
Short title: FAAP20: A Novel FA Core Complex Protein.

Abdullah Mahmood Ali 1, Arun Pradhan 1, Thiyam Ramsingh Singh 1, Changhu Du 1, Jie Li 1, Kebola Wahengbam 1, Elke Grassman 1, Arleen D. Auerbach 2, Qishen Pang 1-3, Amom Ruhikanta Meetei 1-3

1Experimental Hematology & Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229; 2Human Genetics & Hematology, The Rockefeller University, New York, NY 10065; 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229.

Corresponding author:

Amom Ruhikanta Meetei
Division of Experimental Hematology and Cancer Biology
Cincinnati Children’s Hospital Medical Center
240 Albert Sabin Way, Cincinnati, OH 45229
E-mail: Ruhikanta.Meetei@cchmc.org; Phone: 513-636-1768; Fax: 513-636-3768

Section designation: Regular Article; Scientific category: HEMATOPOESIS AND STEM CELLS
Abstract

Fanconi anemia nuclear core complex is a multi-protein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in Fanconi anemia (FA), a devastating genetic disease leading to hematological defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63-linked ubiquitin chains \textit{in vitro}. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage-induced chromatin loading of FANCA and for the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance.

Introduction

Fanconi anemia (FA) is characterized by developmental defects, bone marrow failure and higher predisposition to both hematological and non-hematological cancers.1 The primary reason for morbidity and mortality in FA patients is progressive bone marrow failure due to the depletion of hematopoietic stem cells.1,2 While bone marrow transplant significantly reduces hematological deficiencies and improves outcomes, FA patients still have a greater risk of developing myelodysplastic syndrome, acute myeloid leukemia and other solid tumors, such as squamous cell carcinomas.1-3 Diagnostic features of the disease are increased chromosomal breaks, and hypersensitivity of FA cells to DNA interstrand cross-linking (ICL) agents.1
FA is a genetically heterogeneous disease, comprising fifteen complementation groups; the genes mutated in these groups have been identified.3 Eight of the FA proteins (FANCA, -B, -C, -E, -F, -G, -L, and -M) and five associated factors (FAAP100, FAAP24, HES1, MHF1, and MHF2) form the FA nuclear core complex. The core complex is required for monoubiquitination of FANCD2-FANCI dimer upon DNA damage, which results in activation of downstream DNA repair and tolerance reactions.3,4 The downstream FA proteins include FANCD1/BRCA2, FANCJ/BACH1, FANCN/PALB2, FANCO/RAD51C, and FANCP/SLX4 – along with FA-associated proteins FAN1, RAD18 and RAD51.3 Together, these proteins function in the “FA-BRCA” pathway, which facilitates DNA cross-link repair and coordinates other DNA damage-responsive events – thereby stabilizing stalled replication forks, conveying signals to DNA checkpoint pathways, and facilitating recovery of replication forks.3,4

Discovery of several new members of the core complex in the past decade contributed much to the understanding of this pathway. Despite the isolation and characterization of several core complex members, a clear understanding of the core complex is far from clear. To better understand the functions of the core complex, it is necessary to isolate and characterize all core complex proteins and associated sub-complexes. Our previous attempt to better define the composition of the core complex led to the discovery of FANCB, FANCL, FANCM, FAAP100, MHF1, and MHF2.5-9 In this study, we report the isolation and characterization of a novel core complex protein, FAAP20.
Material and Methods

Cloning and constructs

The pMIEG3 retroviral vector was used for protein expression in mammalian cells.9 The pMYFP retroviral vector was made by replacing the EGFP of pMIEG3 with yellow fluorescent protein gene (YFP). Mammalian expression constructs and their construction strategy are discussed in detail in the Supplemental Methods.

Mammalian cells and cell culture procedures

Adherent epithelial cells were cultured in DMEM and lymphoblast cells were cultured in IMDM with 10\% FBS and 5\% CO\textsubscript{2}. Details of cell lines are described in Supplemental Methods.

Antibodies

Rabbit FAAP20 polyclonal antibody was raised against fusion protein containing full-length FAAP20 with maltose binding protein (MBP). The fusion protein was expressed in and purified from \textit{E. coli}, in accordance with the manufacturers' protocols. Anti-FANCM, -FANCA, -FANCL, -FANCG, -FAAP100, -FANCB, -FANCD2, -actin, -ATR, and -H2A antibodies have been described previously.9-11

Purification and mass spectrometry analyses of protein complexes

FA core complex was isolated from nuclear extracts of HeLaS3::His\textsubscript{6}FANCA/FLAGFAAP100 or HeLaS3::His\textsubscript{6}-FLAGFAAP20 cells, using two-step affinity chromatography; a schematic of the purification procedure is presented in figure S1B. Core-complex proteins were identified by MS analysis, using a procedure described previously.12
siRNA or shRNA knockdown

For transient knockdown of FAAP20, two independent siRNA oligos were used, siFAAP20#1 (5’-CGGAGCCCACUGAAGUCUUU-3’) or siFAAP20#2 (5’-CCAUGUGCCAGAAGGAGUUU-3’), and also siControl (D-001810-01-20) – all purchased from Dharmacon. Oligos were transfected using Lipofectamine 2000, according to manufacturers’ protocol. Greater than 70% knockdown of FAAP20 was observed within 24 hours post-transfection. See Supplemental Methods for shRNA constructs.

In vitro ubiquitin-binding assay

Ubiquitin-binding assay was carried out as described earlier. Briefly, M2-agarose-bound His6-FLAGFAAP20 wild-type or mutants or FLAGRAD18 were incubated for 4 hours at 4°C with 7 μg mono-Ub, Ub-K48 or Ub-K63 (Boston-Biochem) in 200 μL of binding buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 10% glycerol, 0.1% triton, 5 mM β-mercaptoethanol, and 2 mM N-ethylmaleimide. Resin was washed five times with binding buffer, and the proteins eluted using 3X-FLAG peptide (Sigma). To study the effect of FANCA on FAAP20 ubiquitin binding, purified MBP-FANCA1065-1455 was incubated with M2-agarose-bound His6-FLAGFAAP20 overnight at 4°C. After the binding reaction, unbound FANCA was removed by washing five times with binding buffer. The resulting FAAP20-FANCA complex was incubated with ubiquitin and processed as described above. Samples were boiled with 2X-SDS loading buffer, resolved in a 10-20% gradient Tricine Gel (Invitrogen), and immunoblotted with ubiquitin antibody (Boston-Biochem).
Results

Identification of FAAP20 as a novel integral component of the FA nuclear core complex

To isolate the FA nuclear core complex to homogeneity, we generated a HeLaS3 cell line stably expressing N-terminally histidine-tagged FANCA (His6FANCA) and N-terminally FLAG-tagged FAAP100 (FLAGFAAP100) (Figure S1A). To identify FA nuclear core complex proteins, we used two-step affinity purification of His6FANCA and FLAGFAAP100, from nuclear extracts, coupled with mass spectrometry (MS) (Figure S1B; MS data available on request). In the resulting purified complex, we found known members of the BLM complex and FA nuclear core complex (Figure 1A). In addition, we identified a 20 kDa polypeptide, which we named FAAP20 (Fanconi anemia-associated protein, 20 kDa) (Figure 1A). Database searches revealed that FAAP20 is similar to an uncharacterized protein named C1orf86 (Chromosome 1 open reading frame 86; NM_182533). FAAP20 was consistently found by MS analysis in several independent purifications performed as described above – under normal conditions and also in the presence of replication blockers, like hydroxyurea (HU), or ICL agents like mitomycin C (MMC). To confirm that FAAP20 is part of the core complex, we generated a cell line stably expressing FAAP20 containing an N-terminally-tagged histidine (6X) followed by a FLAG tag in tandem (Hist6-FLAGFAAP20). Using the method described above, we purified core complex associated with ectopically expressed Hist6-FLAGFAAP20 (Figure 1B). MS and immunoblot analysis of the purified FAAP20 containing complex identified known core complex proteins, suggesting that ectopically expressed FAAP20 was associated with the core complex (Figure 1B & S1C).

We next wished to immunoprecipitate endogenous FAAP20 from HeLaS3 cells. To do this, we first generated an antibody against FAAP20 which proved suitable for immunoblot
analysis of both His6-FLAGFAAP20 and endogenous FAAP20 (Figure 1C & S1C). Using this antibody, we immunoprecipitated FAAP20 from HeLaS3- and HSC93-cell lysates (Figure 1C & Figure S1D). Immunoblot analysis revealed the presence of other known core complex proteins – such as FANCM, FANCA, FANCG, and FANCL (Figure 1C & S1D). Interestingly, the amount of immunoprecipitated FANCA and FANCG was greater than the amount of other core complex proteins (e.g., FANCM and FANCL) (Figure 1C, S1C & S1D). In addition, FANCA and FANCG were reduced in the flow-through fraction (Figure 1C), suggesting that FAAP20 may also exist in sub-complex with FANCA and FANCG. In a reciprocal experiment, we immunoprecipitated FANCG, FANCL and FAAP100 from nuclear extracts of HeLaS3: His6-
FLAGFANCG, His6-FLAGFANCL and His6-FLAGFAAP100 respectively. In each instance, FAAP20 was present in the immunoprecipitate (Figure 1D). The association between FAAP20 and core complex members was not due to DNA contamination of the lysate, since an immunoprecipitation (IP) done in the presence or absence of ethidium bromide, which precipitates DNA, were not visibly different (Figure S1E).14 These IP data uniformly suggest that FAAP20 is an integral component of the core complex.

To determine whether FAAP20 co-fractionates with known core complex proteins, we performed gel filtration experiments using Superose-6. The gel filtration profile for FAAP20 was coincident with that for FANCA and FANCG (Figure 1F), suggesting that these three proteins exist in the same complex. The data from these four sets of experiments provide very strong evidence that FAAP20 is an integral component of FA nuclear core complex.
FAAP20 is unstable in the absence of FANCA

To check the fate of FAAP20 in the absence of other core complex proteins, we examined levels of FAAP20 in total lysates of patient-derived FA cells from complementation groups defective in several core complex proteins: HSC72 (FA-A), EUFA1386 (FA-B), HSC536 (FA-C), EUFA410 (FA-E), EUFA698 (FA-F), EUFA143 (FA-G), and EUFA868 (FA-L) (Figure 2A). The immunoblots revealed varying amounts of FAAP20 in different complementation groups, with a negligible amount in FANCA deficient HSC72 cells (Figure 2A). To determine whether this is an artifact of the HSC72 cells, or if the lack of FANCA in these cells results in reduced levels of FAAP20, we obtained several patient-derived FA-A cell lines from the International Fanconi Anemia Registry, in which FANCA protein is reduced or absent (Figure 2B). Immunoblot analysis of total lysate from these FA-A cells, revealed FAAP20 levels that were low or negligible (Figure 2B). We hypothesized that the reduced levels of FAAP20 is due to absence of FANCA. To test this hypothesis, we complemented the HSC72 cells with FANCA_FLAG; the resulting overexpression of FANCA, resulted in increased levels of FAAP20 protein (Figure 2C). In addition, FANCG levels, which are also reduced in HSC72 cells, were restored by FANCA overexpression (Figure 2C).\(^{15}\) These findings received further confirmation in FA-A fibroblast cells (PD220), in which like FANCA, FAAP20 levels are also reduced; in these cells, FANCA overexpression also led to increased expression of FAAP20 (Figure S2A). To confirm the reduced levels of FAAP20 in HSC72 cells, and to see if overexpressed FANCA binds FAAP20, we performed IP/immunoblot analysis of total lysates from HSC72 and HSC72-complemented cells using the FAAP20 antibody. The immunoblots revealed negligible amounts of FAAP20 and overexpressed FANCA was able to co-purify with FAAP20 (Figure 2D). To further confirm that FAAP20 is unstable in the absence of FANCA, and to determine the subcellular localization of
FAAP20, we made cytosol and nuclear extracts from HSC93 wild-type lymphoblast cells stably expressing control shRNA (shControl) or shRNA targeted against FANCA (shFANCA) (Figure 2E). While FAAP20 was found in both compartments, its localization was predominantly nuclear (Figure 2E). Knockdown of FANCA resulted in reduced levels of both cytosol and nuclear FAAP20 (Figure 2E). These findings confirm the observation made in HSC72 cells that FAAP20 is unstable in the absence of FANCA.

In HeLa cells, knockdown of FANCA results in reduced levels of FAAP20 (Figure 2F). Importantly, overexpression of FLAGFANCA in HeLa cells resulted in increased stabilization of FAAP20 and FANCG, but not other core complex proteins (Figure 2G). This phenotype, increased levels of FAAP20, was unique to FANCA, since overexpression of other core complex proteins in HeLa cells did not result in such a dramatic increase in FAAP20 (Figure S2B). Based on our observations that FAAP20 is unstable in the absence of FANCA, and overexpression of FANCA results in increased FAAP20 levels, we hypothesized that FAAP20 is degraded in the absence of FANCA, possibly via the proteasome-mediated degradation pathway. To test this hypothesis we cultured FANCA-knockdown HeLa cells in the presence or absence of proteasome inhibitor Mg132. Inhibiting the proteasome pathway resulted in restoration of FAAP20 levels, even though FANCA levels were depleted by RNAi (Figure 2H). These data suggest that FANCA stabilizes FAAP20, and in the absence of FANCA, FAAP20 is degraded via the proteasome-mediated protein degradation pathway.

FANCA is required for interaction of FAAP20 with other core complex proteins

To see if FANCA is required for interaction of FAAP20 with other core complex proteins, we overexpressed His6-FLAGFAAP20 in HSC72 cells (Figure 2I; Lane 3), and then used anti-FLAG to
IP FAAP20 from total cell lysates. Interestingly, neither FANCM nor FANCG were apparent in immunoblot (Figure 2I; Lane 6), suggesting that FANCA is required for FAAP20 interaction with other core complex members. Moreover, HSC72 cells expressing His6-FLAGFAAP20 failed to correct the FANCD2 defect in these cells (Figure S2C).

C-terminal region of FANCA binds FAAP20

The experiments above demonstrate that higher amounts of FANCA and FANCG are complexed with FAAP20 (Figure 1C), FANCA, FANCG and FAAP20 have similar gel filtration profiles (Figure 1E), FANCA, but not FANCG, is required for stability of FAAP20 (Figure 2), and absence of FANCA results in loss of FAAP20 interaction with other core-complex proteins (Figure 2I). Based on these observations, we hypothesized that FAAP20 interact directly with FANCA. To test this hypothesis, we made three deletion constructs of FANCA with a C-terminal FLAG tag and expressed them in HSC72 cells along with full-length FANCA (Figure 3A). Immunoblot analysis of FLAG-purified complex revealed that full-length FANCA interacts with both FANCG and FAAP20 (Figure 3B, lane 2). Deletion of 435 amino acids (aa) from the N-terminus resulted in loss of FANCA interaction with FANCG,16 but not with FAAP20, suggesting that the N-terminus of FANCA is not required for binding FAAP20 (Figure 3B, lane 3). Deletion of 70 aa from the C-terminus resulted in weak interaction that was completely abolished by extending the deletion to 393 aa, suggesting that the C-terminus region of FANCA is required for interaction of FAAP20 and FANCA (Figure 3B, lanes 4 & 5). All three deletion constructs failed to activate the FA pathway, as indicated by their failure to mono-ubquitinate FANCD2 (Figure 3C).
Since leucine-zipper motifs mediate protein-protein interactions, we hypothesized that the C-terminus region of FANCA, containing a leucine-zipper motif between aa residues 1069 and 1090, may interact with FAAP20. We therefore made a series of maltose binding protein (MBP)-fused FANCA deletion constructs with and without the leucine-zipper motif (Figure 3D) to test a direct interaction between full-length His6 and FLAG-tagged FAAP20 (Figure 3E). We first tested interaction between FAAP20 and a FANCA fragment representing aa 1065 to 1455 that harbors the leucine-zipper motif and the entire C-terminus (MBPFANCA1065-1455). Lysates of E. coli cells expressing MBPFANCA1065-1455, His6-FLAGFAAP20, or both were immunoprecipitated with M2-agarose (FAAP20 target) or amylose (FANCA target). Coomassie staining of both immunoprecipitates revealed interaction between FAAP20 and FANCA (Figure S3), and immunoblot analysis with anti-FANCA and anti-FAAP20 antibodies confirmed the identity of the two bands (Figure S3, bottom panel).

We next wished to test if the leucine-zipper motif is essential for interaction with FAAP20, and to localize the region of FANCA that interacts with FAAP20. To do this, we made three additional FANCA fragments: MBPFANCA1065-1101 that harbors only the leucine-zipper motif, as well as MBPFANCA1095-1455 and the smaller MBPFANCA1095-1200 that both lack the motif (Figure 3D). Lysates of E. coli cells expressing these three constructs – with or without His6-FLAGFAAP20 – were subjected to co-precipitation with M2-agarose or amylose. Coomassie staining of co-precipitates showed that while the FANCA construct with the leucine-zipper motif failed to interact with FAAP20 (Figure 3F, lanes 9 & 12), both of the constructs lacking the motif were able to interact with FAAP20 (Figure 3F, lanes 10,11,13, 14). Therefore, the leucine-zipper motif of FANCA is not required for interaction with FAAP20, and the region of FANCA that interacts with FAAP20 lies between residues 1095 and 1200. Immunoblot analysis using
anti-MBP or anti-FAAP20 confirmed the identity of the bands as FANCA or FAAP20, respectively (Figure 3F, bottom panel).

FAAP20 contains a putative Zn-finger domain of UBZ type and is conserved across all vertebrates

BLAST analysis identified likely orthologs of FAAP20 in all vertebrates examined, but not in invertebrates or other lower organisms (Figure S4A). While a database search did not reveal homology to any known domains, a secondary structure prediction identified a conserved C-terminal region with cysteines and histidine arranged in a CysCysHisCys (CCHC)-type Zn-finger motif; the CCHC motif was conserved across all species examined (Figure S4B). Alignment of this presumptive Zn-finger domain with Zn-finger domains of other proteins revealed a high similarity with ubiquitin-binding Zn-finger domain (UBZ) (Figure S4B). Several proteins involved in the FA pathway (e.g., FAN1, SLX4 and Rad18) contain UBZ domains that are essential for their function.\(^{13,18-20}\)

FAAP20 UBZ domain binds ubiquitin in vitro

Ubiquitin plays a major role in DNA damage sensing and repair.\(^ {18,19}\) It has been shown that UBZ domains in DNA repair proteins bind ubiquitin, and that this binding is required in order for these proteins to regulate their targets.\(^ {13,18-21}\) To determine whether FAAP20 binds ubiquitin non-covalently, we performed an ubiquitin-binding assay by expressing His6-FLAGFAAP20 in *E. coli*, immobilized it to M2-agarose beads, and incubating it with mono- or poly-ubiquitin chains linked through either Lys-48 or Lys-63. Immunoblot analysis showed that FAAP20 bound only K-63-linked chains – not K-48-linked chains (Figure 4A, lanes 6-8), and interaction with poly-ubiquitin chains was robust (Figure 4A, lane 8). On the other hand, interaction with mono- or di-
ubiquitin was not detected, and interaction with tri-ubiquitin was weak (Figure 4A, lane 8). E3 ubiquitin protein ligase (RAD18), which binds K-63-linked ubiquitin chains, served as a positive control (Figure 4A, lanes 3-5). To determine whether binding of FAAP20 and K-63-linked poly-ubiquitin chains is mediated via the UBZ domain, we mutated Cys-170 in the domain, and then studied binding, as described above. Immunoblot analysis revealed that the Cys-170 mutant failed to bind K-63-linked poly-ubiquitin chains (Figure 4A, lane 9), suggesting that the UBZ domain is required for binding.

Multiple sequence alignment of UBZ domains of other proteins revealed a conserved aspartate at position +2, with respect to the histidine of CCHC motif (shaded in light grey in figure S4B), which is functionally required. In one of these proteins, WRNIP1, an aspartate to alanine mutation abolishes the ubiquitin-binding activity of the UBZ domain in vitro. Surprisingly, the +2 position in the UBZ domain of FAAP20 was occupied by an alanine – not by an aspartate (Figure S4B). Since our in vitro ubiquitin-binding experiments suggest that the FAAP20 UBZ domain binds ubiquitin, we hypothesized that an aspartate or glutamate at some other position in the FAAP20 UBZ domain performs the function of the aspartate shown to be conserved in UBZ domains of all other proteins tested. An inspection of the amino acids around the conserved histidine of the CCHC motif identified two aspartate residues at positions -4 and -2 and a glutamate residue at position +7, which were conserved across all FAAP20 orthologs (Figure S4B) (the absolute positions of -4, -2 and +7 are 162, 164 and 173, respectively). We mutated each of the two aspartates and a glutamate to alanine (D162A, D164A and E173A) in FAAP20, and tested their K-63-linked ubiquitin-binding activity (Fig. 4B). Immunoblot analysis showed that D164A abolished the in vitro ubiquitin-binding activity of FAAP20 UBZ domain (Figure 4B, lane 3), but neither D162A nor E173A had an effect. This suggests that aspartate-164...
in FAAP20 is essential for the function of the UBZ domain, and may be functionally equivalent to the aspartate at position +2 in other UBZ domains.

To determine whether FAAP20 interaction with FANCA requires the UBZ domain, we used M2-agarose to purify His6-FLAGFAAP20, His6-FLAGFAAP20_D164A, and His6-FLAGFAAP20_C170A from HeLa cells. Immunoblot analysis of purified complex revealed FANCA and other core-complex proteins, suggesting that the UBZ domain is not required for interaction of FAAP20 with FANCA (Figure 4C). To determine whether FANCA binding to FAAP20 affects the ability of FAAP20 to bind ubiquitin in vitro, we purified His6-FLAGFAAP20 alone or in complex with MBPFANCA_1065-1455 – a FANCA fragment (Figure S5), and performed the ubiquitin-binding assay. Immunoblot analysis showed no apparent difference between FAAP20 ubiquitin binding with or without FANCA, suggesting that FANCA binding to FAAP20 has no effect on the ability of FAAP20 to bind ubiquitin in vitro (Figure 4D). It is not known if full-length FANCA has any effect.

FAAP20 is required for FA pathway

Cells derived from FA patients, which are defective in core-complex proteins, exhibit “FA phenotypes” when treated with chemicals like MMC or HU: impaired FANCD2 or FANCI mono-ubiquitination, defective FANCD2 foci formation, chromosomal breaks, higher sensitivity in a clonogeneic cell survival assay, and higher G2/M fraction in cell-cycle analysis. Similar FA-phenotypes are found in cells in which any of the core-complex proteins are knocked down with siRNA or shRNA.\(^5\)\(^-\)\(^7\)\(^,\)\(^9\) Since FAAP20 is an integral component of the core complex, we wished to determine whether FAAP20 knockdown also result in “FA-phenotypes”. We screened several siRNA oligos targeted against FAAP20 mRNA and found two, siFAAP20#1 and siFAAP20#2, that were able to knockdown FAAP20 (Fig. S6). We next wished to use these siRNAs to
determine whether the FA phenotype FANCD2 mono-ubiquitination is dependent on FAAP20. Cells transfected with siFAAP20#1 or siFAAP20#2 and treated with MMC exhibited impaired FANCD2 mono-ubiquitination (Fig. S6, lanes 3-6); cells transfected with control siRNA (siControl) and treated with MMC had normal FANCD2 mono-ubiquitination (Fig. S6, lanes 1 & 2). We then made shRNA constructs using the siFAAP20#1 or siFAAP20#2 sequences, and generated a cell line stably expressing shRNA against FAAP20. FAAP20 was knocked down in the shRNA-transduced cells and FANCD2 mono-ubiquitination impaired after MMC treatment, compared to shControl-transduced cells (Fig. 5A). Mono-ubiquitination of FANCD2 is known to target FANCD2 to DNA repair foci. Indeed, while MMC treatment resulted in dramatic induction in FANCD2 focus formation in control cells, FAAP20 knockdown compromised focus formation (Fig. 5B). A higher number of chromosomal abberations, including breaks and radials, per cells were observed in FAAP20 knockdown cells (Fig. 5C and S7). Also, propidium iodide- and RNase-stained MMC-treated FAAP20-knockdown cells revealed an increased number of G2/M-phase cells, suggestive of G2/M arrest (Fig. 5D); these cells also showed higher sensitivity to MMC in a clonogeneic cell survival assay (Fig. 5E). To determine whether these observed FA phenotypes are a direct result of FAAP20 knockdown, and not an off-target effect of shRNA, we stably expressed shRNA-resistant FAAP20 (FAAP20shRES) in cells stably expressing shFAAP20#1; indeed, in these cells, FANCD2 monoubiquitination and focus formation, chromosome breaks and MMC sensitivity were rescued (Fig. 5A, 5B, 5C and 5E). Therefore, the observed FA-phenotypes were specific to FAAP20 depletion, and not an off-target effect of the shRNA.

Interestingly, FANCA levels were also reduced in FAAP20 knockdown cells expressing either shFAAP20#1 or shFAAP20#2 (Fig. 5F); levels of FANCA were restored by expressing
FAAP20_{shRES}, suggesting that reduced FANCA levels were due to reduced FAAP20 (Fig. 5G).

This observation raised the question of whether the observed FA-phenotypes in FAAP20-knockdown cells are a direct result of FAAP20 knockdown or are due to reduced levels of FANCA. We also wished to determine whether the FAAP20 UBZ domain is required for expression of FA-phenotypes. To address both of these questions, we stably expressed FAAP20_{shRES} with one of two mutations in the UBZ domain that render the domain non-functional – either Cys170 (FAAP20_{shRES/C170A}) or Asp164 (FAAP20_{shRES/D164A}) (Fig. 5G). While both mutations rescued the reduced levels of FANCA (Fig. 5G), they failed to correct the observed FA-phenotypes (Fig. 5B & 5D) – thereby suggesting that the FAAP20 UBZ domain is required for expression of the FA-phenotypes, and that they are not due to reduced FANCA levels. Taken together, these data indicate that FAAP20 plays a role in ICL DNA repair.

FAAP20 is required for DNA damage induced chromatin loading of FANCA

It has been reported that an increased amount of FANCA is associated with chromatin in response to DNA damage.^{22,23} Since FAAP20 interacts with FANCA, we wished to determine if FAAP20 is required for an increased association of FANCA with chromatin in response to DNA damage. HeLa cells stably expressing shControl exhibited increased association of both FANCA and FANCG with chromatin, compared to untreated cells (Fig. 5H, lanes 1-3). In contrast, untreated HeLa cells depleted of FAAP20 showed reduced FANCA-chromatin association (Fig. 5H, lanes 4-6), which could be due to reduced stability of FANCA in the absence of FAAP20 (Fig. 5F). Interestingly, we failed to see an induction in chromatin association of FANCA in FAAP20-knockdown cells treated with MMC or HU, suggesting that FAAP20 is, in fact, required for FANCA-chromatin association (Fig. 5H); this FANCA-chromatin association defect was rescued by ectopic expression of wild-type FAAP20, but not by the FAAP20_{D164A} mutant –
Despite restoration of FANCA levels (Fig. 5H). Thus, ubiquitin binding via the UBZ domain of FAAP20 is required for increased chromatin loading of FANCA. Interestingly, unlike FANCA, FAAP20-chromatin association does not increase in response to DNA damage (Fig. 5H).

Discussion

Earlier attempts to purify the FA nuclear core complex relied on affinity/IP of individual protein components of the complex8,9 – resulting in isolation of core complex, as well as sub-complexes associated with the target protein compounding the analysis. In order to purify the core complex to homogeneity, we generated a cell line stably expressing two different protein components of the core complex, each with a different tag: His6-tagged FANCA and FLAG-tagged FAAP100. MS analysis of the core complex purified from these cells revealed a near stoichiometry of all components – a significant improvement over purifications performed with two tags on a single protein. Using this two-protein approach, we identified a novel uncharacterized protein, which we named FAAP20. A reciprocal purification, done using ectopically expressed or endogenous FAAP20 as target, revealed the presence of other core-complex proteins. We also observed interaction between FAAP20 and core-complex proteins, in the presence or absence of DNA damage. These data all suggest that FAAP20 is a constitutive member of the FA nuclear core complex. FAAP20 may also exist in sub-complexes with FANCA and FANCG – since these proteins have identical gel filtration profile, and FAAP20 IPs revealed higher amounts of FANCA and FANCG, compared to other core complex proteins. These presumptive sub-complexes may represent an early stage in the sequential assembly of the core complex, or they may have additional functions in the FA pathway.24,25
Expression levels of individual components of multiprotein complexes are often co-regulated to ensure proper assembly and function. Studies of FA sub-complexes suggest co-reliance of members for their stability and function. For example, FANCG and FANCL are unstable in the absence of FANCA, FAAP100 is unstable in the absence of FANCB or FANCL, and FANCM and MHF2 stability is dependent on MHF1. In this study, we observed that FANCA and FAAP20 are dependent on each other for their stability. Absence of FANCA results in significant reduction of FAAP20, and this effect can be reversed by blocking the proteasome pathway suggest that, in the absence of FANCA, FAAP20 is degraded via proteasome-mediated protein-degradation pathway. Absence of FAAP20 resulting in partial destabilization of FANCA. Also overexpression of FANCA resulted in dramatic stabilization of FAAP20. Consistent with our data suggesting that FANCA and FAAP20 co-exist in sub-complexes and are required for each other’s stability, we present evidence for a direct, physical interaction between FANCA and FAAP20, and demonstrate that an approximately 96 aa-long region of FANCA, representing aa 1095 to 1200, is sufficient for interaction with FAAP20 in vitro.

Approximately 60-80% of FA patients have mutations in the FANCA gene, and majority of these mutations result in loss of FANCA stability. Genotype-phenotype correlation studies suggest that null mutations resulting in complete loss of FANCA protein are the most severe, with earlier onset of anemia and a higher incidence of leukemia. We show here that absence of FANCA results in negligible amounts of FAAP20. This led us to hypothesize that the severe phenotype observed in FANCA-null patients could be partly due to loss of FAAP20 protein. In light of our observations, it will be interesting to make a genotype-phenotype correlation of FA-A patients with respect to FAAP20 protein levels. Given the role of FAAP20 in regulating
FANCA, it would not be surprising to find that patients lacking both FAAP20 and FANCA exhibit more severe phenotypes.

UBZ domain-containing proteins and ubiquitination play major roles in the FA pathway. Two FA proteins, FANCD2 and FANCI, are mono-ubiquitinated, and this ubiquitination event is essential for the integrity of the FA pathway. Loss of any one of the core-complex proteins results in loss of FANCD2-FANCI mono-ubiquitination. One core-complex protein, FANCL, is an E3-ubiquitin ligase that, along with UBE2T, mono-ubiquitinates FANCD2-FANCI dimer. The mono-ubiquitinated FANCD2-FANCI dimer interacts with FAN1, a nuclease containing a UBZ domain, and recruits it to the site of DNA damage.

FANCP/SLX4, also a member of the FA pathway, contains two UBZ domains shown to be important for FA pathway function. Recently, RAD18, a conserved UBZ domain-containing E3 ligase was shown to be a critical regulator of the FA pathway. In this study we show that FAAP20 contains a highly conserved UBZ-type zinc-finger domain that binds K-63-linked chains but not K-48-linked chains in vitro, consistent with its function in DNA repair. We show that the FAAP20-UBZ domain is essential for FAAP20 function, and plays a role in recruitment of FANCA and other core-complex proteins to chromatin, probably to DNA-damaged sites. We hypothesize that FAAP20-UBZ domain may bind K-63-linked poly-ubiquitinated DNA-damage sensor protein(s), thereby recruiting the core complex to the DNA repair site. In support of this hypothesis, we found several ubiquitin peptides in MS analyses of core complex immunopurified using FAAP20 antibody (data not shown). Further studies are required to identify the likely cellular target(s) of the FAAP20-UBZ domain. While this manuscript was under review, another group independently identified Rev1 as the likely target of FAAP20 in vivo. Kim et al show that FAAP20 binds monoubiquitinated Rev1 and this
binding stabilizes Rev1 nuclear foci and promotes interaction of the Fanconi anemia core with
PCNA-Rev1 DNA damage bypass complexes thus providing a critical role of FAAP20 in linking
FA pathway to Translesion synthesis (TLS).41

One interesting observation we made regarding the FAAP20-UBZ domain is the absence
of a conserved aspartate at the +2 position (with respect to histidine) that is required for function
of UBZ domains in other proteins.13,21 We show that an aspartate at the -2 position likely
complements the function of aspartate at +2 position. FAAP20 interaction with FANCA is not
dependent on UBZ domain function, since FAAP20-UBZ domain mutants, which fail to bind
ubiquitin in vitro, were still able to bind FANCA. Also, FANCA is not required for function of
the FAAP20-UBZ domain, since the ubiquitin-binding activity of the domain is unaltered in the
presence or absence of FANCA.

Like other core-complex proteins, FAAP20 is essential for proper function of FA
pathway. Ablation of FAAP20 expression, using siRNA or shRNA, resulted in phenotypes that
were characteristic of FA cells. We also show that the UBZ domain and ubiquitin-binding
activity of FAAP20 are essential for FA pathway function, since UBZ-domain mutants failed to
correct the cellular FA phenotypes.

There are currently fifteen complementation groups of FA, and the genes mutated in
those complementation groups have been described. Some FA patients do not exhibit mutations
in any of the known FA genes. Using complementation analysis, we screened several human FA
cell lines for mutations in FAAP20, but failed to find one that could be complemented by
FAAP20 (Data not shown). This apparent lack of FAAP20 patients could be that FA patients
with FAAP20 mutations are rare and so not represented in current repositories. Indeed, several FA complementation groups (e.g., L, M, O and P) have extremely few patients.6,7,13,42

In summary, we identified FAAP20, a novel component of the FA nuclear-core complex that is required for FA pathway-mediated repair of ICLs. FAAP20 stability is controlled by FANCA, and these two core-complex proteins directly interact via the C-terminal region of FANCA. FAAP20 is highly conserved, found only in vertebrates, and contains a UBZ-type zinc-finger domain. The UBZ domain binds K-63-linked poly-ubiquitin chains in vitro, and is required for proper functioning of the FA pathway. The ubiquitin-binding property of FAAP20 is required for DNA-damage induced chromatin loading of FANCA.

Acknowledgements

We thank the Viral Vector Core, DNA Sequencing, and Fluorescent Activated Cell Analyzing and Sorting facility of Cincinnati Children’s Research Foundation for their excellent service. We also thank the Fanconi Anemia Research Fund for antibodies and cell lines. This work was supported by National Institutes of Health research grants HL084082 and HL084082-03S1 to A.R.M. and HL076712 to Q.P. A.R.M was also supported by grants from Ohio Cancer Research Associates and the Fanconi Anemia Research Fund.

Authorship contributions

A.M.A. designed and performed research, analyzed data, and wrote the paper; A.P., C.D., T.R.S. J.L., and K.W. performed research. E.G., A.A., Q.P. provided reagents and designed research. A.R.M designed and performed research, analyzed and controlled data, and edited the paper.
Conflict-of-interest disclosure

The authors declare no competing financial interests.

References

Figure Legends

Figure 1. FAAP20 is a novel component of the FA nuclear core complex. (A) Silver-stained gel showing polypeptide bands isolated by two-step purification, first purification using anti-FLAG (α-FLAG) and second purification using talon beads (Co⁺⁺), from nuclear extracts of HeLaS3:vector or HeLaS3:His6FANCA/FLAG-FAAP100 cells. Polypeptides identified by MS analysis are indicated, including the novel 20 kDa polypeptide, FAAP20 (asterisk). (B) Silver-stained gel showing the polypeptide bands purified from nuclear extracts of HeLaS3:vector or HeLaS3:His6-FLAGFAAP20 using two step purification as described in (A). Polypeptides identified by MS analysis are indicated. (C) Immunoblot of immunoprecipitated HeLa cell extract showing core complex proteins present in immunoprecipitates (IP) with anti-FAAP20 (Lane 3), but absent in IPs with pre-immune serum (Lane 4). FT is the flow-thru fraction. (D) Immunoblot showing FAAP20 co-precipitated in FLAG-IPs from HeLaS3:His6-FLAGFANCG, HeLaS3:His6-FLAGFANCL, and HeLaS3:His6-FLAGFAAP100 and not in HeLaS3:vector. (E) Immunoblot showing identical gel filtration profiles on co-fractionation of FANCA, FANCG and FAAP20 using a Superose 6 gel filtration column.

Figure 2. FANCA is required for stability of FAAP20. (A) Immunoblot showing levels of FANCA, FAAP20 and FANCG in various FA-patient-derived cells defective in one of the complementation groups (indicated above each lane); actin serves as loading control. In the absence of FANCA, FAAP20 amounts were negligible. (B) Immunoblot showing levels of FANCA, FAAP20 and FANCG from HSC93 wild-type cells and various FA-A patient-derived cells obtained from IFAR. FAAP20 amounts were negligible in the absence of FANCA. (C)
Immunoblot showing that FAAP20 and FANCG but not FANCM are stabilized in FANCA-overexpressing HSC72 cells. A non-specific band is indicated by an asterisk. (D) Immunoblot showing levels of FANCA and FAAP20 in IPs of HSC72 and HSC72:FANCA\textsubscript{FLAG} cell extracts. Negligible amount of FAAP20 was immunoprecipitated from HSC72 cells in the absence of FANCA. A non-specific band is indicated by an asterisk. (E) Immunoblot showing levels of FANCA and FAAP20 in cytosol and nuclear extracts of HSC93:shControl and HSC93:shFANCA cells; actin and ATR serve as controls. FANCA and FAAP20 are predominantly in the nuclear fraction, and FANCA knockdown results in reduced levels of FAAP20. (F) Immunoblot showing levels of FANCA and FAAP20 in total lysates of HeLa:vector and HeLa:shFANCA cells. Knockdown of FANCA results in decreased FAAP20. (G) Immunoblot of HeLa cell lysates showing that FAAP20 and FANCG, but not FANCL or FANCM, are induced by overexpression of FANCA. (H) Immunoblot showing levels of FANCA and FAAP20 in total lysates of HeLa:shControl and HeLa:shFANCA cells cultured in the presence (+) or absence (-) of Mg132 protease inhibitor. Inhibition of the proteasome pathway results in increased FAAP20 levels, despite low levels of FANCA. (I) Immunoblot showing core complex proteins in input and IP samples from HSC72 cells stably expressing His\textsubscript{6}-\textit{FLAG}FANCA or His\textsubscript{6}-\textit{FLAG}FAAP20. FAAP20 induced upon FANCA expression was able to co-precipitate with FANCA and FAAP20 failed to interact with other core complex proteins in the absence of FANCA.

Figure 3. FAAP20 interact with FANCA \textit{in vivo} and \textit{in vitro}. (A) Schematic of FANCA deletion constructs expressed in HSC72 cells. Nuclear localization signal (NLS), Leucine-zipper (LZ) motif and C-terminal FLAG tag are shown. (B) Immunoblot of FLAG IP showing that full-length FANCA and the N-terminal deletion interact with FAAP20, but the C-terminal deletion
shows weak or no interaction. (C) Immunoblot showing FANCD2 mono-ubiquitination in MMC treated (MMC) or untreated (UT) HSC72 cells expressing various FANCA deletion fragments. While full-length FANCA corrected the FANCD2 monoubiquitination defect in HSC72 cells, all three deletion constructs failed to do so. (D) Schematic of FANCA deletion constructs expressed in *E. coli* cells. MBP is fused to N-terminus. (E) Schematic of FAAP20 full-length construct expressed in *E. coli*. (F) Top Panel: Coomassie-stained gel showing FAAP20 and FANCA purified from *E. coli* cell lysate expressing His6-FLAGFAAP20 or MBPFANCA fragment or both using M2 agarose (FAAP20 target) or Amylose (FANCA target) beads. MBPFANCA1065-1101 construct with the leucine-zipper motif failed to interact with FAAP20. MBPFANCA1095-1455 and MBPFANCA1095-1200 lacking the motif were able to interact with FAAP20. Bottom panel: Immunoblot analysis using anti-MBP or anti-FAAP20 confirmed the identity of the bands as FANCA or FAAP20, respectively.

Figure 4. FAAP20 binds ubiquitin in vitro. (A) Immunoblot showing mono-ubiquitin (Ub), K-48- and K-63-linked ubiquitin chains. Interaction of M2-agarose bound His6-FLAGFAAP20 was tested with mono-ubiquitin, K-48- and K-63-linked ubiquitin chains. FAAP20 binds K-63 linked ubiquitin chains (lane 8), but not mono-ubiquitin (Lane 6) or K-48 linked (lane 7). Mutation in the UBZ domain abolished binding (lane 9). RAD18 served as a positive control (lanes 3-5). (B) Immunoblot showing K-63- linked ubiquitin chains. Interaction of M2-agarose bound His6-FLAGFAAP20 wild-type (Wt) and various point mutants was tested with K-63-linked ubiquitin chains. FAAP20 constructs with single residue mutations in the UBZ domain, D164A mutation (lane 3) abolishes binding of FAAP20, whereas D162A (lane 2) and E173A (lane 4) bind K-63-linked chains. (C) Immunoblot showing no apparent difference between wild-type (Wt) FAAP20 and UBZ mutant (C170A or D164A) binding to core-complex protein. (D) Interaction of M2-
agarose bound His6-FLAGFAAP20 alone (-) or in complex with MBP FANCA1065-1455 (+) was tested with mono-ubiquitin, K-48- and K-63-linked ubiquitin chains. No apparent difference was found in binding of FAAP20 with K-63 linked chains in the absence or presence of FANCA.

Figure 5. FAAP20 is required for activation of the FA pathway. (A) Immunoblot showing levels of FANCD2 mono-ubiquitination and FAAP20 in HeLa cells stably expressing shControl or shFAAP20#1 siRNAs. Knockdown of FAAP20 expression reduced levels of mono-ubiquitinated FANCD2 in cells treated with MMC or HU compared to untreated (UT) cells. (B) Immunofluorescence analysis of FANCD2 nuclear foci. HeLa cells stably expressing shControl showed an induction of FANCD2 foci upon MMC and HU treatment; knockdown of FAAP20 by shFAAP20#1 resulted in decreased foci formation. Expression of wild-type His6-FLAGFAAP20shRES/Wt rescues capacity to form foci but mutant His6-FLAGFAAP20shRES/D164A does not. The percentage of cells with five or more foci was determined by examining at least 150 cells. Data are presented as the average of 3 independent experiments with standard deviations. (C) Bar diagram showing chromosome aberrations analysis data. Human HSC93 lymphoblast cells stably expressing control shRNA (shControl), shFAAP20 or shFAAP20 and His6-FLAGFAAP20shRES together were analyzed for DEB induced chromosomal aberrations like breaks, gaps and radials. Compared to shControl cells, shFAAP20 cells showed higher number of aberrations per cell and this phenotype was rescued by expressing wildtype FAAP20 resistant to shRNA. Fifty metaphase spreads were prepared and scored for chromosomal aberrations as described in methods. (D) Cell-cycle analysis of PI- and RNase-stained HeLa:shControl and HeLa:shFAAP20#1 cells that were left untreated (UT) or treated with MMC for 24 h. HeLa:shFAAP20#1 MMC treated cells showed an increased number of cells in G2 phase compared to HeLa:shControl MMC treated cells. (E) MMC survival curve showing that reduced
FAAP20 expression results in increased sensitivity to MMC; control levels of MMC sensitivity are restored by expressing FAAP20_{shRES/wt}, but not FAAP20_{shRES/C170A} or FAAP20_{shRES/D164A} mutants. Data represent percent survival, compared to untreated, MMC-naïve cells. Each experiment was performed in triplicate, and mean values are shown with standard deviations – derived by comparing each dose to no MMC (0 value on the x axis). (F) Immunoblot showing that FANCA is reduced when FAAP20 is knocked down using either of two shRNAs. (G) Immunoblot showing FANCA is reduced when FAAP20 is knockdown and the reduced levels can be rescued by expressing either wild-type (WT) or one of two FAAP20 mutants (D164A or C170A). (H) Immunoblot showing Chromatin association of FANCA, FANCG and FAAP20. HeLa:shControl cells treated with MMC or HU exhibited increased association of both FANCA and FANCG with chromatin, compared to untreated (UT) cells (lanes 1-3). In contrast, HeLa cells depleted of FAAP20 showed reduced FANCA-chromatin association (lanes 4-6). Induction of chromatin association of FANCA in FAAP20 depleted cells can be rescued by ectopic expression of wild-type FAAP20 (lanes 7-9), but not by the FAAP20_{D164A} mutant (lanes 10-12) suggesting FAAP20-ubiquitin binding activity is required for chromatin association of FANCA and FANCG upon DNA damage.
Figure 2

A. FA Core Complex Group

HSC93 HSC72 EUFA1386 HSC536 EUFA410 EUFA698 EUFA143 EUFA868 FAL

Wt FAA FAB FAC FAE FAF FAG FAL

B. Wt FA-A Patients

HSC93 RA2685 RA2827 RA2996 RA3005

FAA FAPC FANCG Actin

C. HSC72

Vector FANCA FLAG

D. HSC72

Vector FANCA FLAG

E. HSC93

shControl shFANCA

Cyto Nuc Cyto Nuc

F. HeLa

shControl shFANCA

G. HeLa

Vector His-FLAG FANCA

H. HeLa

shControl shFANCA

Input IP (α-FLAG)

Mg132

I. HSC72

Input IP (α-FLAG)

FANCM FANCA FANCG FANCL Actin

FAAP20
A

NLS
LZ Motif
FLAG tag

FANCA\(_{1-1455}\)
FANCA\(_{435-1455}\)
FANCA\(_{1-1385}\)
FANCA\(_{1-1062}\)

B

<table>
<thead>
<tr>
<th>HSC72 (FA-A)</th>
<th>FANCA(_{\text{FLAG}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full-length</td>
</tr>
<tr>
<td></td>
<td>435-1455</td>
</tr>
<tr>
<td></td>
<td>1-1385</td>
</tr>
<tr>
<td></td>
<td>1-1062</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Vector</th>
<th>FANCA(_{\text{FLAG}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1455</td>
<td>435-1455 1-1385 1-1062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UT</th>
<th>MMC</th>
<th>UT</th>
<th>MMC</th>
<th>UT</th>
<th>MMC</th>
<th>UT</th>
<th>MMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

LZ Motif

- MPB
- FANCA\(_{1065-1455}\)
- FANCA\(_{1065-1101}\)
- FANCA\(_{1095-1455}\)
- FANCA\(_{1095-1200}\)

E

His6 FLAG
UBZ domain

F

<table>
<thead>
<tr>
<th>M2 Agarose</th>
<th>Amylose</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ - - -</td>
<td>+ - - -</td>
</tr>
<tr>
<td>- + - +</td>
<td>+ - + -</td>
</tr>
<tr>
<td>- - + +</td>
<td>+ - + -</td>
</tr>
<tr>
<td>- - - -</td>
<td>+ - + -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>- FANCA(_{1095-1455})</td>
</tr>
<tr>
<td>- FANCA(_{1095-1200})</td>
</tr>
<tr>
<td>- FANCA(_{1095-1200})</td>
</tr>
<tr>
<td>- FANCA(_{1065-1101})</td>
</tr>
<tr>
<td>- FAAP20</td>
</tr>
</tbody>
</table>

αMBP
αFLAG
FAAP20: a novel ubiquitin-binding FA nuclear core complex protein required for functional integrity of the FA-BRCA DNA repair pathway

Abdullah Mahmood Ali, Arun Pradhan, Thiyam Ramsingh Singh, Changhu Du, Jie Li, Kebola Wahengbam, Elke Grassman, Arleen D. Auerbach, Qishen Pang and Amom Ruhikanta Meetei