Tcl1 interacts with Atm and enhances NF-kB activation in hematological malignancies

Eugenio Gaudio,1,3 Riccardo Spizzo,2 Francesco Paduano,3 Zhenghua Luo,1 Alexey Efanov,1 Alexey Palamarchuk,1 Amanda S. Leber1 Mohamed Kaou,1 Nicola Zanesi,1 Arianna Bottoni,1 Stefan Costinean,1 Laura Z. Rassenti,4 Tatsuya Nakamura,1 Thomas J. Kipps,4 Rami I. Aqeilan,1,5 Yuri Pekarsky,1 Francesco Trapasso,1,3 Carlo M. Croce.1

1Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA; 2Division of Experimental Oncology 2 CRO, Aviano, Italy; 3Department of Experimental and Clinical Medicine, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy; 4Department of Medicine, University of California at San Diego, 92093 La Jolla, CA, USA; 5The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, The Hebrew University, Jerusalem 91120, Israel.

Running Title: Tcl1-Atm interaction enhances NF-kB activation

Correspondence to: carlo.croce@osumc.edu
Abstract

The T-cell leukemia/lymphoma 1 (TCL1) oncogene is a target of chromosomal translocations and inversions at 14q31.2 and its rearrangement in T cells causes T-cell prolymphocytic leukemias. TCL1 dysregulation in B-cells is responsible for the development of an aggressive form of chronic lymphocytic leukemia (CLL), the most common human leukemia. We have investigated the mechanisms underlying the oncogenic functions of Tcl1 protein using a mass spectrometry approach and have identified Atm (Ataxia-telangiectasia Mutated) as a candidate Tcl1-interacting protein. The Tcl1-Atm complex formation was validated by co-immunoprecipitation experiments. Importantly, we show that the association of Atm with Tcl1 leads to enhanced IkB alpha phosphorylation and ubiquitination and subsequent activation of the NF-kB pathway. Our findings reveal functional cross-talk between Atm and Tcl1 and provide evidence for a novel pathway that could be targeted in leukemias and lymphomas.
Introduction

The T cell leukemia/lymphoma 1 (TCL1) gene maps to chromosome 14q31.2 and is involved in chromosomal translocations and inversions in T-cell prolymphocytic leukemia (T-PLL). It is also dysregulated in a number of B-cell malignancies including B-CLL and in germ-cell tumours (such as seminoma and dysgerminoma)\(^1\)\(^-\)\(^2\). Normally, Tcl1 protein is expressed in early embryos and fetal tissues, germ cells and early T and B-cells\(^3\)-\(^5\). We previously showed that aggressive human CLLs overexpress Tcl1\(^6\) and that transgenic mice expressing \(TCL1\) in B-cells developed an aggressive form of CLL\(^7\)-\(^8\). These previous studies demonstrated that Tcl1 upregulation is critical in the pathogenesis of the aggressive form of human CLL. Tcl1 is also known to be a coactivator of the Akt oncoprotein\(^9\) and of the NF-kB transcription pathway\(^10\). Despite efforts to clarify the molecular mechanisms of Tcl1 oncogenic function, the identification of specific pathways through which Tcl1 modulates oncogenic functions has been elusive. This was mainly due to the fact that Tcl1 interacting proteins could not be identified by conventional methods aimed to isolate protein-protein complexes, with the exception of Akt, a protein unlikely to play a significant role in B-cell malignancies\(^10\)-\(^11\). The \(ATM\) (Ataxia-telangiectasia Mutated) gene, located at chromosome 11q22.3\(^13\), is responsible for a rare disorder called Ataxia-telangiectasia (AT), an autosomal recessive disease characterised by progressive cerebellar degeneration, variable immunodeficiency, genomic instability and susceptibility to cancer, especially lymphoid malignancies\(^12\)-\(^14\). \(ATM\) is thought to be a tumor suppressor gene, since DNA DSBs (Double Strand Breaks) caused by ionizing radiation or chemicals result in rapid Atm autophosphorylation and activation, leading to checkpoint activation and phosphorylation of substrates that regulate cell-cycle progression, DNA repair, recombination, transcription and cell death\(^13\),\(^15\). Atm is a Ser/Thr kinase responsible for the phosphorylation of many substrates, including p53, Nbs1, Chk2, H2A.X, Mdm2, 4E-BP1, and Ikb alpha. Ikb alpha is an inhibitor of NF-kB, a transcription factor involved in a variety of hematologic and solid tumor malignancies\(^16\). Ikb alpha\(^17\)-\(^21\) phosphorylation leads to its degradation followed by activation of NF-kB. Atm has a carboxy-terminal sequence with significant homology to the catalytic domain of phosphatidylinositol-3-OH kinase (PI3K)\(^15\). AKT is a downstream target of PI3K and interacts directly with Tcl1\(^22\). \(ATM\) biallelic loss in Ataxia Telangiectasia leads to chromosomal translocations and inversions at 14q31.2, resulting in Tcl1 overexpression in AT patients. Pre-leukemic and leukemic T cells from AT patients with 14q31.2 chromosomal rearrangements have been found to overexpress \(TCLI\)\(^13\),\(^23\),\(^24\).
We assumed that Tcl1 interacts with some proteins involved in important pathways up-regulated in hematological malignancies. The aim of this work was to identify new partners of Tcl1 and uncover its role in oncogenesis using a mass spectrometry approach.

**Materials and Methods**

**DNA Constructs**

Human *TCL1* full-length was cloned into a pCMV5 vector to obtain both pCMV5-*TCL1* WT and pCMV5-*TCL1* WT HA-tagged vectors. The pcDNA 3.1 *ATM*-wt HIS6-FLAG-tagged and pcDNA 3.1 *ATM*-KD HIS6-FLAG constructs were obtained from Dr. MB Kastan.

A glutathione S-transferase (GST)-encoding DNA fragment was cloned between the Omni-tag and *TCL1* cDNA sequence of the Omni-*TCL1* construct to generate the Omni-GST-*TCL1* construct. IKB alpha cDNA was cloned into a pcDNA3.1-V5-His6 tag vector in frame with the tags. The Dual-luciferase Reporter Assay System and *Renilla* luciferase reporter vector pRL-TK were purchased from Promega. pNF-kB-Luc and the construct encoding the kinase domain of MEKK1 under the transcriptional control of the CMV promoter, pFC-MEKK, were purchased from Stratagene.

**Cells, Transfections and Antisera**

HEK-293 cells were grown in DMEM with 10% FBS and 100 µg/L gentamicin at 37°C. FuGene 6 transfection reagent and protease inhibitor mixture tablets were purchased by Roche. Daudi lymphoma cells were grown in RPMI-1640 medium with 10% FBS and 100 µg/L gentamicin at 37 °C. Daudi cells and CLL samples were transfected with nucleofector following AMAXA guidelines for cells in suspension.

Immunoblots were developed by using denville HyGlo ECL. Antibodies used were: anti-Tcl1 (Santa Cruz Biotechnology sc-32331), for Western blots (WB) and immunoprecipitation (IP), anti-Atm (Santa Cruz Biotechnology sc- 23921), resin conjugated with Atm from Bethyl (cat. S300-135, for IPs), anti-Egr1 (Santa Cruz Biotechnology sc-189) and anti IkB alpha (Cell Signaling cat. 9242), resin conjugated HA (Bethyl cat. S190-107, for mass spectometry exp and IPs), anti-HA-HRP (Roche) and anti-V5 (Invitrogen cat. 37-7500, for ubiquitination experiments).

**In-vitro cell growth assessment**
Daudi cells were seeded at $2 \times 10^4$ cells per 60-mm diameter dish; cells were either untreated or treated with *TCL1* siRNA, Kudos or combinations of both. Cells were monitored and counted at 24 h intervals.

**Western blotting, immunoprecipitation analysis and cell fractionation**

Co-IP experiments were performed by incubating 1 mg of total lysates with resin conjugated HA (Bethyl) or with anti-Tcl1a antibody conjugated with Sepharose beads, or with Atm-resin conjugated overnight at 4°C; after washing, beads were boiled in 1× SDS sample buffer and proteins separated on 4–20% polyacrylamide gels (Bio-Rad). A kit from Biovision was used to perform protein fractionation of cytosol and nucleus. GST pull-down was done by incubating 1 mg of whole-cell extracts with GST beads with rocking overnight at 4°C. Dithiobis [succinimidylpropionate] (DSP) crosslinker was from Pierce.

**RNA isolation and qRT-PCR**

Purification of total RNA was performed using TRIzol reagent (Invitrogen). Five hundred ng of total RNA was used for the retrotranscription step. The $2^{-\Delta\Delta C_t}$ method was used to calculate the relative abundance of EGR1 compared with GAPDH expression. To generate complete cDNAs for expression of proteins, 500 ng of total RNA was retrotranscribed using a High capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA) with random primers, according to the manufacturer’s protocol. Real-time PCR analysis of the samples was carried out with SYBR Green PCR master mix (Applied Biosystems). EGR1 and GAPDH primers were bought from Realtime primers, LLC (Elkins park, PA, USA).

**Mass spectrometry studies**

Protein pellets were solubilized and digested by trypsin. Protein constituents were identified by liquid chromatography tandem mass spectrometry (LC MS/MS). Inspection of LC-MS/MS data was undertaken to assess exclusive presence of mass peaks belonging to candidate partner proteins in samples from cells transfected with tagged *TCL1*-HA.

**Digestion and MALDI Analysis**
Immunoprecipitated protein complexes were digested with sequencing grade trypsin from Promega (Madison, WI) using the Multiscreen Solvinert Filter Plates from Millipore (Bedford, MA). Briefly, complexes were incubated with a dithiothreitol (DTT) solution (25 mM in 100 mM ammonium bicarbonate) for 30 min prior to the addition of 55 mM iodoacetamide in 100 mM ammonium bicarbonate solution. Iodoacetamide was incubated with protein complexes in the dark for 30 min before removal. Enzymatic digestion was carried out with trypsin (12.5 ng/μL) for 18 h at 37°C. The digestion was stopped with addition of 0.5% trifluoroacetic acid TFA. The MS analysis was immediately performed to ensure high quality tryptic peptides with minimal non-specific peptides.

**Mass Spectrometry, LTQ**

Capillary-liquid chromatography-nanospray tandem mass spectrometry (LC/MS/MS) was performed on a Thermo Finnigan LTQ mass spectrometer equipped with a nanospray source operated in positive ion mode. The LC system was an UltiMate™ 3000 system from Dionex (Sunnyvale, CA). The solvent A was water containing 50 mM acetic acid and the solvent B was acetonitrile. 5 μl of each sample was first injected onto the m-Precolumn Cartridge (Dionex, Sunnyvale, CA), and washed with 50 mM acetic acid. The injector port was switched to inject and the peptides were eluted off the trap onto the column. A 5 cm 75 mm ID ProteoPep II C18 column (New Objective, Inc. Woburn, MA) packed directly in the nanospray tip was used for chromatographic separations. Peptides were eluted directly off the column into the LTQ system using a gradient of 2-80% B over 45 min, with a flow rate of 300 nl/min. The total run time was 65 min. The MS/MS was acquired according to standard conditions established in the lab. Briefly, a nanospray source operated with a spray voltage of 3 KV and a capillary temperature of 200 °C. The scan sequence of the mass spectrometer was based on the TopTen™ method; the analysis was programmed for a full scan recorded between 350 – 2000 Da, and a MS/MS scan to generate product ion spectra to determine amino acid sequence in consecutive instrument scans of the ten most abundant peaks in the spectrum. The CID fragmentation energy was set to 35%. Dynamic exclusion was enabled with a repeat count of 2 within 10 sec, a mass list size of 200, an exclusion duration 350 sec, the low mass width was 0.5 and the high mass width was 1.5.

**Protein identification**

The RAW data files collected on the mass spectrometer were converted to mzXML and MGF files by use of MassMatrix data conversion tools (version 1.3, http://www.massmatrix.net/download). For low
mass accuracy data, tandem MS spectra that were not derived from singly charged precursor ions were considered as both doubly and triply charged precursors. The resulting MGF files were searched using Mascot Daemon by Matrix Science version 2.2.2 (Boston, MA) and the database searched against the full SwissProt database version 57.5 (471472 sequences; 167326533 residues) or NCBI database version 20091013 (9873339 sequences; 3367482728 residues). The mass accuracy of the precursor ions were set to 2.0 Da, given that the data was acquired on an ion trap mass analyzer and the fragment mass accuracy was set to 0.5 Da. Considered modifications (variable) were methionine oxidation and carbamidomethyl cysteine. Two missed cleavages for the enzyme were permitted. A decoy database was searched to determine the false discovery rate (FDR) and peptides were filtered according to the FDR and proteins identified required bold red peptides. Protein identifications were checked manually and proteins with a Mascot score of 50 or higher with a minimum of two unique peptides from one protein having a -b or -y ion sequence tag of five residues or better were accepted.

**Ubiquitination experiments**
Total protein lysates (1 mg) were incubated overnight with V5 antibody (Invitrogen) and AG/agarose beads, then run on 4-20% polyacrylamide gels. The nitrocellulose membrane was immunoblotted with anti-HA-HRP to detect Ub-HA (ubiquitin), anti-IkB alpha, anti-Atm and anti-Tcl1A.

**Luciferase assay**
HEK-293 cells were transfected with the indicated constructs. Firefly and renilla luciferase activities were assayed with the Dual Luciferase Assay System (Promega), and firefly luciferase activity was normalized to renilla luciferase activity, as suggested by the manufacturer. All experiments were carried out in triplicate and repeated 3 times with consistent results.

**Isolation of B-cells**
CD19+ B-cells were isolated from mouse spleen following the protocol and using reagents from Miltenyi Biotec (CD19 microbeads, mouse).

**Patients**
B-CLL samples were obtained after informed consent in accordance with the Declaration of Helsinki from patients diagnosed with B-CLL from the CLL Research Consortium. Research was performed
with the approval of the Institutional Review Board of The Ohio State University. Briefly, blood was obtained from CLL patients, and lymphocytes were isolated through Ficoll/Hypaque gradient centrifugation (Amersham) and processed for protein extraction.

Animal studies
Mice were maintained and animal experiments conducted under institutional guidelines established for the Animal Facility at The Ohio State University; nu/nu mice were obtained from The Jackson Laboratory. Tumors were established by injecting Daudi lymphoma cells (200 µl PBS, 7.5 x 10^7 cells/mouse) into the right flanks of female nude mice at 6 wk of age (Charles River Breeding Laboratories). Tumor size was measured daily until tumors reached 50 mm^3. Then, 5 µg of synthetic siRNA for Tcl1 or scrambled siRNA (si-Scr) diluted in Lipofectamine and w/wo Kudos 55933 (Atm inhibitor) in combination (50 µL total volume) were injected directly into the tumors and after 3, 7, and 10 days. Tumors were measured on the day of the injections and 4 days after the last injection. At that time, the mice were killed and tumors were weighed. Tumor volumes were calculated using the equation V (in mm^3) = A x B^2/2, where A is the largest diameter and B is the perpendicular diameter.

Statistics
All graph values represent means ± SEM from three independent experiments with each measured in triplicate. The differences between two groups were analyzed with unpaired two-tailed Student’s t test. P < 0.05 was considered statistically significant and indicated with asterisks as described in figure legends.
Results

Tcl1 interacts with Atm and both affect IkB alpha expression

To identify Tcl1-interacting proteins, we used a \textit{TCL1} cDNA modified at its 3’ end with a sequence encoding a HA tag (\textit{TCL1-HA}). A549 lung cancer derived cells, used as recipient, were transfected either either with wild-type \textit{TCL1} (used as a control) or \textit{TCL1-HA} and treated with dithiobis [succinimidylpropionate] (DSP), a cross-linker that fixes protein complexes \textit{in vivo}. We used in our experiment A549 cells because no CLL cell lines are currently available; furthermore, these cells can be easily transfected at a very high efficiency, an important requirement for such an experiment. Cells were lysed and Tcl1-HA protein, along with candidate protein partners, was isolated using a HA-conjugated resin. Purified proteins were treated with dithiothreitol (DTT) to cleave DSP and dissociate complexes, and digested by trypsin; protein constituents were identified by LC MS/MS (Supplementary Table I). Among the identified candidate interactors, we focused on Atm, since its role in leukemogenesis has been already assessed\textsuperscript{12}.

The potential interaction between Tcl1 and Atm proteins was investigated using co-immunoprecipitation experiments. HEK293 cells were stably transfected with a FLAG-\textit{ATM} construct and infected with a recombinant Adeno-\textit{TCL1}. Infected cells lysates were immunoprecipitated with Atm antisera, followed by immunoblotting with both Tcl1 and Atm antisera. As shown in Figure 1A (bottom panel, lane 3), Tcl1 interacts with Atm; no Tcl1 protein was detected in anti-IgG immunoprecipitates (Figure 1A, lane 2). The same complexes were detected in the reverse experiment, where cell lysates were immunoprecipitated with anti-Tcl1 and probed with both Atm and Tcl1 antisera (Figure 1B).

Since DNA damaging agents cause Atm phosphorylation, we investigated whether such treatment could affect the Tcl1-Atm interaction. HEK293 cells were co-transfected with FLAG-\textit{ATM} and Omni-GST-\textit{TCL1} plasmids and treated with neocarzinostatin, a small protein that induces sequence-specific DNA single and DSBs\textsuperscript{25}. Tcl1 binds Atm with higher affinity after treatment with the DNA damaging agent, while protein complexes with Omni-GST-\textit{FHIT} protein, used as a negative control, were not detected (Figure 1C). The interaction was also validated with endogenous proteins. The results also indicated (Figure 1C) that Tcl1 has a higher affinity for activated Atm. The structural basis for this phenomenon will require further investigation. Tcl1 and Atm were immunoprecipitated and
immunoblotted in Daudi lymphoma cells with or without the DNA damaging agent (Figure 1 D, E). In order to understand the functional relevance of the Tcl1-Atm interaction, we analyzed the phosphorylation status of several Atm substrates in the presence of Tcl1. Interestingly, we detected an increase of Atm-mediated IkB alpha phosphorylation in the presence of Tcl1 (Figure 1F). Since Atm-mediated phosphorylation of IkB alpha enhances its degradation, we examined the expression level of IkB alpha after Tcl1 and Atm co-expression. DNA DSBs induced by hydroxyurea are responsible for Atm activation26. HEK293 cells were mock-transfected or transfected with TCL1 and ATM constructs, separately or together (Figure 1F, G). Forty-eight hours later, cells were treated with hydroxyurea for 3 hours and cell lysates analyzed by Western blotting. We found that Tcl1 and Atm co-expression was associated with increased levels of the phosphorylated form of IkB alpha, and reduced levels of total IkB alpha (Figure 1F). Figure 1G shows an increased ratio of phosphorylated IkB alpha (Ser 32) relative to total IkB alpha. Daudi lymphoma cells were treated with siRNA for Tcl1, Kudos 55933 (an Atm inhibitor) and a combination of both; both IkB alpha expression and its phosphorylation were measured (Figure 1H, I). Taken together, these data indicate that, the interaction of endogenous Tcl1 and Atm is responsible for an increase in phosphorylation and degradation of IkB alpha and in activation of NF-kB, whereas inhibition of Tcl1 and Atm resulted in decreased activity of the NF-kB pathway.

Expression of Tcl1 and Atm activates the NF-KB pathway

IkB alpha is phosphorylated by Atm leading to its ubiquitination and degradation17,19,27. To determine if Tcl1 expression affects IkB alpha regulation through Atm, we carried out a ubiquitination assay. HEK293 cells were transfected with TCL1, ATM, Ub-HA and IkB alpha-V5 expression vectors (Figure 2A). Forty-eight hours after transfection cells were treated with MG132, a proteasome inhibitor, 10 μM for additional 3 h, then lysed and protein immunoprecipitated with anti-V5 followed by immunoblotting with anti-HA. Co-expression of Tcl1 and Atm resulted in IkB alpha ubiquitination (Figure 2A, lane 1), whereas expression of Atm or Tcl1 alone did not (Figure 2A, lanes 2 and 3). These results suggest that Tcl1 expression enhances Atm-mediated phosphorylation and ubiquitination of IkB alpha. Since ubiquitination of IkB alpha is associated with NF-kB activation and translocation from the cytosol to nucleus20,21,28, we investigated whether active p65 NF-kB (Rel-A) translocates from the cytosol to the nucleus when TCL1 and ATM are co-expressed (Figure 2B). To this end, HEK293 cells were transfected with ATM and TCL1 constructs, separately or together; then, cell lysates were
fractionated to obtain nuclear and cytosolic fractions and the fractions run on gels. The level of nuclear Rel-A increased when *TCL1* and *ATM* were co-expressed (Figure 2B). Expression of Rel-A was compared with Gapdh and H2A (Histone 2A) expression, as markers for cytosol and nucleus, respectively. These results suggest that Tcl1 and Atm co-expression is associated with Rel-A translocation into the nucleus. Following to its translocation into the nucleus, Rel-A enhances the transcription of several target genes, including *EGR1* (Early Growth Response 1); in fact, Rel-A binds *EGR1* promoter sequences and enhances *EGR1* mRNA and protein expression. Thus, we determined if *TCL1* expression could modulate this Rel-A function. HEK293 cells were transfected with *TCL1* and *ATM* separately or together and treated with hydroxyurea for 3 h and protein lysates fractionated on gels. Egr1 protein levels were increased when Tcl1 and Atm were co-expressed (Figure 2D, middle panel). *EGR1* mRNA expression measured by qRT-PCR was also increased during co-expression of *TCL1* and *ATM* (Figure 2C). To determine whether Tcl1 expression directly affects the transactivating function of NF-kB we used a commercial system based on the ability of mitogen-activated protein kinase kinase 1 (MEKK1) to activate an NF-kB reporter construct, pNF-kB-Luc expressing luciferase under the control of an NF-kB-responsive element. Expression of *ATM* alone did not affect the reporter activity. Interestingly, Tcl1 by itself increased reporter activity by 2.5-fold (Figure 2E). When co-expressed, the Tcl1-Atm complex enhanced the NF-kB transactivating function ~4-fold (Figure 2E). To confirm that Tcl1 and Atm are equally important in NF-kB activation, we treated cells with Kudos 55933, an inhibitor of endogenous and exogenous Atm. Kudos inhibited NF-kB activation by Tcl1 or by Tcl1 plus Atm (Figure 2E, right) suggesting that this function of Tcl1 is enhanced by endogenous as well as exogenous Atm. In summary, these results suggest that Tcl1 and Atm cooperate to induce NF-kB activation.

**Tcl1 and Atm are crucial for proliferation in vitro and in vivo**

We investigated the role of Tcl1 depletion on the proliferation of Daudi lymphoma cells, that express both Tcl1 and Atm. The combination of Kudos 55933 treatment with Tcl1 depletion had an additive effect on cell proliferation (Figure 3A). Effects on proliferation were not observed after transfection with the carrier alone or scrambled siRNAs. The data reported represent the mean values with standard deviation (SD) of three different experiments (Figure 3A). Tcl1 protein expression was silenced with small interfering RNAs (siRNAs). In figure 3B the effects of specific Tcl1-siRNA on Tcl1 protein
expression levels are shown. Daudi cells were transfected with Tcl1-siRNAs in absence or presence of Kudos 55933; in lanes 1 and 3, Tcl1 protein expression is down-regulated by Tcl1 siRNA. No effects on Tcl1 expression level were detected after scrambled siRNA transfection (lane 6). Total proteins extracted from Daudi cells, five days after transfection, were analyzed by immunoblotting (Figure 3B). The expression of Tcl1 was affected by Tcl1 siRNA and, more importantly, PARP was cleaved in the condition of depleted Tcl1 and Kudos inhibition of Atm. Finally, we investigated the effects of Tcl1 depletion by siTcl1 and Kudos 55933 treatment in vivo in a preclinical model of lymphoma; 5 groups of 4 mice each were injected with Daudi cells (Figure 3C). Xenograft tumors treated with Kudos 55933 or Tcl1 siRNA separately showed a reduction in volume compared to controls. A dramatic effect on inhibition of tumor growth was observed in the group of mice treated with Kudos 55933 and Tcl1 siRNA in combination. Total proteins extracted from tumors were analyzed by Western blotting and Tcl1 expression was measured (Figure 3D). At the end of the experiment, tumors were excised and weighed (Figure 3E). These in vivo data confirmed the in vitro results and illustrated the effect of Atm and Tcl1 cross-talk.

**Tcl1 and Atm affect the NF-kB pathway in CLL samples and transgenic Tcl1 mice**

To investigate whether our results are relevant to human CLL, we studied the expression of IkB alpha and Egr1 in human CLL samples (Figure 4A). CLL samples (Supplementary Table II) were transfected with Tcl1 siRNA for 36 h and/or treated with Kudos (10 μM, 12 h) (Figure 4A). Mock-treated samples showed low expression of IkB alpha and high expression of Egr1. CLL samples treated either with Tcl1 siRNA or Kudos or both showed increased IkB alpha expression and decreased expression of Egr1 compared with the mock-treated control. These data confirmed cooperation of Tcl1 and Atm in NF-kB activation in CLL. Also, we were able to confirm the interaction between endogenous Tcl1 and Atm in some B-CLL patient samples. B-CLL were lysates and immunoprecipitated with anti-Tcl1 antibody; the immunoblotting with anti-Atm antibody confirmed the interaction (Figure 4C).

We also show evidence of NF-kB pathway activation in transgenic Tcl1 mice. A transgenic mouse model of CLL was generated by introducing the human *TCL1* gene under control of a B cell-specific Ig Eμ enhancer. Overexpression of Tcl1 in these mice resulted in upregulation of Atm and downregulation of IkB alpha (Figure 4B). TCL1 transgenic mice develop monoclonal B-cell leukemia that is very similar to the aggressive form of human CLL. We isolated CD19+ B-cells from spleens of
Tcl1 transgenic and wild-type mice. We found that Tcl1 expression is associated with overexpression of Atm and down-regulation of IκB alpha in Tcl1 transgenic CD19+ B-cells compared to wild-type CD19+ B-cells used as a control (Figure 4B).

**Discussion**

Dysregulation of *TCL1* in T and B cells causes T-cell prolymphocytic leukemias\(^3,31\) and the aggressive form of chronic lymphocytic leukemia (CLL)\(^7-8\), respectively. To clarify the function of Tcl1 in leukemia, we studied Tcl1 protein complexes by using a proteomic approach. Atm was identified as a candidate Tcl1 partner and the interaction was confirmed by co-immunoprecipitation experiments. Atm may act as an upstream kinase that mediates the constitutive NF-kB activation in marrow blasts in both high risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML)\(^18\). The analysis of the phosphorylation status of Atm substrate proteins directed our experiments towards the study of the NF-kB pathway. We previously demonstrated that Tcl1 is responsible for the activation of NF-kB\(^10\), although that study did not show the mechanisms of such an activation. Here we propose the following mechanism based upon the above experiments: through interacting with Atm, Tcl1 expression causes an increase in Atm kinase activity, an increase in phosphorylation of IκB alpha and translocation Rel-A to the nucleus; Tcl1 and Atm have a common target: IκB alpha, a physiological NF-kB inhibitor. In fact, Tcl1 interacts with IκB alpha\(^32\) while Atm phosphorylates it\(^17-18\) which is subsequently degraded by ubiquitination\(^28\).

Since Tcl1 interacts with both IκB alpha and Atm, we detected an additive effect on IκB alpha ubiquitination when Tcl1 and Atm are co-expressed. As a result of degradation of IκB alpha, p65 NF-kB active (Rel-A) translocates from the cytosol to the nucleus. Rel-A interacts with the *EGR1* promoter sequence and causes overexpression of Egr1 protein\(^29\) as detected by Western blot and q-PCR. To confirm that our findings are relevant to human CLL, B-CLL samples were treated with *TCL1* siRNA, Kudos or both in order to reduce the expression/activity of Tcl1, Atm or both proteins. Mock-treated samples, with endogenous expression of Atm and Tcl1, shown significant down-regulation of IκB alpha and over-expression of Egr1, confirming in B-cells the data obtained with transfected HEK293 cells. The *NF-kB* pathway is down regulated in Daudi Burkitt lymphoma cells when endogenous Tcl1 and Atm are targeted with si-TCL1 and Kudos 55933, both *in vitro* (proliferation) and *in vivo* (xenograft experiment). We also provided evidence of NF-kB pathway
activation in Tcl1 transgenic mice. Overexpression of Tcl1 in these mice resulted in upregulation of Atm and downregulation of IkB alpha. Thus, we have shown cooperation of Tcl1 and Atm in NF-kB activation. Our results provide additional evidence of the role of the NF-kB pathway in CLL. Since Atm inhibitors are able to kill malignant cells by inhibiting upstream kinases that account for constitutive activation of the NF-kB pathway\textsuperscript{17}, our data suggest that members of the NF-kB pathway, as well as Tcl1 and Atm interaction, could be considered targets for novel therapies for CLL.

Acknowledgements

This work is dedicated to the memory of Pietro Gaudio, Geometra, who died on March 11, 1996. We are very grateful to Dr MB Kastan for the pcDNA 3.1 \textit{ATM}-wt HIS6-FLAG tagged and pcDNA 3.1 \textit{ATM}-KD HIS6-FLAG constructs. We thank Dr. Kari Green-Church for the mass spectrometry analysis and Grace A. Hill for the assistance with animal experiments. We are very grateful to Dr K Huebner for the critical editing of the manuscript. The research was supported by an ACS Research Scholar Grant (Y.P.) and NIH grant PO1-CA81534 of the CLL Research Consortium (L.R., T.K., C.M.C.).

Authorship

Contribution: E.G., F.T., C.M.C. designed the experiments. E.G., R.S., Z.L., F.P., M.K., A.S.L., N.Z., A.B, S.C. performed research experiments. A.E., A.P., T.N., L.Z.R., T.J.K. contributed new reagents. E.G., R.S., Y.P., R.I.A., F.T., C.M.C. wrote the paper. All authors critically reviewed the manuscript and approved the final version.

Conflicts of interest disclosure: The authors declare no competing financial interest.

Correspondence to: Prof Carlo M Croce, Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University. 1082 Biomedical Research Tower. 460 West 12\textsuperscript{th} Avenue. Columbus, OH 43210; Phone: (614) 292-3063 Fax: (614) 292-3558 Email : carlo.croce@osumc.edu
References


19. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-

    10064-77


22. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase

23. Narducci MG, Virgilio L, Isobe M, et al. TCL1 oncogene activation in preleukemic T cells

24. Thick J, Metcalfe JA, Mak YF, et al. Expression of either the TCL1 oncogenes, or transcripts
    from its homologue MTCP1/c6.1B, in leukemic and non-leukemic T cells from ataxia

25. Dedon PC, Jiang ZW, Goldberg IH. Neocarzinostatin-mediated DNA damage in a model
    AGT.ACT site: mechanistic studies of thiol-sensitive partitioning of C4’ DNA damage

    phosphorylation to estimate extent of DNA damage induced by exogenous agents. *Cytometry


**FIGURE LEGENDS**

**Figure 1. Tcl1 interacts with Atm and both affect Ikb alpha expression.** (A) HEK293 cells were stably transfected with expression plasmid encoding FLAG-ATM and then infected with Ad-TCL1 wild-type (MOI 100); 48 h after infection, whole-cell lysates were IP-ed with anti-Atm (resin conjugated to Atm). The IPs were analyzed by wb with anti-Atm or anti-Tcl1. Input: lysate expression of Atm (top) and Tcl1 (bottom). (B) HEK293 cells were transiently cotransfected with expression plasmids encoding mammalian FLAG-ATM (8 µg) and wild-type TCLI (6 µg); 48 h after transfection, cell lysates were IP-ed with anti-TCL1. The IPs were analyzed by wb with anti-Atm or anti-Tcl1. Input: lysate expression of Atm (top) and Tcl1 (bottom). (C) HEK293 cells were transiently
cotransfected with expression plasmids encoding mammalian Omni-GST-TCL1 (6 µg) or Omni-GST-FHIT (6 µg) and FLAG-HIS-ATM (8 µg). 48 h after transfection, cells were treated with Neocarzinostatin (NCS) 200 ng/ml for 2 h. Cell lysates were GST-pulled down and immunoblotted with anti-His6, anti-Tcl1 and anti-Fhit. Input: lysate expression of Atm. (D, E) Daudi cells were untreated or treated with hydroxyurea, 50 Mm for 3 h, then lysed and IP performed with anti-Atm, anti-Tcl1 or IgG. The precipitates were analyzed by wb with anti-Atm or anti-Tcl1. (F) Tcl1 and Atm co-expression is associated with decreased IkB alpha total protein. HEK293 cells were mock transfected or transfected with TCL1 or ATM plasmids separately or together (4 µg for each plasmid, including empty vector); 48 h later, cells were treated with hydroxyurea 50 mM for 3 h and then analyzed by wb with the indicated antibodies. (G) Tcl1 and Atm co-expression is associated with increased IkB alpha (Ser32) phosphorylation as shown in the graph. (H) Daudi cells were mock transfected or transfected with si-TCL1 or si-Scr, then untreated or treated with Kudos 55933 or DMSO. The level of IkB alpha was measured by wb. (I) IkB alpha (Ser 32) levels are shown in the graph. Data are representative of three independent experiments.

Figure 2. Expression of Tcl1 and Atm activates the NF-KB pathway. (A) HEK293 cells were transfected with indicated plasmids; 48 h later cells were treated with MG132, 10 µM for 3 h, then lysates IP-ed with anti-V5. The precipitates were analyzed by wb with anti-HA or anti-IkB alpha. Input: lysate expression of Tcl1 and Atm. (B) HEK293 cells were mock transfected or transfected with TCL1 and ATM plasmids separately or together (4 µg each plasmid). 48 h later, cells were treated with hydroxyurea for 3 h, fractionated into cytosolic and nuclear fractions and analyzed by wb with the indicated antibodies. (C) mRNA levels of EGR1 were measured by qRT-PCR. HEK293 cells were mock transfected or transfected with TCL1 and ATM plasmids, separately or together for 48 h, then treated with hydroxyurea, 50 mM for 3 h). Fold changes of EGR1 were calculated using the $2^{-ΔΔCt}$ method. GAPDH mRNA levels were used as an internal normalization control. Samples transfected with TCL1 and ATM have been normalized to mock transfected sample. (D) HEK293 cells were transfected with TCL1 and ATM (4 µg for each plasmid), treated with hydroxyurea for 3 h and with MG132, 10 µM 6 h, and protein lysates run on gel. (E) Tcl1 activates NF-kB-dependent transcription synergistically with Atm. HEK-293 cells were cotransfected with 50 ng of pNF-kb-Luc reporter and 50 ng of pRL-TK Renilla reporter constructs. In addition, 0.75 µg of CMV5-empty vector, 0.75 µg of pcDNA 3.1 empty vector, 0.75 µg of CMV5-TCL1 WT, 0.75 µg of pcDNA 3.1 empty vector
constructs were used; 5 ng of pFC-MEKK was added where indicated. Cells were treated with 10 μM Kudos for 5 h, where indicated. Data are representative of three independent experiments. In Figure 2C and 2E, data are mean ± SEM of three independent experiments and each is measured in triplicate (*, P < 0.05).

Figure 3. Tcl1 and Atm are crucial for growth and proliferation of lymphoma cells in vitro and in vivo. (A) Daudi cells were mock transfected or transfected with si-TCL1 or si-Scr, then untreated or treated with Kudos 55933 or DMSO. Cells were counted at 24 h intervals. Results represent the average of three independent experiments. (B) Total lysates collected were analyzed by wb and tested with indicated antibodies. (C) Graph representing tumor volumes at indicated days during the experiment for the 5 groups indicated (4 mice/group). Tumors size was measured daily until the tumor reached 50 mm³. Then, 5 μg of synthetic si-TCL1 or si-Scr diluted in Lipofectamine and w/wo Kudos (50 μL total volume) were injected directly into the tumors and at 3, 7, and 10 days. Tumors were measured on the day of the injections and 4 days after the last injection. (D) Total lysates from tumors were analyzed by wb and tested with indicated antibodies. (E) xenograft tumors were weighed. Data are mean ± SEM of three independent experiments and each is measured in triplicate (*, P < 0.05).

Figure 4. Tcl1 and Atm affect the NF-kB pathway in CLL patient samples and Tcl1 transgenic mice. (A) B-CLL samples were transfected with si-TCL1 for 36 h or treated with Kudos (10 μM, 12 h) or both and in all cases treated with hydroxyurea, 50 mM 3 h. Ilkalpha and Egr1 expression were detected by wb. (B) B-cells CD19 isolated from mouse spleen were lysed and analyzed by wb with indicated antibodies. Spleens were excised from wild-type and Tcl1 transgenic mice at 3, 10 and 15 months of age. In Figure 4B, data are representative of three independent experiments. (C) Whole B-CLL cells lysates were immunoprecipitated (IP) with anti-Tcl1 antibody. The immunoprecipitates were analyzed by immunoblotting (IB) with anti-Atm and anti-Tcl1 antibodies. Input: total lysate.
Figure 1

A

<table>
<thead>
<tr>
<th>Input</th>
<th>IgG</th>
<th>Atm</th>
<th>Tcl1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Input</th>
<th>IgG</th>
<th>Tcl1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

GST pull down

<table>
<thead>
<tr>
<th>GST-TCL1</th>
<th>GST-FHIT</th>
<th>ATM</th>
<th>NCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

D

- NCS

- NCS

E

+ NCS

+ NCS

F

<table>
<thead>
<tr>
<th>Not treated</th>
<th>TCL1</th>
<th>ATM</th>
<th>ATM + ATM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>0.95</td>
<td>0.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IκB alpha</th>
<th>1.00</th>
<th>1.22</th>
<th>1.44</th>
<th>1.30</th>
</tr>
</thead>
</table>

| p-IκB alpha (Ser32) | 1.00 | 0.31| 0.74| 1.00 |
|                     | 0.45 | 1.00| 0.70| 1.00 |

G

H

<table>
<thead>
<tr>
<th>Si-RNA Tcl1+</th>
<th>Kudos</th>
<th>Si-RNA-Tcl1</th>
<th>Mock</th>
<th>DMSO</th>
<th>Si-RNA A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-RNA Tcl1+</td>
<td>2.12</td>
<td>1.61</td>
<td>1.72</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Kudos</td>
<td>0.31</td>
<td>0.74</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Si-RNA-Tcl1</td>
<td>0.45</td>
<td>1.00</td>
<td>0.70</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

I

Bar graph showing p-IκB alpha (Ser32) expression levels in different conditions.
Figure 2

A

IB: anti-HA
IB: anti IkB alpha
-IkB alpha-V5
-IkB alpha wt
+ + + + + Ub-HA
+ + + + + IKB alpha-V5
+ + - - - ATM
+ - + - - TCL1
1 2 3 4

IB: anti-V5
IP:anti-V5

B

Cytosol
Nucleus

<table>
<thead>
<tr>
<th></th>
<th>Not treated</th>
<th>TCL1</th>
<th>ATM</th>
<th>ATM + TCL1</th>
<th>Not treated</th>
<th>TCL1</th>
<th>ATM</th>
<th>ATM + TCL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel-A</td>
<td>1.00</td>
<td>0.58</td>
<td>0.68</td>
<td>0.53</td>
<td>1.00</td>
<td>1.81</td>
<td>1.84</td>
<td>2.50</td>
</tr>
<tr>
<td>Gapdh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tcl1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

EGR1 Q-PCR

D

<table>
<thead>
<tr>
<th></th>
<th>Not treated</th>
<th>TCL1</th>
<th>ATM</th>
<th>ATM + TCL1</th>
<th>Not treated</th>
<th>TCL1</th>
<th>ATM</th>
<th>ATM + TCL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKB alpha</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
<td>1.18</td>
<td>1.32</td>
</tr>
<tr>
<td>Egr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gapdh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

p-NF-KB-Luc

vectors | ATM | TCL1A | TCL1A + ATM

MEKK
MEKK + KUDOS
Figure 3

A

Daudi proliferation

B

Si-RNA Tcl1 + Kudos

C

Xenograft

D

E

% tumors weight

For personal use only.on October 28, 2017. by guest
www.bloodjournal.orgFrom

Figure 3

A

Daudi proliferation

B

Si-RNA Tcl1 + Kudos

C

Xenograft

D

E

% tumors weight

For personal use only.on October 28, 2017. by guest
www.bloodjournal.orgFrom
Figure 4

A

<table>
<thead>
<tr>
<th></th>
<th>Si-RNA Tcl1+ Kudos</th>
<th>Si-RNA Tcl1</th>
<th>Mock</th>
<th>Si-RNA Tcl1+ Kudos</th>
<th>Si-RNA Tcl1</th>
<th>Mock</th>
<th>Si-RNA Tcl1+ Kudos</th>
<th>Si-RNA Tcl1</th>
<th>Mock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapdh</td>
<td>0.22 0.39 0.67 1.00</td>
<td>0.27 0.32 0.78 1.00</td>
<td>0.23 0.72 0.65 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egr1</td>
<td>0.59 0.94 0.53 1.00</td>
<td>0.69 0.95 0.69 1.00</td>
<td>0.71 0.93 0.64 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IkB alpha</td>
<td>4.00 3.00 2.80 1.00</td>
<td>4.76 3.33 3.24 1.00</td>
<td>2.50 2.50 3.00 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tcl1</td>
<td>0.22 0.39 0.67 1.00</td>
<td>0.27 0.32 0.78 1.00</td>
<td>0.23 0.72 0.65 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #1</td>
<td>0.22 0.39 0.67 1.00</td>
<td>0.27 0.32 0.78 1.00</td>
<td>0.23 0.72 0.65 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #2</td>
<td>0.69 0.95 0.69 1.00</td>
<td>0.71 0.93 0.64 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #3</td>
<td>0.71 0.93 0.64 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

CD19 cells

<table>
<thead>
<tr>
<th></th>
<th>Control mice</th>
<th>Tg Tcl1 mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months (Age)</td>
<td>3 10 15</td>
<td>3 10 15</td>
</tr>
<tr>
<td>Atm, short exp</td>
<td>1.00 0.95 1.04</td>
<td>0.56 0.73 0.62</td>
</tr>
<tr>
<td>Atm, long exp</td>
<td>1.00 0.95 1.04</td>
<td>0.56 0.73 0.62</td>
</tr>
<tr>
<td>IkB alpha</td>
<td>1.00 0.95 1.04</td>
<td>0.56 0.73 0.62</td>
</tr>
<tr>
<td>Tcl1</td>
<td>1.00 0.95 1.04</td>
<td>0.56 0.73 0.62</td>
</tr>
<tr>
<td>Gapdh</td>
<td>1.00 0.95 1.04</td>
<td>0.56 0.73 0.62</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>IgG</th>
<th>Tcl1</th>
<th>IgG</th>
<th>Tcl1</th>
<th>IgG</th>
<th>Tcl1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL #6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atm, short exp

Atm, long exp
Tcl1 interacts with Atm and enhances NF-kB activation in hematological malignancies