FlowJo software by Tree Star Inc., Ashland, OR.
Xenograft assays

NOD.Cg-Prkdc^{scid}Il2rg^{tm1Wjl}/SzJ (NSG) mice were obtained from Dr Paresh Vyas, Weatherall Institute of Molecular Medicine, University of Oxford, UK. All animal experiments were conducted in accordance to Animals (Scientific Procedures) Act 1986 and under a UK Government Home Office approved project licence.

NSG mice aged 9-13 weeks were first sublethally irradiated (200cGy) and cells were injected within the next 4 to 24 hours. The isolation strategy of clonotypic cells from total BM was modified, aiming to minimize exposure of transplanted cells to surface antibody labelling, especially anti-CD38. This approach was adopted to avoid opsonisation and thus reduced engraftment rates as previously reported²¹.

CD138⁺ PC were first isolated from total BM with CD138⁺ immunomagnetic bead selection, followed by flow-sorting of the CD138^{hi} cells to high purity (≈100%, Figure 4A). Pre-PC were negatively enriched by flow-sorting of the CD19-CD138-CD2-CD3-CD14-CD16-CD34-CD45-Glycophorin A- BM cells. Clonotypic B cells were flow-sorted using a CD19⁺CD138⁻-gate. Cells were collected in PBS and immediately injected in doses up to 1.5×10⁶ cells per animal (Suppl Table 4). In all cases, tail vein-injected cells were tested with IgH CDR3 qPCR to confirm the presence and quantify the dose of clonotypic cells given (shown in Suppl Table 4). Mice were followed up for a minimum period of 24 weeks. Single cell suspensions were prepared from the murine BM, liver and spleen and analysed with flow-cytometry. Human cells were identified as mCD45.1-hCD59⁺ and further tested for expression of CD138, CD38, CD56, CD19, CD20, CD200, CD319 and CD27 antigens. Engrafted cells were quantified as percentage of the mCD45.1⁺ murine hematopoietic cells. Additionally, engraftment of human cells was confirmed with IgH CDR3 qPCR, showing that the human cells found in the murine tissues were always 100% clonotypic.

Gene expression profiling

Total RNA was extracted from flow-sorted (purity >99%) PC and Pre-PC using the RNeasy Plus Micro kit (Qiagen). In all cases (n=9, Suppl Table 5) cells were isolated from fresh BM
aspirates taken at diagnosis (n=6) or at relapse (n=3). Extracted RNA was quantified using the Qubit® Fluorometer (Invitrogen). RNA purity and integrity was confirmed in an Agilent 2100 Bioanalyser with RNA Pico Chips. Because Pre-PC is a low frequency population, we used the Ovation® Pico WTA Systems V2 from NuGEN Technologies to efficiently produce amplified cDNA for microarrays (accession number: E-MEXP-3772) starting from a 15ng total RNA input. Amplified cDNA was then fragmented and labelled using the Encore™ Biotin Module (NuGEN Technologies) and hybridised on Human Gene ST1.0 Arrays (Affymetrix) at a final concentration 23ng/µl in the hybridization mix on a GeneChip Fluidics Station 450. The arrays were scanned in a GeneChip® Scanner 3000 7G with autoloader. Arrays were normalised using RMA and then non-specific filtering applied to remove probes with low variance across samples. Hierarchical clustering and heat map generation were performed using Partek on the 1000 probes showing the greatest log fold change. Differential expression analysis was applied in R/Bioconductor using the limma package with empirical Bayes correction. Principal component analysis was applied on the 1509 genes showing differential expression (p<0.05) with the first principal component (PC1) clearly separating the Pre-PC-PC samples cell types. To enrich the set of genes for gene ontology (GO) term enrichment analysis, a cut on the (absolute) loadings on PC1 of 0.02 was applied giving 1094 genes for analysis. GO term enrichment was performed using DAVID with the total set of genes on the Affymetrix HG ST 1.0 as the background. P-values represent a Benjamini-Hochberg corrected modified Fisher’s exact test. The microarray data is deposited to Array Express with accession number E-MEXP-3772.

Statistics

The Mann-Whitney and Wilcoxon sign rank tests were used for group comparisons. Statistical analysis was performed with the SPSS statistics v17.0 software.

Modeling and relevant statistical methods, cytology, immunohistochemistry and FISH are described in Supplemental Data.
RESULTS

Cell of origin, phenotypic diversity and genetic characterization of the myeloma cellular architecture

The presence of low frequency PB and BM clonotypic CD19+ B cells suggests that the cell of origin in MM is a CD19+ B lineage cell. To further address this, we analysed in purified myeloma PC the length of the class switch recombination (CSR) Sμ-γ fusion fragment, a unique molecular event that defines transition from naïve to memory B cells. Using long template PCR, as previously reported, we found a single band in all 10 cases studied (Suppl Fig 1A & B) suggesting that tumor-propagating cells in MM originate from a post-CSR, germinal centre-experienced B cell.

Next, we established the complete phenotypic spectrum and quantified the frequency of B cell lineage clonotypic cells. Using a rigorous methodology combining flow-sorting of populations of interest with a highly sensitive clonotypic genomic qPCR assay specific for the patient-unique IgH CDR3 sequence (Suppl Fig 1C-F), we identified clonotypic CD19+ cells in both the BM and PB of patients at diagnosis, remission and relapse (Figure 1 and Suppl Figure 1G). In line with CSR analysis, we found that the clonotypic architecture of MM does not include naïve (CD19+IgD+) or immature (CD19+IgD-CD10+) B cells (Figure 1A and Suppl Fig 1G). Instead, it consists of a) mature CD19+ B cells (Figure 1A) comprising resting memory B cells (CD19+CD10-IgD-CD27+/CD38-) and plasmablasts (PBL: CD19+CD10-IgD-CD38hiCD319+CD138-; Figure 1A) and b) CD19-CD200+CD319+CD56+ cells comprising CD138+ and CD138low PC and a previously incompletely characterised, low frequency (~3 % of all clonotypic cells) CD19-CD138-CD200+CD45-/loCD319+CD56+ population we termed Pre-PC (Figure 1B and Suppl Fig 1H). Quantitation of the clonotypic subpopulations in the BM of 30 patients with MM (Suppl Table 1) showed that the frequency of clonotypic cell subsets, from CD19+ cells to CD19-CD138+ PC, increases in a near logarithmic manner (Fig 1C & E). Unlike in BM, Pre-PC but not PC were identified in the peripheral blood (PB) of the majority of patients (Figure 1D &
F). In line with CD138 expression heterogeneity, CD138low and CD138- cells could also be identified by BM immunohistochemistry (Suppl Figure 1I & J). Notably, Pre-PC and PC from MM patients were morphologically distinct from each other: Pre-PC, in contrast to the large size and the prominent Golgi apparatus of PC, were significantly smaller with little or no visible Golgi and resembled small lymphocytes (Figure 1G).

Genetic characterization of the clonotypic hierarchy by fluorescent in situ hybridization (FISH) confirmed the presence of oncogenic cytogenetic abnormalities [such as t(11;14), t(4;14) and del13q25;26] in clonotypic CD19+ cells as well as in PC and Pre-PC of the same patient showing that these cells are part of the same malignant clone as the CD138+ PC (Figure 1H and Suppl Fig 1K & L). Together these data show that the clonotypic architecture in MM is phenotypically more diverse than previously appreciated and bears the typical MM oncogenic genetic hallmarks.

Normal counterpart of Pre-PC in peripheral blood and bone marrow

Previous studies demonstrated the presence of circulating CD19+ PBL and PC in the PB of healthy individuals6;27. These cells show strong expression of CD27 and CD38 (i.e., CD19+CD38hiCD27hi). However, it is unclear whether a normal counterpart of circulating Pre-PC, i.e., CD19- B lineage cells with the CD38hiCD27hiCD319+CD138- phenotype exists. To address this, we performed immunophenotypic analysis of PB samples from 15 healthy donors (Figure 2A & B). As previously described6;27, within the population that expresses cytoplasmic Ig light chains (LC) and therefore comprises bone fide B lineage cells, we identified CD19+CD38hiCD27hiCD319+CD138- PBL and CD138+ PC. In addition, we identified a CD19-cytoplasmic Ig LC+ population which was enriched in CD38hiCD27hiCD319+ cells. The majority of these cells CD19-CD38hiCD27hiCD319+ cells express CD138 and are therefore PC while a smaller proportion are CD138- i.e., correspond to the myeloma Pre-PC phenotype (Figure 2A & B).
To further investigate the phenotypic relationship of the myeloma clonotypic architecture with that of the normal late B cell differentiation program, we applied a similar immunophenotypic strategy in normal BM samples. In line with previous work\(^6\);\(^27\), we found that PC in normal BM are CD38hiCD27hiCD138+ cells that may or may not express CD19, while PBL are identified as CD19+CD38hiCD27hiCD138- cells (Figure 2C). In addition, in all 5 BM samples tested we identified a novel CD19-CD27hiCD38hiCD138- population that by immunophenotypic criteria corresponds to myeloma Pre-PC (Figure 2C). All 4 populations, PBL, Pre-PC and CD19+ or CD19- PC, as compared to memory and naïve B cells, displayed strong expression of surface CD319 and cytoplasmic Ig LC (Figure 2D). Interestingly, both BM and PB Pre-PC, as assessed by forward scatter criteria, are smaller than PC (Figure 2B & D). Therefore, PB and BM pre-PC are a feature of normal late B cell architecture as well as of myeloma. Taken together, these data suggest that clonotypic cells in myeloma are organized in a hierarchy that mirrors, at least in part, that of normal late B cell development.

Mathematical modeling of growth and differentiation of myeloma clonotypic cells

Having delineated its phenotypic complexity, we tested directions of phenotypic transitions within the myeloma BM hierarchy by developing dynamic mathematical models (see **Suppl Methods** and **Suppl Tables 2 & 3** for more details) and fitting them to the observed frequencies of CD19+ cells, Pre-PC, CD138low PC and CD138+ PC using maximum likelihood\(^28\). Our null model assumed a linear transition from CD19+ cells to PC via Pre-PC and CD138low cell types. Using the likelihood ratio test we examined the hypothesis of additional subset transitions. We found that while each of the Pre-PC→CD19+ cell, CD138lowPC→CD19+ cell, PC→CD19+ cell transitions were not supported in the analysis (p=0.999), a PC→Pre-PC transition could be readily identified (p=0.031; Figure 3A and **Suppl Figure 2**). We further investigated the PC→Pre-PC transition by adopting a Bayesian approach and using an MCMC algorithm\(^29\), calculated the marginal likelihood under the null model and the model including the PC→Pre-PC transition (Figure 3B). We obtained a
median Bayes Factor of 5.06 thus providing strong evidence for the existence of this transition30 suggesting that Pre-PC and PC might exist in an inter-convertible state.

Tumor-propagating activity of myeloma clonotypic subsets

To directly test the predictions of the modeling analysis and the functional relationship of the clonotypic fractions in vivo, we adoptively transferred either highly purified CD19+ cells (i.e., a mixture of resting memory B cells and PBL), PC or Pre-PC from 8 MM patients into sub-lethally irradiated NSG mice and followed their engraftment for up to 34 weeks (Suppl Table 4).

As assessed by flow-cytometry combined with clonotypic qPCR and immunohistochemistry, mice transplanted with highly purified CD138hi PC displayed BM engraftment in 75% (9/12) of cases (Figure 4A and Suppl Table 4), showing that contrary to recent data11-13, CD138+ PC can engraft immunodeficient mice and therefore are myeloma-propagating, a finding supported by their ability to engraft in secondary transplants (Suppl Figure 3 and Suppl Table 4). It should be noted that the observed frequency and level of engraftment in NSG mice was comparable to those previously reported for SCID and NOD/SCID mice31-33 but rather lower than the SCID models involving skin implants of either human or rabbit bone15;34.

In line with the modeling analysis prediction of a PC→Pre-PC transition, both Pre-PC and CD138+/low PC were identified in BM of mice receiving CD138hi PC, at frequencies similar to those found in patients' corresponding BM samples (Figure 4A&B). Engrafted PC and Pre-PC had the same distinct morphological (Figure 4C) and cell cycle status features (Figure 4D) as in the patient BM (see below and Figure 6D), i.e., pre-PC were smaller and more quiescent cells, thus recapitulating the original, clonotypic Pre-PC - CD138low - PC hierarchy observed in the patient BM. However, as also predicted by the modeling analysis, CD19+ human cells were never detected (data not shown) in the BM of these mice.

We also found clonotypic cells in the spleen and liver of mice transplanted with CD138hi PC, although at an overall lower frequency than in BM (Suppl Table 4). Notably, unlike the BM
where CD138+ PC comprised the majority of clonotypic cells, the spleen and liver contained predominantly Pre-PC and CD138low myeloma cells rather than CD138+ PC (Figure 4A & B). These data support the important role played by the microenvironment in modulating the behavior of MM clonotypic cells and suggest that preferential microenvironmental localization as well as phenotypic differences distinguish Pre-PC from PC.

To formally test in vivo the Pre-PC → PC transition, negatively enriched (to avoid anti-CD38 mAb-mediated cell opsonization21) Pre-PC were transferred into NSG mice. Despite a lower engraftment rate (25%, 4/16 mice; Suppl Table 4), which is likely to reflect the lower numbers of cells available compared to PC, the pattern of CD138 expression in BM was similar to that generated by CD138hi PC, i.e., predominance of CD138+ PC over Pre-PC (Figure 4E). Finally, as previously reported16,15 none of the mice (0/10) transplanted with CD19+ cells showed evidence of engraftment (Suppl Fig 4) supporting lack of myeloma-propagating activity in CD19+ clonotypic cells.

Together these data indicate that within the myeloma phenotypic hierarchy, myeloma-propagating activity is the exclusive property of a population which can assume two interconvertible phenotypic states distinguished by their expression of CD138. Interestingly, the preferential localization of cells with low or no expression of CD138 in the liver and spleen of engrafted animals, and their preferential presence in PB of patients, suggests the existence of extramedullary sites of MM localization. In line with this notion in humans, prospective analysis of several paired BM-PB samples in patient P12 (Suppl Table 1) over a period of 38 months showed in two consecutive time points the presence of circulating Pre-PC and clonotypic CD19+ cells while the patient was in complete clinical remission18 and in molecular remission in the BM (Figure 4F).

Global mRNA expression profiling of Pre-PC - PC
To gain insights into the molecular mechanisms underpinning the reversible, bi-directional Pre-PC - PC transition we subjected highly purified (>99%) Pre-PC - PC pairs from 9 patients (Suppl Table 5) to global mRNA expression profiling. Hierarchical clustering of the 1000 genes with the highest fold change in mRNA expression between the two cell types revealed distinct clusters of gene expression separating PC from Pre-PC in 7 samples, while the other 2 samples formed a different distinct pattern (Figure 5A). Further analysis focused on the 7 samples sharing the same hierarchical clustering pattern (Figure 5B) identifying 1509 differentially expressed genes at p<0.05. A principal component analysis (PCA) of these genes showed clear separation of PC and Pre-PC along the first principal component in all 7 pairs (p=4x10^-6; Figure 5C and Suppl Figure 4). To reduce our gene set for pathway analysis and enrich for those genes involved in separating PC and Pre-PC, a threshold on the loading of the first principal component was applied resulting in 1094 genes.

Upon functional annotation clustering using DAVID (Suppl Table 6), a graph-based annotation clustering algorithm35, the highest scoring cluster contained these GO terms plus the UniProtKB chromatin regulator term. The list of genes in this cluster contained several chromatin regulators, including histone methyl-transferases (belonging to the Polycomb repressive complex 2 or Trithorax MLL activating complex) and de-methylases, histone acetyl-transferases and de-acetylases as well as several members of SWI/SNF chromatin remodeling complex (Suppl Table 7).

Taken together, these findings suggest an important role of ‘epigenetic plasticity’ determining the process of bi-directional transition of myeloma-propagating cells.

Pre-PC and clinical drug resistance

Since reduction or loss of CD138 expression was previously associated with increased chemoresistance of a myeloma cell line in vitro36, we addressed whether Pre-PC - PC transition is linked to differential treatment responses in primary MM cells in vivo. For this purpose, we first compared the frequency of clonotypic CD19+ cells, Pre-PC and PC in patients at diagnosis with those in remission following treatment that included chemotherapy,
the proteasome inhibitor bortezomib and autologous hematopoietic stem cell transplantation (Suppl Table 1). As expected, the PC frequency in the BM from diagnosis to remission was significantly lower (p=0.013; Figure 6A). However, consistent with clinical drug resistance, the frequency of BM CD19+ clonotypic cells and Pre-PC remained unchanged (p>0.05; Figure 6A).

To further investigate the resistance of Pre-PC to treatment, we carried out a prospective quantitative assessment of BM clonotypic cells in paired pre-treatment and post-treatment clinical remission samples from 8 MM patients. Consistent with clinical drug resistance, in all 8 patients, a significantly higher proportion of Pre-PC than PC persisted post-treatment, with an overall 10.3-fold smaller reduction (range 4.4-332; p=0.008) in the frequency of Pre-PC as compared to PC (Figure 6B & C). Although Pre-PC were more quiescent than PC as revealed by the significantly (p=0.01) lower proportion of Pre-PC in S phase of the cell cycle (Figure 6D), a property also consistent with drug resistance, both Pre-PC and PC excluded vital dye equally efficiently and lacked surface expression of the drug efflux proteins ABCB1 (P-glycoprotein) and ABCG237 (Figure 6E) suggesting that their differential response to treatment does not involve a drug efflux mediated-process commonly implicated in tumor chemo-resistance.

Taken together, these data show that both PC and Pre-PC fractions harbor myeloma-propagating activity and represent two dynamic and inter-convertible states of the same clonal population displaying differential response to treatment and preference for anatomical sites.

DISCUSSION

In this study, we investigated myeloma-propagating activity based on the most comprehensive dissection of the phenotypic diversity in myeloma to date. While previous studies suggested the presence of CD19+CD138- clonotypic cells as well as the dominant CD19-CD138+ PC, we show that the myeloma cellular architecture comprises at least 4 distinct populations. The data that emerged from the large cohort of MM patients we studied,
strongly suggests a hierarchical arrangement of these populations, mirroring that of normal B cells, i.e., with clonotypic memory B cells followed by CD19+ PBL at the apex of the hierarchy and the CD19-CD138+ PC as the most mature cellular population. The CD19-CD38hiCD319+CD138- immunophenotype of Pre-PC, a population only incompletely studied in myeloma, suggested that within this hierarchy, Pre-PC are placed between PBL and PC. This is further supported by a) high expression in Pre-PC of CD319, a SLAM family receptor highly expressed in normal and malignant PC, b) identification both in BM and PB of normal individuals of a population with exactly the same phenotype as myeloma Pre-PC, i.e., CD19-CD38hiCD319+CD138- cells and c) the ability of Pre-PC to generate PC but not PBL in the xenograft assays.

As shown in Figure 2 and previously reported, PBL, i.e., CD38hiCD27hiCD319+CD138- cells that express CD19 comprise a sizeable fraction of normal late B cell development. PBL are considered to represent differentiating, Ig-secreting cells migrating from secondary lymphoid organs to the BM where they complete their maturation to CD38hiCD27hiCD319+CD138+ PC, with the majority of normal BM PC retaining expression of CD19. However, in myeloma, clonotypic CD19+ PBL-like cells are infrequently identified (data not shown). By contrast, as previously reported, the dominant myeloma PC were CD19- in all cases, suggesting a specific propensity of CD19- but not of CD19+ late B cell lineage cells to myelomatous transformation.

In principle, Pre-PC in myeloma could be generated through forward differentiation of clonotypic CD19+ B cells or by reverse differentiation of mature CD138+ PC. The detailed and precise phenotypic and molecular data accrued from 30 patients allowed the development of a mathematical model that was constructed assuming a forward CD19+→Pre-PC→CD138low→PC differentiation potential and was used to ask whether reverse differentiation programs were possible. It clearly showed that only a PC→Pre-PC transition was possible, suggesting a distinct role of Pre-PC - PC bidirectional transition in the biology of myeloma. Xenograft assays, as well as confirming this prediction, they also
showed that Pre-PC - PC bidirectional transition is a phenomenon observed irrespective of the primary oncogenic genetic events or clinical stage of disease (Suppl Table 1 & 4).

Unlike myeloma PC and Pre-PC, clonotypic primary CD19+ B cells (i.e., memory B cells and PBL) failed to engraft. This may reflect either insufficient numbers of clonotypic cells injected (i.e. a 5-fold smaller dose of pre-PC than PC were transferred into NSG mice; Suppl Table 4), dependence of these cells on external cues that are not provided by the microenvironment in NSG mice or lack of myeloma-propagating activity of CD19+ clonotypic cells as previously reported. Use of a larger numbers of clonotypic B cells and their transfer into a new generation of humanized mice such as the HLA-DR-expressing NSG mice would be required to definitively address the tumor propagating potential of clonotypic B cells in myeloma.

Taken together, our in vivo experiments clearly demonstrated that the myeloma-propagating activity is a property shared by both CD19-CD138- Pre-PC and CD19-CD138+ PC but it does not appear to include CD19+CD138- clonotypic B cells, thus resolving the current uncertainty whether CD138+ versus CD138- cells are enriched in tumor-propagating activity. In addition, our findings support recent data showing that the myeloma SP, highly enriched in myeloma propagating activity, includes both CD138+ and CD138- cells.

Pre-PC not only resemble small lymphocytes and are more quiescent than PC, they are also molecularly distinct to PC as shown by mRNA expression profiling and principal component analysis. The molecular signature of Pre-PC comprises epigenetic regulators enriched in components of the Polycomb repressive complex, MLL transcriptional activating complex and the chromatin remodeler SWI/SNF, consistent with epigenetic plasticity controlling the bidirectional Pre-PC - PC transition (Figure 6F).

Non-genetic, including epigenetic, clonal diversification has previously been predicted on theoretical grounds and experimentally addressed in multipotent hematopoietic progenitor and cancer cell lines in vitro. The same process was shown to underlie the transient and reversible drug-tolerant states of a small minority of cells (termed drug tolerant
persisters – DTP) in a variety of human cell lines in vitro44. Our finding that the low frequency, phenotypically and molecularly distinct Pre-PC are significantly less sensitive to anti-myeloma treatment than PC, provides strong support for the importance of non-genetic mechanisms in instructing clinical drug resistance also in vivo in primary tumors; the lack of a drug efflux mechanism associated with clinical drug resistance in myeloma is another feature that Pre-PC share with DTP44. Nevertheless, it is likely, if not certain, that irreversible genetic, mutational mechanisms would eventually also instruct myeloma-propagating activity as well as drug resistance. In fact, it is predicted41,42 that non-mutational diversification may promote and co-operate with mutational mechanisms leading to clonal evolution. Finally, it should be noted that CD138 mRNA was not differentially expressed between Pre-PC and PC (data not shown) suggesting that its downregulation in Pre-PC is mediated primarily through post-transcriptional mechanisms, likely, by its cleavage at the cell surface45. Whether down-regulation of CD138 expression in itself is necessary or it is just a marker for the Pre-PC - PC transition remains to be determined.

The observation that the PC↔Pre-PC equilibrium is subject to microenvironmental constraints, with the CD138+ status predominant in BM and the CD138- status predominant in the spleen, liver and possibly other anatomical sites of the engrafted animals, provides another example of the close relationship between myeloma and microenvironment. Consistent with previous observations in tumor models showing the ability of the microenvironment to impart de novo drug resistance and shape phenotypic diversity of tumor cells through non-genetic mechanisms46, the data presented here suggest that extramedullary locations function as sanctuaries of drug resistance and relapse in myeloma. This is further highlighted by a) patient P12 in whom Pre-PC but not PC persisted in PB despite complete clinical and molecular remission in the BM in two consecutive time points in the course of the disease and b) the clinical observation that in up to 35% of patients with MM, following high dose chemoradiotherapy and autologous or allogeneic stem cell transplantation, relapse can take place in extramedullary sites without evidence of concurrent BM disease47,48.48
From a clinical perspective, our findings suggest that current methods of assessing minimal residual disease relying on the identification of CD138+ cells in the BM should be re-evaluated to include CD138- clonotypic cells in blood as well as BM. Moreover, use of mAb for therapeutic targeting of CD138 might favor survival of inherently drug-resistant, myeloma-propagating cells and current and future therapeutic strategies should aim at effectively targeting all clonotypic myeloma fractions. Finally, delineation of the precise role of the epigenetic regulators such as Polycomb and MLL in the Pre-PC - PC transition will offer opportunities for development of novel epigenetic therapies in MM.

Acknowledgments

This work was supported by Leukaemia and Lymphoma Research, Leuka and the NIHR Biomedical Research Centre.

Author Contributions

AC: designed and performed research, analysed data, wrote the paper; CPB: performed mathematical modeling, analysed data, wrote the paper; HH, MS: performed mathematical modeling, analysed data; GC, PCM, VM, AR, HD: perform researched, analysed data; EH, MP, ET, MD, SA, HY, AR: contributed patient samples and information, contributed to manuscript writing; KN, LF: supervised part of research, analysed data; IR: analysed data, contributed to the writing of paper, supervised research; AK: designed and supervised research, analysed data, wrote the paper

Conflict of Interest Disclosures

The Authors have no relevant conflict of interests to declare
References

34. Hosen N, Matsuoka Y, Kishida S et al. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia 2012;26(9):2135-2141.

FIGURE LEGENDS

Figure 1. Phenotypic and genetic characterization of the clonotypic cellular architecture in myeloma. **A.** Multi-parameter flow-cytometry gating strategy for identification and flow-sorting of CD19+ fractions (immature, naïve, memory B cells and plasmablasts - PBL) in the BM of patients with myeloma. Each of the indicated fractions was flow-sorted to high purity and subjected to patient-specific clonotypic gDNA qPCR. **B.** Top panel: Strategy for characterization of CD19- clonotypic populations. Sequential gating of patient BM CD200+CD319+ and CD45lo/-CD56+ cells allows identification and flow-sorting of an almost entirely clonotypic hierarchy of CD138+ (PC), CD138low and CD138- (Pre-PC) cells. Bottom panel: overlays of the CD19- clonotypic cells (red) over the total BM cells (grey) indicates that if the traditional gating on CD138+CD38+ events was applied, it would exclude Pre-PC and CD138low cells from further analysis. **C-F.** Frequency of clonotypic fractions in BM mononuclear cells (n=30 patients; **C & E**) and peripheral blood mononuclear cells (n=21 patients; **D & F**) of patients with myeloma shown as a cohort (**C, D**) or in individual patients (**E, F**). Horizontal bars indicate median values excluding cases with undetectable clonotypic cells. **G.** Top: May-Grünwald Giemsa staining of flow-sorted Pre-PC and PC (x1000), bottom: histogram and median FSC-A values of Pre-PC and PC. **H.** Interphase FISH analysis of chromosome 13 complement showing loss of one red (13q34) and one green signal (13q14), consistent with monosomy 13 in highly purified, flow-sorted peripheral blood PBL, Pre-PC and PC from the same patient, confirmed as enriched in clonotypic cells by qPCR. Chromosome 13 ideogram and location of FISH probes are shown on the left. The upper threshold for normal results is 5%. A minimum of 50 interphase cells were scored by two independent analysts in a blinded fashion. The average number of total interphases examined and the number of those with 13q deletion are shown below the FISH image.
Figure 2. CD19-CD138- Pre-PC are a feature of the normal late B cell development. A. Flow-cytometric analysis of the normal late B cell development in PB (n=15 normal donors); a representative donor sample is shown. After gating out non-B cell lineage cells, analysis of CD19+ cells, as expected, shows a polyclonal pattern of cytoplasmic Ig light chain (LC) expression, i.e. expression of κ and λ chains. PBL are identified as CD38hiCD27hiCD138- and PC as CD38hiCD27hiCD138+ cells. For identification of Pre-PC, gating on lineage-CD19- cells reveals a small cytoplasmic Ig LC+ population which upon sequential gating is found to be enriched in CD38hiCD27hi cells (48% in the case shown); these include CD138+ PC and CD138- Pre-PC. Both CD19+ PBL/PC and CD19- Pre-PC/PC are CD319+. B. Histograms showing cell size as assessed by FSC-A and expression levels of CD19, cytoplasmic Ig LC, CD319, CD20 and HLA-DR in the above four populations as well as in naïve and memory B cells. Numbers next to histograms represent median intensity fluorescence (MFI) values. C. Identification of PBL, CD19+ PC, Pre-PC and CD19- PC in BM from healthy donors; a representative of five samples is shown. Using a strategy similar to that described for PB, all four cell types were found to be CD38hiCD27hi. D. Histograms showing cell size and expression levels of CD19, cytoplasmic Ig LC, CD319, CD20 and HLA-DR of BM B lineage populations.

Figure 3. Modeling analysis of differentiation and proliferation profiles of myeloma clonotypic fractions. A. Likelihood analysis: the different cell types are represented by the grey squares and transitions between them represented by arrows (with associated rate parameters; see Suppl Methods). The set of black solid arrows represent the transitions in the null model that assumes linear transition from CD19+ cells to PC via Pre-PC and CD138low cell types. Each dashed arrow represents an included transition tested (i.e., Pre-PC→CD19+ cell, CD138lowPC→CD19+ cell, PC→CD19+ cell transitions) with respect to the null model using a likelihood ratio test. Black dashed lines are transitions that were not significant. The transition PC→Pre-PC (represented by the dashed red line) showed a p value of 0.031 indicating significance at the 5% level. B. Bayesian analysis of the transition
PC→Pre-PC: to further investigate this transition an MCMC algorithm was developed to fit a fully Bayesian model. The box plot shows the marginal likelihood for the null model and for the null model including the transition PC→Pre-PC for ten runs of the MCMC algorithm with different starting values. The Bayes factor of 5.06, here calculated as the ratio of the marginal likelihoods, represents strong evidence for the inclusion of the PC→Pre-PC transition.

Figure 4. Myeloma-propagating potential of Pre-PC and PC and partial recapitulation of the clonotypic hierarchy in NSG mice. A. Left: Highly purified BM CD138hi myeloma PC transferred to NSG mice engraft murine BM, spleen and liver. Human cells are identified in mouse tissues by flow cytometry as hCD59+mCD45.1- (top panels). Engrafted PC recapitulate the CD19- hierarchy of the human BM (bottom panels); however, in the spleen and liver there is preferential presence of Pre-PC and CD138low cells. Right: BM H&E staining in a mouse transplanted with CD138hi PC shows myeloma cell infiltration. Immunohistochemistry (x400) for human κ/λ light chains and CD138 are also shown. In this example, myeloma PC are κ LC restricted and as expected express CD138. B. Cumulative data of the frequencies of PC, CD138low and Pre-PC in the BM, spleen and liver in mice receiving patient CD138hi PC. Horizontal lines represent median values. C. Size of BM PC and Pre-PC highly purified by flow-sorting from the BM of mice engrafted after transfer of CD138hi myeloma PC. A representative example is shown. D. Cell cycle analysis in multi-parameter flow cytometry of engrafted BM Pre-PC and PC. E. Engraftment pattern in the murine BM after transfer of Pre-PC recapitulates Pre-PC - PC duality. Pre-PC were negatively selected by flow-sorting as Lin-CD19-CD34-CD138- cells. In this example, 13.4% of the flow-sorted cells were clonotypic as assessed by qPCR and a total of 33.5x10^3 clonotypic B cells were infused. F. Peripheral blood and BM clonotypic cell dynamics in the timeline of treatment of a patient with MM (ASCT: autologous stem cell transplantation, Bort/Dex: bortezomib & dexamethasone) and disease status changes (MolR: molecular
remission, IF: immunofixation, CR: complete clinical remission). Blood clonotypic CD19+ cells, Pre-PC and CD138low cells but not PC are identified while the patient was in complete clinical and molecular remission in the BM at 5.6 and 11.1 months.

Figure 5. Global mRNA profile analysis of Pre-PC and PC. A. Hierarchical clustering of all 9 Pre-PC and PC pairs. B. Hierarchical clustering of the 1000 more differentially expressed genes in 7 pairs of Pre-PC- and PC. C. Principal component analysis on 1509 differentially expressed genes (at p<0.05) in which PC and Pre-PC were clearly separated along the first principal component in all 7 pairs. D. Pathway analysis of genes involved in separating PC and Pre-PC. The 3 top scoring gene clusters are enriched in Pre-PC and contain genes involved in chromatin modification, chromatin organization and chromosome organization. P-values represent a Benjamini-Hochberg corrected modified Fisher’s exact test.

Figure 6. Drug-resistance and quiescence of Pre-PC in vivo. A. Frequencies of BM clonotypic cells at diagnosis (D), remission (Rem) and relapse (Rel). B. Frequency (top panels) and fold change (bottom panels) of clonotypic fractions in 8 patients achieving clinical remission after treatment. Top panels show absolute frequency changes in the clonotypic fractions, bottom panel shows relative changes in the frequency of the clonotypic cells. C. The ratio of PC/Pre-PC fold reduction (median 10.3; range 4.4 – 332; p=0.008) as estimated in each patient from panel C. D. Cell cycle analysis after DAPI staining and multi-parameter flow cytometry of BM cells shows that a significantly lower fraction of Pre-PC than PC are in S phase. An example and cumulative data from 7 patients are shown. E. Left: Flow-cytometry histograms showing Rhodamine 123 dye exclusion by myeloma Pre-PC and PC as compared to PBL, naive and memory B cells. Unstained PC are shown as a negative control. PC and Pre-PC retain comparable levels of Rhodamine 123 as assessed by MFI; right: P-glycoprotein (ABCC1) and ABCG2 are not expressed in Pre-PC or PC as assessed by flow-cytometry in BM samples. Representative of 10 patient samples. F. A
model of clonotypic hierarchy and myeloma propagating activity. Memory B cells are at the apex of the clonotypic hierarchy in MM. However, myeloma propagating activity is detected in the terminally differentiated B lineage cell that through an epigenetic, bi-directional transition can assume the morphologically and immunophenotypically distinct states of Pre-PC and PC. In most patients the equilibrium of Pre-PC ↔ PC transition favors PC. Although both are enriched in myeloma propagating activity, Pre-PC are relatively more quiescent and treatment-resistant than PC and in vivo are preferentially present in spleen and liver while PC are the dominant population in BM.
Figure 1
Figure 2
Figure 4
Clinical drug resistance linked to inter-convertible phenotypic and functional states of tumor-propagating cells in multiple myeloma

Aristeidis Chaidos, Chris P. Barnes, Gillian Cowan, Philippa C. May, Valeria Melo, Evdoxia Hatjiharissi, Maria Papaioannou, Heather Harrington, Helen Doolittle, Evangelos Terpos, Meletios Dimopoulos, Saad Abdalla, Helen Yarranton, Kikkeri Naresh, Letizia Foroni, Alistair Reid, Amin Rahemtulla, Michael Stumpf, Irene Roberts and Anastasios Karadimitris

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.