TITLE: Lack of clarity in the definition of treatment-related mortality: pediatric acute leukemia and adult acute promyelocytic leukemia as examples

RUNNING HEAD: Treatment-related mortality in leukemia

AUTHORS: Marie-Chantal Ethier BSc¹, Esther Blanco MD², Thomas Lehrnbecher MD³, and Lillian Sung MD, PhD¹,²

AFFILIATIONS:

¹Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada

²Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada

³Pediatric Hematology and Oncology, Johann-Wolfgang Goethe-University Hospital, Frankfurt, Germany

ADDRESS FOR CORRESPONDENCE:
Lillian Sung MD, PhD
Division of Haematology/Oncology
The Hospital for Sick Children
555 University Avenue
Toronto, Ontario, M5G1X8
Telephone: 416-813-5287
Fax: 416-813-5979
Email: lillian.sung@sickkids.ca

Key words: Acute lymphoblastic leukemia; acute myeloid leukemia; pediatrics; non-relapse mortality; treatment-related mortality
Abstract

Treatment-related mortality (TRM) is important in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML); yet, little is known about how TRM is defined across trials. Two major problems are related to what constitutes treatment versus disease-related cause of death and to TRM attribution (for example, death due to infection or hemorrhage). To address the former, we conducted a systematic review of randomized therapeutic pediatric acute leukemia and adult/pediatric acute promyelocytic leukemia (APL) trials and any study type focused on TRM in pediatric acute leukemia. We described definitions used for TRM. Sixty-six studies were included. Few therapeutic pediatric ALL studies (2/32, 6.3%) provided definitions for TRM while more therapeutic pediatric AML studies (6/9, 66.7%) provided definitions. There was great heterogeneity in TRM classification. Most studies relied on deaths during induction or in remission to delineate whether a death was TRM. However, 44.4% of therapeutic AML studies used death within a specific time frame to delineate TRM. We suggest that a consistent approach to defining and determining attribution for TRM in acute leukemia is an important future goal. Harmonization of definitions across the age spectrum would allow comparisons between pediatric and adult studies.

Introduction

Outcomes for children with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) have significantly improved over time with overall survival rates currently ranging from 83-94% for ALL\(^1\) and 60-65% for AML.\(^2\) Improvement in survival for adults with acute leukemia, particularly in acute promyelocytic leukemia (APL), has also been demonstrated.\(^3\) This success has been the result of multiple factors including improved risk stratification, intensification of therapy for those with poorer prognosis, incorporation of all-trans retinoic acid in APL and improvements in supportive care. However, further improvement in outcomes likely will arise through targeted therapies and through lowering the proportion of deaths attributed to treatment.

Better understanding of treatment-related mortality (TRM) is important. TRM is an important
contributor to poor outcomes for both children and adults with ALL and AML, particularly in the high risk and relapse settings. An understanding of the proportion of events due to relapse/progressive disease versus TRM is critical for several reasons. First, this understanding may suggest situations in which intensification of therapy may be a more or less effective strategy overall. For example, if events are primarily due to TRM, then therapy should be modified to become less intensive. Second, this information will allow for a better understanding of when more careful monitoring is required and where supportive care strategies should be directed. However, from our experience, we have found that definitions for TRM are not clear and authors may define TRM differently, even in different reports arising from the same study. Consistency in defining TRM is critically important. If studies define TRM differently, then variable rates of TRM may be due to heterogeneous definitions rather than toxicity of therapy and thus, this confusion may derail plans to optimize therapy. The following sections will address inconsistency in defining TRM and issues related to attribution of cause of death.

**Inconsistency in Defining TRM**

Cause of death is important information used for clinical, administrative and research purposes. In all three areas, inconsistency in defining a death as treatment or disease-related is so prevalent that this information may be of little use in some settings. Areas that may be controversial when determining whether a death is treatment-related in acute leukemia include: death prior to initiation of chemotherapy, deaths due to suicide, accidents and unknown causes, those that occur following completion of therapy and those that occur following hematopoietic stem cell transplantation (HSCT). In the last example, in some reports, patients with ALL are censored when they begin HSCT while in other reports, deaths that occur following HSCT (both short and long-term) are included as TRM as long as patients do not relapse. In another setting, for both ALL and AML, early deaths after starting treatment due to hyperleukocytosis may be differentially classified as TRM or disease-related death. Furthermore, TRM classification may be based upon death during induction therapy or while in remission, or alternatively based upon some time frame from diagnosis or treatment initiation.
Using these considerations, we conducted a systematic review of leukemia trials in order to describe how TRM has been defined. We performed electronic searches of Ovid Medline and EMBASE from 1980 to May 2011 and Evidence-Based Medicine (EBM) reviews from 1980 to the second quarter of 2011. We focused on three types of acute leukemia trials, namely a) pediatric (age defined by each study but generally included patients up to 18 or 21 years of age) randomized therapeutic trials in ALL and AML; b) any type of study in which TRM was a main outcome in pediatric ALL and AML patients; and c) adult and pediatric randomized therapeutic trials in APL. We limited our analysis to publications from 1990 and forward to ensure that we captured definitions used in more recent trials (strategy provided in Figure S1).

Inclusion and exclusion criteria were defined *a priori*. Therapeutic studies were included if: 1) population consisted of newly diagnosed ALL, AML or APL (i.e. not relapsed); 2) there was randomization of an anti-leukemic treatment in any arm of the study (to ensure that the study was conducted prospectively); 3) pediatric subjects for the ALL and AML (non-APL) search and all ages for the APL search; and 4) treatment did not solely consist of HSCT. Exclusion criteria were as follows: 1) no randomized intervention; 2) randomized intervention not related to leukemia therapy; 3) study population consisted of adults or pediatric data not abstractable only for the ALL and AML (non-APL) search; 4) population solely infant ALL or mature B-cell ALL; and 5) duplicate publication. When duplicate publications were identified, the publication with the longest follow-up was chosen. Reviews that summarized multiple studies were excluded since detailed methods typically were not presented. For studies in which TRM was a main outcome, study eligibility was similar but restricted to children. Studies were included if: 1) population consisted of newly diagnosed ALL or AML (non-APL); 2) TRM was primary or secondary outcome; 3) pediatric subjects; and 4) treatment did not solely consist of HSCT. We restricted studies to those that were published in manuscript format (which excluded conference proceedings only) and to those published in the English language.

One reviewer (MCE, EB or LS) evaluated the titles and abstracts of publications identified by the search strategy, and any potentially relevant publication was retrieved in full. Final inclusion of
studies into the systematic review was by agreement of two reviewers. The reviewers were not blinded to study authors or outcomes. Data abstraction was performed by 2 reviewers (MCE and LS) using a standardized data collection form.

Figure S2 illustrates the flow diagram of trial identification and selection. A total of 3,828 titles and abstracts were reviewed; 151 articles were retrieved for detailed evaluation and 66 satisfied eligibility criteria: 32 were therapeutic pediatric ALL studies, 9 were therapeutic pediatric AML studies, 10 were studies of TRM in pediatric ALL or AML and 15 were therapeutic adult or pediatric APL studies. Reasons for exclusion are listed in Figure S2. Demographics of the 66 included studies are presented in Tables S1a-S1d and the supplements provide more detailed comments about description of TRM. Table I summarizes the information pertinent to TRM definitions for the four groups of studies. Definition of TRM was rarely included in therapeutic pediatric ALL studies (6.3%) but was more common in pediatric AML and TRM studies (66.7% and 70.0%). Definition of TRM was intermediate for APL (53.3%) but all of these definitions were for early death rather than TRM specifically (Table S1d). Very few therapeutic trials presented the TRM rate across the trajectory of treatment; in other words, they only presented TRM by phase of therapy such as during induction or in remission. Among the four groups, 2/32, 4/9, 4/10 and 1/15 studies included deaths occurring before starting treatment as early death or TRM for pediatric ALL, pediatric AML, pediatric TRM and adult/pediatric APL studies respectively. Seven studies explicitly excluded deaths occurring before starting treatment in the analysis. Between 6.7% and 30.0% of studies reported first event deaths occurring after completion of treatment. The number of studies that reported deaths as a first event following HSCT was highly variable and ranged from 0% to 70.0%. Some studies used deaths during induction or remission to define TRM while others used deaths occurring at a set number of days to delineate TRM. Within therapeutic pediatric ALL studies, only 3.1% of studies used time from treatment to delineate TRM while 44.4% of pediatric non-APL AML studies, 30.0% of pediatric TRM studies and 46.7% of adult/pediatric APL studies used time from treatment initiation to delineate whether mortality was an early death or TRM. For example, in pediatric AML studies, 6 weeks was a
common time frame used to delineate a death as early or treatment-related. In contrast, 8 days was a common time frame used to delineate an early death in APL. However, Tables S1b and S1d also demonstrate that this time frame was variable within pediatric AML and adult/pediatric APL.

We have shown that many studies, particularly pediatric therapeutic ALL studies, do not provide a definition of TRM. Therapeutic studies do not generally present the overall toxic death rate over the course of treatment, which is probably one of the more clinically meaningful estimates for families and healthcare professionals. There is a high degree of variability whether deaths prior to starting treatment, following completion of treatment or those that occur after HSCT are considered TRM. While most therapeutic studies of pediatric ALL use induction and remission periods to delineate TRM, many studies in pediatric AML and adult/pediatric APL use a time frame from starting treatment to define early death or TRM, but this time period is not consistent across studies. Such variability highly influences a study’s reported TRM rate and thus, published TRM rates are not comparable and are difficult to interpret.

**Inconsistency in Defining Attribution for Cause of Death**

A second major impediment to adequate understanding of TRM is the issue of attribution, such as death due to infection, hemorrhage, tumor lysis syndrome or organ dysfunction. There are two major problems with attribution. First, a reliable system of attribution related to TRM has never been developed. For example, infection-related mortality has been variably defined. Some authors have classified death in the presence of any fever as infection-related mortality while others have required the presence of clinical or microbiological documented infection for infection-related mortality. Similarly, there are no definitions for what type or extent of hemorrhage constitutes bleeding-related death. Second, not uncommonly, patients will have multiple events close to death such as organ dysfunction, infection and hemorrhage. Currently, there are no clear ways to classify the primary cause of death for these patients. We have previously argued that attribution may never be possible due to multiple concurrent serious events proximal to death and that, a system to identify certainty of
attribution as well as important adverse events proximal to death would be useful.

**Applicability to Other Malignancies**

Although this overview focused on pediatric acute leukemia and adult/pediatric APL trials, similar issues are expected to occur in adult ALL and adult non-APL AML trials. Furthermore, there are expected to be additional challenges with adult and geriatric populations, particularly with deaths that occur after completion of therapy. Adults and elderly patients are expected to have some underlying rate of death from causes such as cardiovascular and pulmonary disease, which may or may not be compounded by cancer and anti-cancer therapy. How those deaths are classified, particularly with long-term follow-up, is challenging. Outside of ALL and AML, similar issues are expected in other hematologic malignancies treated with toxic therapies such as multiple myeloma and high grade lymphoma. Low grade malignancies pose unique challenges; delineation of TRM based upon remission status likely does not make sense in this setting.

**Recommendations**

Epidemiological investigation into TRM characteristics and risk factors has been crippled by the absence of a standard definition for TRM. Furthermore, this deficit has impeded the valid comparison of TRM rates between different trials and over time. We suggest that further work in this area should be a priority. We suggest that all leukemia studies should be explicit about defining TRM with respect to whether deaths off treatment and following HSCT (if applicable) are included. Definitions are more heterogeneous in pediatric AML and considering that TRM is a major contributor to mortality in this disease, consistent definitions that either rely on induction/remission status or a consistent time frame should be established. Thus, paradigms for how to classify TRM in pediatric AML are urgently needed. The same considerations also apply to adult and pediatric APL trials. Consistent definitions would allow for meaningful interpretation of TRM rates across trials and would suggest where supportive care interventions are needed.
An optimal TRM classification system should be developed that can be reliably used across different abstractors, institutions, protocols and countries. Furthermore, an optimal system must be feasible and easy to use. One possible approach could be to first identify elements required to determine whether a death is due to treatment or disease. For example, such elements would invariably include dates of death, diagnosis, start of treatment, end of treatment, and last relapse, and disease status. Then, using these elements, an algorithm could be developed to classify whether the death is TRM or not. For example, a death in the setting of a patient who has started treatment, not yet ended treatment, is in remission and has not relapsed would likely be classified as TRM across all diagnoses. An ideal algorithm would be useable across diagnoses and would be adaptable to circumstances such as relapse. For example, children who have relapsed but die of a fulminant infection could be differentially classified as TRM depending on the purpose of the analysis.

Although any proposal would need to be vetted through a group with diverse representation, one proposal for a TRM definition could be as follows. Deaths prior to treatment initiation are controversial. Some would argue that these deaths should be considered TRM as these deaths may be preventable through improved supportive care. However, others may argue that deaths due to hyperleukocytosis, which may occur before treatment initiation, should be considered disease-related. We agree that there are different perspectives but believe that it is important that hyperleukocytosis-related deaths be similarly classified irrespective of whether treatment was started. Whether these should be classified as treatment-related or disease-related is more difficult; classifying these as TRM would allow more homogeneity in classification since hyperleukocytosis is commonly associated with bleeding and sometimes it is not known whether hemorrhage is primarily driven by leukostasis or a bleeding diathesis. Nonetheless, we emphasize that any TRM definition would need to be vetted through, and agreed upon by a diverse group with wide representation who would take these factors into account in their deliberations. Inclusion of hyperleukocytosis deaths as TRM would increase reported TRM rates but this should not be problematic as long as TRM definitions were clear. Another suggestion for a TRM definition would be that in all studies of acute leukemia, induction TRM would
be considered any death during the first intensive cycle of chemotherapy, even in protocols which use two cycles of induction. Following the first cycle of chemotherapy, any death in morphological remission would be considered TRM. In patients who do not remit after the first cycle of chemotherapy, TRM could be defined as any death not due to progressive disease although how to deal with this group of patients is more problematic. Finally, it is probably reasonable to set a maximum period of time following chemotherapy completion in which a remission death is considered TRM. It is important to not solely use causation to define TRM since even motor vehicle accidents and suicide could in theory be related to the disease and treatment via central nervous system ischemia/hemorrhage and cognitive or psychological effects. The choice of time period would need to balance the chance of mortality from natural causes versus death related to late effects of cancer therapy.

In addition, attribution for cause of death is a major issue which has not been addressed in leukemia. One solution could be to develop a system to categorize certainty of attribution (for example, definite, probable or possible hemorrhage as the cause of death). The issue of multiple causes of death has not been adequately explored in the pediatric or adult context. We suggest that all possible causes of death be listed along with the associated certainty of attribution.

Finally, these problems are equally important in pediatric and adult leukemia. We suggest that early collaboration between pediatric and adult hematologists is required in order to harmonize TRM definitions as much as possible to allow valid comparisons between pediatric and adult trials.

Conclusions

Clinical trials in acute leukemia commonly do not present definitions of TRM and there is great variability across studies regarding which deaths are considered disease-related versus treatment-related. Consensus toward common definitions of TRM and methods to consistently approach attribution of TRM are critically important future goals. Collaboration between pediatric and adult hematologists will be crucial in order to permit comparisons across studies.
Acknowledgements

We wish to thank Elizabeth Uleryk and Cheri Nickel for their support in conducting the literature search and Rhonda Adams for her administrative support. LS is supported by a New Investigator Award by the Canadian Institutes of Health Research.

Authorship Contributions

LS and TL designed the study; LS, MCE and EB collected data; and LS and MCE were responsible for analyzing the data. LS wrote the manuscript and all authors revised the manuscript for critical content.

Disclosure of Conflicts of interest

The authors declare no competing financial interests.
References


Table I: Summaries of Treatment-related Mortality Reporting in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia and Acute Promyelocytic Leukemia Trials

<table>
<thead>
<tr>
<th></th>
<th>Provide Definition of TRM</th>
<th>Describe TRM over Entire Course of Treatment</th>
<th>Include Deaths Before Starting Chemotherapy*</th>
<th>Include Deaths After Completing Chemotherapy</th>
<th>Include Deaths After Stem Cell Transplantation</th>
<th>Include Accident, Suicide or Unknown</th>
<th>Use Time from Start Treatment to Define TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric acute lymphoblastic leukemia N=32</td>
<td>2 (6.3%)</td>
<td>2 (6.3%)</td>
<td>2 – yes</td>
<td>6 (18.8%)</td>
<td>6 (18.8%)</td>
<td>6 (18.8%)</td>
<td>1 (3.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 – no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 – exclude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 – unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 – NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric acute myeloid leukemia N=9</td>
<td>6 (66.7%)</td>
<td>3 (33.3%)</td>
<td>4 – yes</td>
<td>1 (11.1%)</td>
<td>5 (55.6%)</td>
<td>2 (22.2%)</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 – no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 – unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 – NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies of TRM in pediatric acute leukemia N=10</td>
<td>7 (70.0%)</td>
<td>8 (80.0%)</td>
<td>4 – yes</td>
<td>3 (30.0%)</td>
<td>7 (70.0%)</td>
<td>5 (50.0%)</td>
<td>3 (30.0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 – no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 – unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult and pediatric acute promyelocytic leukemia N=15</td>
<td>8 (53.3%)</td>
<td>0 (0%)</td>
<td>1 – yes</td>
<td>1 (6.7%)</td>
<td>0 (0%)</td>
<td>4 (26.7%)</td>
<td>4 (26.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 – no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 - exclude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 - unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: TRM – treatment-related mortality; NA – not applicable

*Yes - study classified deaths before starting chemotherapy as early death or TRM; no - no deaths prior to starting treatment; exclude - specifically excluded deaths prior to starting treatment in the outcome analysis; unknown - we could not ascertain how deaths prior to starting treatment were handled; and NA - study did not include patients in induction.
Lack of clarity in the definition of treatment-related mortality: pediatric acute leukemia and adult acute promyelocytic leukemia as examples

Marie-Chantal Ethier, Esther Blanco, Thomas Lehrnbecher and Lillian Sung