POLYMORPHISMS OF PROTEIN TYROSINE PHOSPHATASE CD148
INFLUENCE FcγRIIA-DEPENDENT PLATELET ACTIVATION AND THE RISK OF
HEPARIN-INDUCED THROMBOCYTOPENIA

Jérôme Rollin1,2, Claire Pouplard1,2, Marie-Pierre Gratacap3, Dorothée Leroux1,2,
Marc-Antoine May4, Michel Aupart5, Valérie Gouilleux-Gruart1,6, Bernard Payrastre3,7 and
Yves Gruel1,2.

1UMR CNRS 7292 and Université François Rabelais, Tours, France. 2Laboratoire
d’Hématologie-Hémostase, CHU Tours, France. 3Inserm, U1048 and Université Toulouse 3,
I2MC, Toulouse, France. 4Service d’Anesthésie-Réanimation, CHU Tours, France. 5Service
de Chirurgie Cardiaque, CHU Tours, France. 6Laboratoire d’immunologie, CHU Tours,
France. 7Laboratoire d’Hématologie. CHU Toulouse, France.

Corresponding author: Yves Gruel, Department of Hematology-Hemostasis, CHU Trousseau,
37044 Tours Cedex, France.

Phone : 33 2 47 47 46 72

Fax : 33 2 47 47 59 04

E-mail: gruel@med.univ-tours.fr

Key words: heparin – thrombocytopenia – protein tyrosine phosphatase – gene
polymorphisms, CD148, platelet aggregation.

Running title: CD148 and HIT
ABSTRACT

Heparin-induced thrombocytopenia (HIT) is due primarily to IgG antibodies specific to platelet factor 4/heparin complexes (PF4/H) which activate platelets via FcγRIIA. CD148 is a protein tyrosine phosphatase that regulates Src kinases and collagen-induced platelet activation. Three polymorphisms affecting CD148 (Q276P, R326Q, D872E) were studied in HIT patients and 2 control groups, with or without antibodies to PF4/H. Heterozygote status for CD148 276P or 326Q alleles was less frequent in HIT patients, suggesting a protective effect of these polymorphisms. Aggregation tests performed with collagen, HIT plasma, and monoclonal antibodies cross-linking FcγRIIA showed consistent hyporesponsiveness of platelets expressing the 276P/326Q alleles. In addition, platelets expressing the 276P/326Q alleles exhibited a greater sensitivity to the Src Family Kinases (SFKs) inhibitor, dasatinib, in response to collagen or ALB6 cross-linking FcγRIIA receptors. Moreover, the activatory phosphorylation of SFK was considerably delayed as well as the phosphorylation of LAT and PLCγ2, two major signaling proteins downstream from FcγRIIA. In conclusion, this study shows that CD148 polymorphisms impact platelet activation and probably exerts a protective effect on the risk of HIT in patients with antibodies to PF4/H.
INTRODUCTION

Heparin-induced thrombocytopenia (HIT) results from an atypical immune response to platelet factor 4/heparin complexes (PF4/H), with rapid synthesis of platelet-activating IgG antibodies that activate platelets via FcγRIIA receptors. The risk of HIT is probably dependent on the intensity of this immune response, since the likelihood of developing thrombocytopenia and thrombotic complications has been related to the plasma levels of IgG antibodies to PF4. However, the reasons explaining why only a subset of patients treated with heparin and who develop significant levels of IgG to PF4/H complexes will present with HIT remain to be fully defined.

Protein tyrosine kinases (PTKs) and phosphatases (PTPs) are crucial for the regulation of signaling pathways involved in the control of several cellular processes, including immune responses and platelet activation. Dysregulation of the equilibrium between PTK and PTP function can therefore have pathological consequences. Among PTKs, Src family kinases (SFKs) have an important role in regulating immune responses and platelet adhesion, activation and aggregation. SFKs are essential in the platelet FcγRIIA-dependent signaling pathway, and it was recently demonstrated that dasatinib, a SFK inhibitor, prevents platelet activation induced by HIT antibodies. In addition, SFKs are involved in collagen-dependent platelet activation via glycoprotein VI (GPVI). After collagen/GPVI interaction or FcγRIIA cross-linking, SFKs induce phosphorylation of conserved tyrosine residues within the ITAM (immunoreceptor tyrosine–based activation motif) providing a docking site for the tyrosine kinase, Syk. The specific interaction of Syk with the ITAM leads to its stimulation, an early key step of platelet activation via GPVI or FcγRIIA. Two specific inhibitors of Syk have recently been shown to inhibit FcγRIIA-dependent platelet activation induced by HIT antibodies.

An important step in the activation of SFKs is the dephosphorylation of the inhibitory tyrosine
residue in their C-terminal tail. Several soluble PTPs, including LMW-PTP, PTP-1B, SHIP-1, PTEN, are involved in the regulation of collagen or FcγRIIA-dependent platelet activation11,12,13,14. CD148 (also known as DEP-1), a receptor-like PTP, was recently shown to be critical for initiating GPVI signaling in platelets and positively regulating thrombus formation in mice15. In addition, CD148 also contributes to the regulation of Fc receptor–mediated SFK activation in macrophages and neutrophils16,17. CD148 is an R3 receptor-like protein tyrosine phosphatase (RPTP) with eight fibronectin type III–like (FNIII) domains in its extracellular region, a single catalytic domain, and a cytoplasmic region with putative tyrosine phosphorylation sites. CD148 is encoded by \textit{PTPRJ}, a gene located on chromosome 11, composed of 25 exons that contains several single nucleotide polymorphisms (SNPs)18. More specifically, 3 non-synonymous SNPs i.e. Q276P (rs1566734), R326Q (rs1503185) and D872E (rs4752904), located in the coding region have been identified in the British population19.

Given their central role in regulating SFKs and multiple signaling networks essential for immune cell function and platelet activation, we investigated whether CD148 might be involved in the pathogenesis of HIT. We hypothesized that a relationship may exist between polymorphisms of CD148 (\textit{i.e.} Q276P, R326Q and D872E) and the development of heparin-dependent antibodies to PF4 and HIT. Since the frequency of homozygous CD148 276Q and 326R genotypes was found to be significantly higher in HIT patients than in controls, we then investigated whether platelet aggregation and signaling responses triggered by collagen and HIT antibodies varied according to CD148 genotypes.
PATIENTS AND METHODS

HIT patients and control groups.

The patient group (HIT) comprised 97 individuals (52 females and 45 males) with definite HIT. All had developed delayed-onset thrombocytopenia and/or a significant decrease in platelet count after a median duration of heparin treatment of 10 days (range 4-25). Both PF4-specific ELISA (HAT® GTI, Brookfield, WI) and serotonin release assay (SRA) were positive in every patient. However, different levels of antibodies to PF4 were measured in the plasma of HIT patients (median absorbance at 405 nm or A405=2.2; range: 0.76-4.0).

The first control group (Ab neg) consisted of 179 patients (50 females and 129 males) who had undergone heart surgery with cardiopulmonary bypass (CPB). All patients had received high doses of unfractionated heparin during surgery but none had developed an immune response to heparin after CPB since no significant level of PF4-specific antibodies was measured between 7 and 10 days post-operatively (median A405=0.13; range: 0.04-0.38; cut-off value=0.4).

The second control group (Ab pos) consisted of 160 patients (49 females and 111 males) who had also undergone cardiac surgery with CPB and had been treated by heparin post-operatively. All had developed significant levels of PF4-specific antibodies (median A405=1.13; range: 0.41-4.0) but without significant abnormal evolution in platelet count in the post-operative period. In addition, the serotonin release assay (SRA) was consistently negative in every patient of this control group.

All patients and controls were caucasians and blood samples were collected after obtaining informed consent according to the Helsinki declaration principles. Moreover, both our institutional ethics committee and the Ministry of Research had previously approved
collection of DNA from HIT patients and healthy controls for genetic studies (Agreement number DC2008-308 and 2011-N7).

Materials

Mouse monoclonal anti-CD9 (clone ALB6) and isotype control IgG1 were obtained from Acris Antibodies (Herford, Germany); monoclonal anti-GPIIb antibody (clone PL2-49) was kindly provided by Dr C. Kaplan (INTS, Paris, France). Monoclonal anti-CD32 antibody (clone IV.3) was purchased from Stemcell Technologies (Grenoble, France). Carboxyfluorescein-conjugated mouse monoclonal anti-human CD148 and isotype control were obtained from R&D systems Europe (Lille, France). Monoclonal anti-phospho-tyrosine antibody (clone 4G10) was from Upstate Biotechnology (Walthan, MA). Antibodies against phospho-Lyn (Y507), phospho-Src (Y416), phospho-LAT (Y191) and peroxidase-conjugated secondary antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA). Antibodies against phospho-PLCγ2, PLCγ2, Src and Lyn were obtained from Santa Cruz (Santa Cruz, CA, USA).

Horm collagen and thrombin were obtained from Nycomed (Wien, Austria) and Stago (Asnières sur Seine, France), respectively, and unfractioned heparin (Heparin Choay) from Sanofi (Paris, France). Dasatinib (Sprycel®) was kindly provided by Bristol-Myers Squibb (New York, NY, USA). Tirofiban (Agrastat®) was obtained from Iroko Cardio UK Ltd (London, UK). All other antibodies and reagents were purchased from Sigma-Aldrich unless otherwise indicated.

Genotyping

Genomic DNA was extracted from citrated whole blood using the Flexigen DNA kit (Qiagen, Courtaboeuf, France) according to the manufacturer’s instructions. Genotypes of
CD148 Q276P (1176A/C; rs1566734), R326Q (1326G/A; rs1503185), and D872E (2965C/G; rs4752904) polymorphisms were defined by the PCR-HRM method using specific primers (Table SI). PCR-HRM assays were performed in a 10µL reaction volume containing the high-resolution melting master mix (Roche, Meylan, France) 1X concentrate, 10ng DNA and 3 pmol of each primer. PCR was set up in a LightCycler 480 (Roche) and the thermal cycling conditions were 10 min at 95°C, followed by 45 cycles of 10 s at 95°C, 10 s at 60°C and 10 s at 72°C. The amplification cycle was followed by 1 min at 95 C; 1 min at 40°C and melting was monitored from 60 to 95°C (0.02°C/s) with continuous fluorescence acquisition. FcγRIIA H131R polymorphism (rs1801274) was studied as previously described21.

Expression level of CD148 in platelets

Washed platelets of healthy donors, carriers (n=5) and non-carriers (n=5) of the CD148 276P/326Q polymorphisms were incubated for 20 minutes either with labeled anti-CD148 antibody or isotypic control, and then analyzed using a FACSCalibur flow cytometer and CellQuest software (Becton Dickinson, Franklin Lakes, NJ).

Platelet aggregation tests

Whole blood from 33 healthy aspirin-free donors was collected in ACD (Acid-Citrate-Dextrose) supplemented with PGE1 (0.1µM) and platelet rich plasma was isolated by centrifugation (150g, 15 min, 20°C). Platelets were washed and resuspended at a final count adjusted to 350 G/L21. All reactions were performed at 37°C in an APACT 4 aggregometer (ELITech Group, Salon-de-Provence, France) with stirring at 1000 rpm. Platelet aggregation tests with collagen and thrombin were performed with 225µL of adjusted platelet suspension mixed either with 25µL of collagen (final concentrations of 10, 1 and 0.5µg/mL) or 25µL of thrombin (0.05IU/mL). In addition, FcγRIIA-dependent platelet
aggregation was also evaluated using murine monoclonal antibodies ALB6 (2.5µg/mL) and PL2-49 (7.5µg/mL) as previously described22,23.

Specific platelet aggregation tests were also performed in the presence of dasatinib, a SFK inhibitor. Briefly, washed platelets were pre-incubated for 10 minutes with dasatinib at final concentrations of 0, 20, 40, 60, 80, 100nM before addition of either collagen (1µg/mL) or ALB6 (2.5µg/mL).

Finally, heparin-induced platelet aggregation (HIPA) was also studied with the plasma of 3 patients previously identified as having developed definite HIT. Importantly, both HIPA and SRA were positive with the plasma of each of these patients when tested with platelets from random donors. For each experiment, platelet suspensions (135µL) from donors heterozygous for the Fc\gammaRIIA H131R polymorphism were incubated with 0.5IU of heparin (25µL) and HIT plasma (90µL) and aggregation was continuously monitored for at least 20 min. Before testing, each HIT plasma was heated at 56°C for 1 hour and centrifuged to remove any residual thrombin activity.

Kinetics of phosphorylation

The platelet tyrosine phosphorylation pattern was analyzed after incubating platelet suspensions with collagen (0.5µg/mL) for 45, 60 and 90 sec or with ALB6 (2.5µg/mL) for 90, 120, 150 and 600 sec. Platelet activation was induced in the presence of Tirofiban (200µM) and stopped by addition of 5X lysis buffer (225mM Tris, pH 6.8, 50% glycerol, 5% sodium dodecyl sulphate, 0.25M DTT, 5mM EGTA, 0.05% bromophenol blue). Platelet lysates were then heated at 100°C for 3 minutes and placed on ice for 10 minutes before being frozen at -20°C. Lysates were then submitted to sodium dodecyl sulfate–polyacrylamide gel electrophoresis, transferred onto nitrocellulose, and tyrosine phosphorylated proteins were detected by immunoblotting with specific antibodies. Quantitative phosphorylation analysis
was performed by densitometric analysis and normalized with pan-lyn and pan-src signals. This procedure was applied with platelets collected from 6 separate donors, *i.e.* three 276QP/326RQ heterozygotes and three 276QQ/326RR homozygotes.

Statistical analysis

Chi square analysis was used to compare the frequencies of alleles and genotypes in HIT patients and controls. Considering the minor allele frequency for each SNP and the number of subjects studied in each group, only very few patients were identified as homozygous CD148 276PP or 326QQ. Therefore, we compared carriers of the 276P or 326Q allele (heterozygous + homozygous) to non-mutated subjects.

Mann Whitney U-test or t-test was performed to compare aggregation parameters and kinetics of phosphorylation in relation to CD148 polymorphisms. p values below 0.05 were considered significant.
RESULTS

Genotype analysis of CD148

We analyzed 3 SNPs affecting the PTPRJ gene encoding of CD148, Q276P, R326Q, and D872E. The results presented in Table I show that the frequency of CD148 genotype 276QQ was significantly higher in HIT patients (83.5%) than in the Ab^{neg} and Ab^{pos} groups (65%, p=0.001, and 70.5%, p=0.03, respectively). Therefore, the 276P allele appeared to provide protection from the risk of HIT (OR 0.47; 95% CI 0.29-0.94, p=0.03) in patients with antibodies to H/PF4 but it was not associated with the antibody response (frequency of the 276P allele = 19% and 16% in Ab^{neg} and Ab^{pos} groups, respectively). Analysis of the CD148 R326Q SNP demonstrated that the 326RR genotype was also more frequent in HIT patients (82.5%) than in Ab^{neg} (63.5%, p=0.002) and Ab^{pos} controls (70%, p=0.04). In addition, a strong linkage disequilibrium was evidenced between the Q276P and R326Q SNPs (D'= 0.94, PHASE software). It is also noteworthy to mention that no difference in the genotype frequencies was observed according to gender in the 3 groups studied. On the other hand, patients homozygous for the CD148 872E allele were more frequent in the HIT group compared to the Ab^{pos} and Ab^{neg} groups (19.5% vs 11% and 13.5%, respectively) but the difference was not significant, and the allele frequency was similar in the 3 groups of patients studied (Table I).

Expression level of CD148 in platelets

The surface expression level of CD148 measured by flow cytometry was identical in platelets heterozygous for the 276P/326Q alleles (mean RFU=5.99, SD=0.3, n=5) and cells isolated from non-carriers (mean RFU=6.04, SD=0.7, n=5).

Platelet aggregation according to CD148 polymorphisms
The apparent protective effect of CD148 276P and 326Q alleles on the risk of HIT suggested they could have an impact on platelet activation by anti-PF4/H antibodies. We therefore performed heparin-induced platelet aggregation (HIPA) assays by testing the effects of plasma from 3 well-defined HIT patients on genotyped platelets in the presence of 0.5IU/mL of heparin. To avoid any possible influence of the FcγRIIA 131H/R polymorphism, only platelets isolated from heterozygous donors were studied. Representative results of HIPA are presented in figures 1A and B. Rapid and significant aggregation was obtained with platelets from 276QQ/326RR subjects whereas longer lag times were recorded when platelets from carriers of the 276P/326Q alleles were tested, and with some donors no aggregation was observed. Median lag time was therefore longer with platelets from donors expressing the 276P/326Q alleles whatever the HIT plasma tested (HIT1 = 684 vs. 386 sec with 276QQ/326RR platelets; p=0.033, HIT2 = 479 vs. 317 sec; p=0.025 and HIT3 = 1200 vs. 650 sec; p=0.08; Fig 1C). In addition, the maximum aggregation induced by HIT1 and HIT3 plasma was also significantly lower with 276P/326Q platelets (41.5% vs. 75% with 276QQ/326RR platelets; p=0.05 and 13.5% vs. 55%; p=0.025 with HIT1 and HIT3 plasma, respectively; Fig 1D).

FcγRIIA-dependent platelet aggregation was also studied using two monoclonal antibodies, ALB6 and PL2-49, with platelets isolated from healthy donors heterozygous for the FcγRIIA 131H/R dimorphism. The lag time measured with 276P/326Q platelets was significantly longer compared to those recorded with 276QQ/326RR platelets (median = 133 vs. 101 sec, p=0.05 and 136 vs. 84 sec; p=0.035 with ALB6 and PL2-49, respectively, Fig 2A). However, the maximum aggregation was similar whatever the CD148 genotype (median = 75% vs. 76% for ALB6 and 73% vs. 73% for PL2-49, respectively, Fig 2B). In addition, no significant difference in the lag time or maximum aggregation was found in relation to the CD148 D872E polymorphism (Fig S1).
We also investigated the influence of CD148 polymorphisms on platelet aggregation induced by collagen or thrombin tested as control. The lag time was significantly longer with platelets from donors heterozygous for the 276P/326Q alleles when aggregation was induced by the lowest concentrations of collagen (median = 67 vs. 52 sec with 276QQ/326RR platelets; p=0.045 and 102 vs. 68 sec; p=0.03 with 1 and 0.5µg/mL of collagen, respectively, Fig 2C). In addition, the maximum aggregation recorded with 0.5µg/mL of collagen was also lower (median = 49% vs. 65%, p=0.015, Fig 2D). In contrast, no significant difference was observed in platelet response to collagen according to the CD148 D872E genotype (Fig S1).

Collagen- and FcγRIIA-dependent phosphorylation according to CD148 polymorphisms

We then studied the kinetics of tyrosine phosphorylation in platelets activated by ALB6 in non-aggregating conditions to prevent αIIBβ3-dependent processes. The pattern of tyrosine phosphorylation appeared similar in resting platelets (T0) whether they were expressing the mutated form of CD148 or not (Fig 3A). However, a number of proteins were tyrosine-phosphorylated in non-mutated platelets after 90 sec of activation by ALB6, whereas no significant change in the phosphorylation pattern was evidenced even after 150 sec stimulation of platelets expressing the CD148 276P/326Q alleles. The tyrosine phosphorylation of LAT and PLCγ2, two well known signaling proteins downstream from FcγRIIA, was also significantly reduced in these platelets at the early times of stimulation, but not at 600 sec (Fig 3B). This time course, indicating a delay in the onset of tyrosine phosphorylation, probably explains the longer lag time recorded with 276QP/326RQ heterozygous platelets before aggregation. Specific analyses also revealed lower levels of activatory Src-Tyr-416 phosphorylation in resting platelets from heterozygous donors (Fig 3C). Although this phosphorylation increased following FcγRIIA cross-linking in control platelets, no significant change could be observed in platelets with the 276P/326Q alleles.
Conversely, the phosphorylation of the inhibitory Tyr-507 of Lyn appeared higher in platelets from CD148 276QP/326RQ donors compared to control homozygous cells but the difference observed was not significant (p=0.1, Fig 3D). In addition, a delay in tyrosine phosphorylation was also observed in heterozygous 276QP/326RQ platelets following stimulation with low doses of collagen (0.5µg/mL) (Fig S2).

Inhibitory effect of dasatinib on FcγRIIA-dependent platelet activation according to CD148 polymorphisms

Washed platelets were pre-incubated with increasing concentrations of dasatinib (0, 20, 40, 60, 80 and 100nM) before activation by 1µg/mL collagen or 2.5µg/mL ALB6. Platelet aggregation induced by ALB6 was fully inhibited by 100nM of dasatinib whatever the CD148 genotype (Fig 4). In addition, the lag time was prolonged with concentrations of dasatinib lower than 80nM (20, 40 and 60nM), but this effect was consistently more pronounced with platelets from heterozygous Q276P/R326Q donors (Fig 4). Similar dose-response effects in relation to CD148 polymorphisms were also obtained when platelet aggregation was induced by collagen (Fig S3). These findings indicate that platelets from CD148 Q276P/R326Q donors exhibited greater sensitivity to SFK inhibitors than control platelets.
DISCUSSION

The HIT immune response is characterized by a rapid IgG antibody response to PF4/H complexes, and is enhanced by clinical circumstances associated with platelet activation. However, the mechanisms that regulate the synthesis and pathogenicity of HIT antibodies have not been fully defined and are possibly influenced by genetic factors. In this study, we investigated the potential impact of 3 SNPs (Q276P, R326Q and D872E) affecting CD148 on the synthesis of antibodies to PF4/H and the occurrence of HIT. Our results demonstrated that patients carrying the CD148 276P and 326Q alleles appeared less at risk of HIT although they had developed significant levels of antibodies to H/PF4 (OR = 0.47; 95% CI 0.25-0.89 and OR = 0.50 95% CI 0.27-0.92, respectively). In accordance with previous studies, we found a strong linkage disequilibrium between both CD148 Q276P and R326Q polymorphisms. Importantly, our results suggested that CD148 Q276P and R326Q polymorphisms influence the pathogenicity of PF4/H antibodies but not the immune response to heparin since the minor allele frequency was different between HIT and Ab^pos^ patients, but not between Ab^neg^ and Ab^pos^ controls.

Like CD45, CD148 is a receptor-like PTP expressed in immune cells and a positive regulator of Src family kinases in B cells and macrophages. These redundant roles of CD148 and CD45 could therefore explain why no association was found between the potentially functional SNPs of CD148 analyzed in our study and the development of antibodies to H/PF4. Moreover, CD148 is present in platelets in larger amounts than CD45, which is marginally expressed in these blood cells.

HIT IgG antibodies bind to FcγRIIA, a low-affinity receptor present at low copy numbers in platelets (1000 to 2000 receptors per cell). However, PF4/H/IgG immune complexes may strongly activate platelets by cross-linking FcγRIIA receptors, and this process is a key event in pathogenesis of HIT. In our study, HIPA tests performed with HIT
plasma showed that platelets isolated from healthy donors carrying the CD148 276P/326Q alleles were hyporesponsive to anti-PF4/H antibodies. In addition, subjects expressing the CD148 276P/326Q isoform exhibited a lower response to murine monoclonal antibodies ALB6 and PL2-49, which also activate platelets via FcγRIIA receptors. Moreover, these subjects were also hyporesponsive to low concentrations of collagen (1 and 0.5 µg/mL) while platelet responses to high doses of collagen and thrombin were similar to those of non-mutated individuals. These results are consistent with those previously obtained with murine CD148-deficient platelets that failed to aggregate when activated by low doses of collagen but that responded normally to higher doses. Moreover, our experiments showed that the lag time measured after activation of platelets by HIT antibodies or monoclonal antibodies cross linking with FcγRIIA was more influenced by CD148 SNPs than the maximum aggregation. Delayed FcγRIIA-dependent signaling that particularly affected LAT and PLCγ2 tyrosine phosphorylation was demonstrated in cells expressing the CD148 276P/326Q isoforms. Moreover, the phosphorylation of the activatory Tyr-416 of SFK appeared lower in platelets of CD148 276P/326Q donors whereas the inhibitory Tyr- phosphorylation of Lyn tended to be higher. In addition, platelets expressing the 276P/326Q alleles were more sensitive to inhibition by the SFK inhibitor dasatinib than 276QQ/326RR cells. These variations in phosphorylation evidenced in human platelets in our study are compatible with previous findings obtained with CD148-deficient murine platelets, and support the critical role of CD148 in regulating both collagen and FcγRIIA-dependent signaling pathways. Taken together, these results demonstrate that FcγRIIA- or collagen-dependent signaling pathways are less efficient in platelets exhibiting the CD148 276P/326Q polymorphism. This could be attributed to reduced activation of SFKs and suggests that the threshold of activation was higher within platelets expressing the 276P/326Q alleles. This is consistent with recent findings, which demonstrated that CD148 contributes to maintaining a pool of active SFKs in
resting platelets and is necessary for optimal platelet activation by collagen30. Our results, which also showed that the membrane expression of CD148 was similar in platelets whatever the CD148 genotype, suggested that the presence of proline and glutamine at positions 276 and 326, respectively, might be associated with lower phosphatase activity. The substitutions Q276P and R326Q induce torsional stress and a loss of positive charge in the second fibronectin type III (FNIII-2) domain, respectively18, and these changes could also modify the ligand binding capacity of CD148 or its compartmentalization into membrane microdomains. Supporting this hypothesis, it has been demonstrated that the ectodomain oligomerization of two other RPTPs, i.e. SAP1 and PTPRO, is important to promote the tyrosine phosphorylation that is essential for regulating their phosphatase activity31,32,33. In addition, Takahashi et al. also showed that ectodomain-mediated oligomerization of CD148 was important for its phosphatase activity, with a critical role of 8 amino acids and particularly of residue 276Q34.

On the other hand, Senis et al. demonstrated that thrombus formation induced by vascular lesions was delayed in CD148 transmembrane-knockout (KO) mice15. In our study, no association could be found between the CD148 SNPs analyzed and thrombotic events in HIT patients (data not shown), but the number of samples evaluated was relatively small. Moreover, other cell types including monocytes and endothelial cells can also be activated by HIT antibodies and might have an important role in the development of thrombosis in HIT35,36,37.

In conclusion, our findings support the hypothesis that CD148 constitutes an important regulatory element for both collagen and FcγRIIA-mediated human platelet activation. In addition, they also demonstrate that a single polymorphism of this signaling protein can impact on platelet reactivity. In addition with individual variations in platelet signaling pathways, differences in the epitope specificity or binding properties of HIT antibodies
(affinity) might also contribute to their pathogenicity as supported by two different studies performed with human38 or murine39 antibodies to PF4/H complexes. FcγRIIA has recently been shown to have a critical role in platelet thrombus formation40 and our study therefore also suggests that analysis of CD148 P276Q and Q326R polymorphisms might contribute to evaluation of the variability of platelet responses in various diseases associated with thrombosis, including HIT.

ACKNOWLEDGMENTS

This study was supported by the Institut pour la Recherche sur la Thrombose et l’Hémostase (IRTH). We also thank Hsueh Cheng Sung for his help with Flow cytometry analysis and Ms Doreen Raine for editing the English language.

AUTHORSHIP

JR performed and designed the research, analyzed the data and wrote the paper. CP and YG, designed the research, analyzed the data, and wrote the paper. BP analyzed the data, and wrote the paper. MPG performed research and analyzed the data. DL and VGG performed experiments. MAM and MA contributed to the collection of samples.

CONFLICTS OF INTERESTS

The authors declare there are no competing financial interests.
REFERENCES

Table I: Genotypes and MAF of CD148 polymorphisms in control subjects and HIT patients.

<table>
<thead>
<tr>
<th>SNPs of CD148</th>
<th>(\text{Ab}^{\text{neg}}) (n = 179)</th>
<th>(\text{Ab}^{\text{pos}}) (n = 160)</th>
<th>HIT (n = 97)</th>
<th>OR [95% CI]</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q276P (rs1566734)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td>QQ</td>
<td>QQ</td>
<td>QQ</td>
<td>0.36 (0.20-0.67) *</td>
<td>p=0.001*</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QQ</td>
<td>QQ</td>
<td>QQ</td>
<td>0.36 (0.20-0.67) *</td>
<td>p=0.001*</td>
</tr>
<tr>
<td></td>
<td>QQ</td>
<td>QQ</td>
<td>QQ</td>
<td>0.36 (0.20-0.67) *</td>
<td>p=0.001*</td>
</tr>
<tr>
<td>MAF</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>0.41 (0.23-0.73) *</td>
<td>p=0.003*</td>
</tr>
<tr>
<td></td>
<td>MAF</td>
<td>MAF</td>
<td>MAF</td>
<td>0.41 (0.23-0.73) *</td>
<td>p=0.003*</td>
</tr>
<tr>
<td>R326Q (rs1503185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td>RR</td>
<td>RR</td>
<td>RR</td>
<td>0.37 (0.20-0.68) *</td>
<td>p=0.002*</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RR</td>
<td>RR</td>
<td>RR</td>
<td>0.37 (0.20-0.68) *</td>
<td>p=0.002*</td>
</tr>
<tr>
<td>MAF</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>0.50 (0.27-0.92) **</td>
<td>p=0.04**</td>
</tr>
<tr>
<td></td>
<td>MAF</td>
<td>MAF</td>
<td>MAF</td>
<td>0.50 (0.27-0.92) **</td>
<td>p=0.04**</td>
</tr>
<tr>
<td>CD148 D872E (rs4752904)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td>DD</td>
<td>DD</td>
<td>DD</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD</td>
<td>DD</td>
<td>DD</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MAF</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAF</td>
<td>MAF</td>
<td>MAF</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

p values and odds ratios (OR) were calculated for genotype and allele frequencies between: * \(\text{Ab}^{\text{neg}} \) and HIT; ** \(\text{Ab}^{\text{pos}} \) and HIT. MAF = minor allele frequency

† Only few patients were homozygous 276PP or 326QQ. Therefore, we compared carriers of the 276P or 326Q allele (heterozygous + homozygous) to non-mutated subjects.
Legends to figures

Figure 1: Influence of CD148 polymorphisms on platelet aggregation induced by HIT antibodies.

Panels A and B: Representative platelet aggregation curves obtained with washed platelets from non-carriers (A) and carriers of the CD148 276P/326Q alleles (B) incubated with HIT plasma in the presence of unfractionated heparin (0.5IU/ml). All donors tested were FcγRIIA 131H/R heterozygotes.

Panels C and D: Lag time (C) and maximum aggregation (D) obtained with 3 different HIT plasma samples in relation to Q276P/R326Q polymorphisms (non-carriers n=10 and carriers of 276P/326Q alleles n=7). All donors tested were FcγRIIA 131H/R heterozygotes.

The horizontal lines in the middle of box-and-whiskers plots show the median values. The tops and bottoms of boxes show the 25th and 75th percentiles. The whiskers define the 10th and 90th percentiles. Mann Whitney U-test was performed to compare aggregation parameters in relation to SNPs of CD148, and p values are displayed.

Figure 2: Collagen- and FcγRIIA-dependent platelet aggregation according to CD148 Q276P/R326Q polymorphisms.

Panels A and B: Washed platelets isolated from healthy heterozygous FcγRIIA 131H/R donors (n=20) were incubated with murine IgG1 monoclonal antibodies ALB6 (2.5µg/mL) and PL2-49 (7.5µg/mL). Lag time (A) and maximum aggregation (B) were analyzed according to CD148 polymorphisms (non-carriers = 13 and carriers of the 276P/326Q alleles = 7).

Panels C and D: Washed platelets isolated from healthy donors (n=33) were incubated with 0.5, 1 or 10µg/mL of collagen or with 0.05IU/mL thrombin. Lag time (C) and maximum
aggregation (D) were analyzed in relation to CD148 polymorphisms (■ non-carriers = 21 and □ carriers of the 276P/326Q alleles =12).

The horizontal lines in the middle of box-and-whiskers plots show the median values. The tops and bottoms of boxes show the 25th and 75th percentiles. The whiskers define the 10th and 90th percentiles. Mann Whitney U-test was performed to compare aggregation parameters in relation to SNPs of CD148 and significant p values are displayed.

Figure 3: Kinetics of phosphorylation after FcγRIIA-dependent activation

Washed platelets from carriers (n=3, ■) and non-carriers of the CD148 276P/326Q alleles (n=3, □) were activated by 2.5µg/mL ALB6 in the absence of aggregation (tirofiban) and then lysed at 0, 90, 120 or 150 sec. Platelet lysates were western blotted with an anti-phospho tyrosine and anti-actin (A), or antibodies against LAT p-Tyr-191, PLCγ2 p-Tyr-753 and PLCγ2 (Bi and ii), an anti-Src p-Tyr-146 (C), or an anti-Lyn p-Tyr-507 (D). Panels Bii, C, D: band intensities were quantified (mean ± SEM; *p<0.05 and ** p<0.01, t-test).

Figure 4: Inhibition of FcγRIIA-dependent platelet aggregation by dasatinib according to CD148 Q276P/R326Q polymorphisms.

Platelets from 10 healthy donors were treated with increasing concentrations of dasatinib (0, 20, 40, 60, 80 and 100 nM) before induction of aggregation by ALB6 (2.5µg/mL). Aggregation curves (A and B) are representative of results obtained with platelets from non-carriers (A) and carriers of the CD148 276P/326Q alleles (B). The mean increase in lag time (± SEM) in the presence of dasatinib was compared (t-test) between non-carriers (n=6, ■) and carriers of the CD148 276P/326Q alleles (n=4, □).
Figure 3

A

Comparison of protein expression between non-carrier and carrier 276P/326Q for 600 seconds. The images show the expression of SFKs and heavy chain of ALBs. Actin is used as a loading control.

B

Comparison of protein expression for LAT p-Tyr 191, PLCγ2 p-Tyr 753, and PLCγ2 between non-carrier and carrier 276P/326Q for 600 seconds.

C

Comparison of Src p-Tyr 416 (activatory Tyr) between non-carrier and carrier 276P/326Q for 150 seconds, showing significant increases at 90, 120, and 150 seconds.

D

Comparison of Lyn p-Tyr 507 (inhibitory Tyr) between non-carrier and carrier 276P/326Q for 150 seconds, showing decreases at 90, 120, and 150 seconds.
Figure 4

A

B

C

For personal use only.on September 14, 2017. For personal use only.
Polymorphisms of protein tyrosine phosphatase CD148 influence FcγRIIA-dependent platelet activation and the risk of heparin-induced thrombocytopenia

Jérôme Rollin, Claire Pouplard, Marie-Pierre Gratacap, Dorothée Leroux, Marc-Antoine May, Michel Aupart, Valérie Gouilleux-Gruart, Bernard Payrastre and Yves Gruel