International Myeloma Working Group (IMWG) consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem-cell transplantation

Michele Cavo1, S. Vincent Rajkumar2, Antonio Palumbo3,Philippe Moreau4, Robert Orlowski5, Joan Bladé6, Orhan Sezer7, Heinz Ludwig8, Meletios A. Dimopoulos9, Michel Attal10, Pieter Sonneveld11, Mario Boccadoro12, Kenneth C. Anderson13, Paul G. Richardson13, William Bensinger14; Hans Johnsen15; Nicolaus Kroeger16; Gösta Gahrton17; P. Leif Bergsagel18; David H. Vesole19; Hermann Einsele20, Sundar Jagannath21, Ruben Niesvizky22, Brian GM Durie23, Sagar Lonial24; on behalf of the International Myeloma Working Group.

Affiliations:
1Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; 2Department of Hematology, Mayo Clinic, Rochester Minnesota, Eastern Cooperative Group, USA; 3Division of Hematology, University of Torino, Torino, Italy; 4Department of Hematology, University Hospital, Nantes, France; 5Department of Lymphoma/Myeloma, MD Anderson Comprehensive Cancer Center, Houston, Texas, USA; 6Department of Hematology, Hospital Clinic, Barcelona, Spain; 7University Medical Center, University of Hamburg, Hamburg, Germany; 8First Medical Department and Medical Oncology, Wilhelminenspital Hospital, Vienna, Austria; 9Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece; 10Service of Hematology, Hopital Purpan, Toulouse, France, 11Department of Hematology, ERASMUS MC, Rotterdam, The Netherlands; 12Department of Medicine and Experimental Oncology, University of Torino, Torino; 13Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; 14Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; 15Department of Hematology, Medical Center, Aarhus University Hospital, Aarhus, Denmark; 16Department of Stem Cell Transplantation, University Hospital Hamburg, Hamburg, Germany; 17Department of Medicine, Huddinge University Hospital, Stockholm, Sweden; 18Department of Hematology/Oncology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA; 19John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, New Jersey, USA; 20Department of Hematology and Oncology, Wuertzburg
University Hospital, Wuertzburg, Germany; 21Mt. Sinai Cancer Institute, New York, NY, USA; 22Center for Lymphoma and Myeloma, Weill Medical College of Cornell University, New York, NY, USA; 23Hematologic Malignancies and Multiple Myeloma, Aptium Oncology, Los Angeles, California, Southwest Oncology Cooperative Group, USA; 24Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA

Co-Correspondence:

Michele Cavo, MD, Istituto di Ematologia “Seràgnoli”, Azienda Ospedaliero-Universitaria, Policlinico S. Orsola-Malpighi, via Massarenti 9, 40138, Bologna, Italy; Tel: +39-051-6364038; fax: +39-051-6364037; E-mail: michele.cavo@unibo.it

S. Vincent Rajkumar, MD, Mayo Clinic, Rochester, MN 55905, US
Tel: 507-266-9276; Fax: 507-266-4972; E-mail: rajks@mayo.edu

Running title: Treatment of newly diagnosed myeloma

Journal: Blood
Review Article
Abstract
The role of high-dose therapy (HDT) followed by autologous stem-cell transplantation (ASCT) in the treatment of multiple myeloma (MM) continues to evolve in the novel agent era. The choice of induction therapy has moved from conventional chemotherapy to newer regimens incorporating the immunomodulatory derivatives (IMiDs) thalidomide or lenalidomide, and the proteasome inhibitor bortezomib. These drugs combine well with traditional therapies and with one another to form various doublet, triplet and quadruplet regimens. Up-front use of these induction treatments, in particular three-drug combinations, has affected unprecedented rates of complete response that rival those previously seen with conventional chemotherapy and subsequent ASCT. Autotransplantation applied after novel-agent-based induction regimens provides further improvement in the depth of response, a gain which translates into extended progression-free survival and, potentially, overall survival. High activity shown by IMiDs and bortezomib before ASCT has recently led to their use as consolidation and maintenance therapies after autotransplantation. Novel agents and ASCT are complementary treatment strategies for MM. This manuscript reviews the current literature and provides important perspectives and guidance on the major issues surrounding the optimal current management of younger, transplant-eligible MM patients.

Keywords: Myeloma, Autotransplantation, Thalidomide, Bortezomib, Lenalidomide, Induction Therapy, Consolidation and Maintenance Therapy
Introduction

Multiple Myeloma (MM) is a disease of the elderly. Overall, only 35% of the patients are below the age of 65 years at the time of diagnosis, while the remaining two-thirds are older.\(^1\) Age is an independent prognostic factor in MM\(^2\) and, importantly, provides a major criterion by which patients can be considered eligible to tolerate high-dose therapy (HDT) with autologous hematopoietic stem-cell transplantation (ASCT). Over the last decade, the survival of patients with newly diagnosed MM, particularly those younger than 60 years, has significantly improved.\(^3\) The widespread use of ASCT and the introduction into clinical practice of the novel agents bortezomib and the immunomodulatory derivatives (IMiDs) thalidomide and lenalidomide have significantly contributed to major advances in MM therapy and prognosis.\(^4,5\)

Thalidomide or bortezomib combined with melphalan and prednisone (MP) represent new standards of care for elderly, transplant-ineligible MM patients.\(^6\)\(^-\)\(^8\) In this setting, lenalidomide in combination with low-dose dexamethasone is an alternative treatment option.\(^9\) In younger patients, the novel agents have been incorporated into the therapeutic algorithm along with ASCT to improve clinical outcomes.\(^10\)\(^-\)\(^12\) In particular, these drugs have been used as part of induction therapy before ASCT and as consolidation/maintenance after autotransplantation. This manuscript from the International Myeloma Working Group (IMWG) presents an overview of the most recent studies of novel agents combined with ASCT and focuses on the main areas of current debate, including the choice of induction regimen, the role of post-ASCT consolidation and maintenance therapies, the impact on prognosis of ASCT incorporating the new drugs, as well as the management and prevention of major toxicities related to the use of novel therapies.

What is “younger”?

There is no formal definition of a younger patient with MM, although this term is commonly used to identify an individual for whom ASCT is planned as part of the treatment program. As many phase III studies of ASCT have enrolled patients with an upper age limit not exceeding 65 years,\(^13\)\(^-\)\(^19\) younger MM patients are often operatively defined as being aged 65 years and below. However, this arbitrary cut-off does not exclude patients who are older than 65 years from ASCT. In particular, in selected patients up to the age of 70-75 years who are medically fit, ASCT is a treatment option which can be performed safely at most specialized transplant or myeloma centers.\(^20\) Unlike in
younger patients, benefits from ASCT have not been consistently demonstrated in the elderly.

When to start myeloma-specific therapy

When symptomatic, or active, MM is diagnosed based on the presence of organ damage related to the underlying malignant clone (e.g. hypercalcemia, renal insufficiency, anemia and bone disease), therapy is required immediately. By contrast, patients with asymptomatic or smoldering MM are closely observed without specific therapy until the disease progresses to a symptomatic phase. Clinical trials are currently underway to investigate whether novel agents can delay the risk of progression from smoldering to active MM and improve overall survival (OS). At present, the IMWG does not recommend treatment for smoldering MM, but considers patients at high risk of progression to symptomatic disease as candidates for investigative clinical trials.

Single autologous stem-cell transplantation

Over the last decade ASCT has been considered the standard of care for younger patients with newly diagnosed MM based on the increased rate of complete response (CR) and prolonged overall survival (OS) compared with conventional chemotherapy in several randomized studies. However, not all the studies published so far have uniformly demonstrated the superiority of ASCT over chemotherapy at standard doses. A number of factors may account for these discrepancies, including treatment crossover for patients randomized to conventional treatment, possible bias in patient selection criteria and differences between studies with respect to the intensity and duration of conventional therapy. A systematic review and meta-analysis of randomized studies has shown a significant benefit with single ASCT in terms of prolonged progression-free survival (PFS), but not of OS. However, these results should be cautiously interpreted due methodological limitations of the analysis and significant heterogeneity across different studies.

An alternative to autotransplantation up-front, is to delay HDT with ASCT at the time of relapse. Although in a pilot study the length of OS for patients receiving early or late ASCT after conventional induction chemotherapy was equivalent, early autotransplant was associated with a longer event-free survival (EFS) and better quality of life. In the novel agent era, the issue of early versus late ASCT needs to be re-evaluated in the context of large randomized clinical trials. Two of these studies are currently ongoing, one of them headed by the European Myeloma Network and the other performed by a consortium of
centers in France and the United States (US). While final results of these studies are awaited, the IMWG recommends that ASCT should be offered at some point in the course of the treatment program for a patient eligible to receive HDT. Although favourable results with ASCT up-front are backed by phase III studies, increasing numbers of patients and physicians, particularly in US, are currently opting to collect stem cells early and deferring transplant at the time of relapse.

Double autologous stem-cell transplantation

Five randomized trials directly addressed the question of single versus double, or tandem, ASCT as up-front therapy for MM15,19,28-30 Results were conflicting, due to differences between studies with respect to their structural and methodologic characteristics. In particular, while extended EFS with double ASCT was observed in most of the trials, an OS benefit was demonstrated in only two of them. A meta-analysis of data pooled from controlled clinical trials – one of which has been recently retracted – failed to show superior OS with double ASCT which, by the opposite, was associated with improved response rates and EFS.31 A number of concerns related to the methodology of the analysis and errors involving data extractions have been raised, suggesting that these caveats might have negatively influenced the conclusion.32,33 More recently, a report of long-term outcomes of several trials of autotransplantation(s) confirmed superior results offered by double ASCT in comparison with a single transplantation.34

In two studies of double ASCT, *post-hoc* subgroup analyses showed that the second autotransplant improved clinical outcomes in those patients who failed high-quality responses after the first ASCT.15,19 However, a major limitation of these studies was their lack of power to demonstrate the equivalence of one versus two transplants for patients with high-quality responses after the first course of HDT. With the recent availability of highly effective novel agents, the role of single versus double ASCT is being explored in the context of prospective, randomized clinical trials, such as that currently headed by the Bone Marrow Transplant Clinical Trials Network. In the meantime, the IMWG suggests to consider timely second ASCT in those patients who fail to achieve a very good partial response (VGPR) or better after the first ASCT.

Prognostic relevance of CR

Attainment of CR after both induction therapy and ASCT is one of the strongest predictors of long-term outcomes35,36 and represents a major endpoint of current treatment strategies incorporating autotransplantation up-front. To more carefully identify high quality
responses occurring beyond the CR level, the IMWG has recently introduced the category of stringent CR, as defined by negative immunofixation, normal free-light chain ratio and absence of clonal bone marrow plasma cells by immunohistochemistry. It is likely that incorporation of novel agents into ASCT results in increased rates of immunophenotypic and/or molecular remissions in comparison with that reported in the recent past.

Other studies have also emphasized the adverse prognostic importance of residual focal lesions detected by magnetic resonance imaging. In contrast, sustained CR is predictive of favourable long-term outcomes. Therefore, not only attainment of CR but maintenance of a durable CR appears to be a major prognostic variable in MM. Interestingly, achievement of CR does not seem to be of critical prognostic relevance for several subgroups of patients, including those with low-risk disease or in whom active MM reverts to an indolent phase similar to that of monoclonal gammopathy of undetermined significance.

Review of evidence supporting newer induction treatments in preparation for ASCT

Patients who are eligible for early ASCT typically receive a limited number of cycles of induction therapy to reduce tumor cell mass and bone marrow plasma cell infiltration before collection of peripheral blood stem cells (PBSCs). In comparison with conventional treatments used in the past, a number of novel agents are now available that affect increased rates of CR. Currently, these novel agents are incorporated into induction regimens to enhance the depth of response before ASCT and further improve post-ASCT outcomes.

Thalidomide and dexamethasone

The activity of thalidomide, especially when combined with dexamethasone (TD), in the relapsed/refractory setting has provided the rationale for the design of phase II and III trials investigating the role of this regimen in patients with newly diagnosed disease. In 2005, a retrospective case-matched study provided the first demonstration of superior rate and depth of response affected by TD in comparison with VAD as induction therapy in preparation for ASCT, a finding confirmed by a subsequent phase III study (Table 1). Based on the results of a randomized study showing a higher response rate with TD compared to high-dose dexamethasone (Table 1), the US Food and Drug Administration granted accelerated approval for TD in patients with newly diagnosed MM. As a result, over the past years TD has emerged as one of the most commonly used induction regimens in US and European Countries (EU).
In two additional studies in which TD was incorporated into double ASCT and given from the outset through the second ASCT or until relapse/progression, superior rates of CR or at least VGPR, EFS and OS were seen with TD plus double ASCT compared to tandem transplant not incorporating thalidomide (Table 1). However, the rate of adverse events, in particular peripheral neuropathy and venous thromboembolism, was consistently high with thalidomide maintenance therapy and led to drug discontinuation in 30% and 60% of patients after 2 and 4 years, respectively.

Induction regimens including thalidomide-dexamethasone and a cytotoxic drug

Two phase III trials explored the activity of induction regimens combining TD with doxorubicin (TAD) or cyclophosphamide (CTD) in transplant candidates. In one study, TAD provided a significantly higher rate of VGPR or better in comparison with VAD (37% vs 18%), a gain which was maintained after the first ASCT (54% vs 44%, respectively). Median EFS for patients randomly assigned to TAD followed by post-ASCT thalidomide maintenance was 34 months vs 22 months for those assigned to VAD and subsequent maintenance with interferon.

In another study, superior rates of CR both before and after ASCT were seen with CTD as compared with cyclophosphamide added to VAD (pre-ASCT: 19% vs 9% and post-ASCT: 51% vs 40%, respectively).

Bortezomib and dexamethasone

The role of up-front standard-dose bortezomib (1.3 mg/m²) given twice-weekly either as a single agent or with added dexamethasone in patients with suboptimal response to the first cycles of therapy was initially explored in patients who were either eligible or ineligible for ASCT (Table 2). In two additional phase II studies, bortezomib and high-dose dexamethasone (VD) were given either in combination or on an alternating basis before ASCT. The rate of at least VGPR was 31% with VD and 22.5% with the alternating schedule; the corresponding value after ASCT was 55% in each of the two studies.

In a phase III study, VD was prospectively compared with VAD as induction therapy in preparation for single or double ASCT; in both arms, lenalidomide was given as post-ASCT consolidation and maintenance therapy. After four 21-day cycles, the rates of at least VGPR, including CR and near CR (nCR), affected by VD were significantly higher than with VAD (≥VGPR: 38% vs 15%; CR-nCR: 15% vs 6%, respectively), a gain maintained after both the first and second ASCT (≥VGPR: 68% vs 47%; CR-nCR: 39.5%
vs 22.5%, respectively). A border-line, albeit not statistically significant, PFS benefit was seen in the VD arm as compared with the VAD arm (median: 36 vs 30 months, respectively).

Induction regimens including bortezomib-dexamethasone and a cytotoxic drug

Cytotoxic drugs added to VD as part of a three-drug regimen in preparation for ASCT have included doxorubicin or cyclophosphamide (Table 2). A combination of bortezomib, doxorubicin and dexamethasone, referred to as PAD, was investigated in two small cohorts of patients who received either standard-dose or reduced-dose bortezomib (1.0 mg/m²) on a twice-weekly basis (Table 2). In a phase III study, the PAD regimen was compared with VAD as induction therapy before one or two autotransplants. Superior CR-nCR rates were seen with PAD as compared to VAD after both induction (11% vs 5%, respectively) and autotransplant(s) (30% vs 15%). PAD induction followed by subsequent bortezomib maintenance was associated with significantly longer PFS and OS in comparison with VAD induction and post-ASCT thalidomide maintenance therapy (Table 2). Two additional phase II studies confirmed the activity of a PAD-like induction regimen incorporating pegylated liposomal doxorubicin (Table 2).

In addition, cyclophosphamide has also demonstrated substantial activity when combined with VD (CyBorD or VCD) in preparation for ASCT. In two phase II studies, the rate of at least VGPR was between 37% and 61%, a range which reflected heterogeneities between studies with respect to the number of planned treatment cycles and the delivered cyclophosphamide dose.

Bortezomib-based induction regimens incorporating thalidomide

Preclinical data suggesting that IMiDs increase bortezomib activity, provided the rationale for combining thalidomide with VD (VTD). Promising rates of high-quality responses reported with VTD in small cohorts of relapsed/refractory and newly diagnosed MM patients led to the design of a phase III study of VTD versus TD as induction therapy before, and consolidation therapy after, double ASCT. After three 21-d induction cycles, VTD was superior to TD with respect to all response categories, including CR, CR-nCR (31% vs 11%) and at least VGPR (62% vs 28%). Increased frequencies of high-quality responses in the VTD arm as compared to the TD arm were also seen after double autotransplant and subsequent consolidation therapy (CR-nCR: 62% vs 45%; ≥VGPR: 85% vs 68%, respectively). The estimated 3-year PFS for the VTD group of patients was significantly longer than for those assigned to TD plus double ASCT (68% vs 56%,
respectively). In two additional phase III studies comparing VTD with either TD62 or VD63 as induction therapy in preparation for a single ASCT, superior rates of high-quality responses, both before and after ASCT, and extended PFS62 were seen with the triplet regimen (Table 3). Remarkable activity of VTD was further confirmed by several phase II studies,64,65 including a prospective comparison of VTD with the same regimen combined with cyclophosphamide (VTDC)66 (Table 2).

In Total Therapy 3 (TT3), VTD combined with cisplatin, doxorubicin, cyclophosphamide and etoposide (PACE) was given as induction therapy before, and consolidation after, double ASCT, while VTD maintenance therapy was continued for 1 year following ASCT.67 In comparison with Total Therapy 2 incorporating TD into double ASCT, TT3 significantly improved 2-year EFS (85\% vs 89\%) and duration of CR in the subgroup of patients with low-risk gene expression profiling.

Lenalidomide and dexamethasone

Lenalidomide plus high-dose dexamethasone (480 mg total in a 28-d cycle) (RD) was prospectively compared with lenalidomide and low-dose dexamethasone (160 mg total per cycle) (Rd) as frontline therapy for MM.9 Patient enrolment into the study was not restricted by age or eligibility for ASCT. Despite the overall response rate, including VGPR or better within 4 cycles of therapy was significantly higher with RD as compared to Rd (42\% vs 24\%, respectively), a substantially higher toxicity and early mortality was seen with RD, particularly in patients older than 65 years. On landmark analysis, the 3-year OS of patients who received ASCT following RD or Rd was 92\%; the corresponding value for patients who continued on primary therapy and did not receive ASCT was 79\%.

Lenalidomide-based induction regimens incorporating bortezomib or other agents

Lenalidomide and dexamethasone were combined with bortezomib to form a triplet regimen (RVD) which has been investigated in limited series of patients with newly diagnosed MM.68,69,70 In a phase I/II study, a total of 66 patients who were either transplant-eligible or ineligible for ASCT received a maximum of eight RVD cycles; in responders, RVD maintenance was allowed.69 After 4 cycles, the rate of at least nCR and VGPR was 6\% and 11\%, respectively. However, in approximately two thirds of patients the quality of response improved from cycle 4 through cycle 8 and a further improvement was also seen in the maintenance phase.

In addition to RVD, alternative lenalidomide-containing regimens have included a combination of lenalidomide-cyclophosphamide-dexamethasone (RCD) and a quadruplet
regimen in which cyclophosphamide was added to RVD (VDCR)71 (Table 4). A prospective comparison of RVD with VDC and VDCR given for up to eight cycles has been recently reported; the rate of CR-nCR after 4 cycles was in the 7%, 3% and 10% range, respectively.72 An additional quadruplet regimen incorporating lenalidomide, bortezomib, dexamethasone and pegylated liposomal doxorubicin was explored.73 After a median of 4 cycles, the rates of CR-nCR and VGPR or better were 30% and 58%, respectively.

Special patient populations

Cytogenetic abnormalities

The prognostic value of major cytogenetic abnormalities and the impact of novel agents on clinical outcomes of patients carrying different cytogenetic changes have been recently reviewed by the IMWG.74 Detection at diagnosis of translocation t(4;14) and t(14;16) or deletion of chromosome 17 [del(17p)] by fluorescence in situ hybridization (FISH), as well as deletion/monosomy of del(13q) or hypodiploidy by metaphase cytogenetics define approximately one fourth of patients75 who in the past years did not benefit from ASCT and had shortened remission duration and OS.76,77

Recent reports have suggested that incorporation of novel agents into ASCT may overcome, at least in part, the poor prognosis imparted by high-risk cytogenetic profiles. In two phase III studies of VD78 and PAD55 induction therapy followed by lenalidomide and bortezomib maintenance therapy, respectively, t(4;14)-positive patients had better outcomes than the control groups who carried the same abnormality but received VAD induction followed by maintenance therapy with either lenalidomide78 or thalidomide.55 However, in both these studies t(4;14) partly retained its adverse influence on PFS and OS even among patients treated with bortezomib-based induction regimens and subsequent maintenance with novel agents.55,78 In contrast, in a phase III study of VTD induction and consolidation therapy plus double ASCT PFS curves were almost identical regardless of the presence or absence of t(4;14).61 In an additional study, incorporation of VTD into double ASCT as part of both induction and consolidation therapy and as post-ASCT maintenance therapy resulted in improved CR duration, PFS and OS for the gene expression profile-defined high-risk subgroup of patients carrying the MMSET/FGFR3 hybrid transcript.67 The role of bortezomib-based regimens and ASCT for the treatment of del(17p)-positive patients needs to be carefully evaluated in larger sample sizes than those explored so far.78 In particular, areas of major interest include the ability of less or more intense treatments (e.g. doublet versus triplet or quadruplet combinations) given for
different time periods (e.g. short-term versus long-term) to impact on the poor prognosis related to this high-risk cytogenetic profile.

In most studies incorporating thalidomide as part of induction therapy or as post-ASCT maintenance, the outcome of patients with del(13q), t(4;14) and/or del(17p) was inferior to that of patients who lacked these abnormalities. Conflicting results concerning the ability of lenalidomide to overcome the poor prognosis associated with del(13q) and t(4;14) were found in two retrospective studies of patients with relapsed/refractory MM. The adverse prognostic impact of del(17p) was emphasized in one of these studies. In a recent report on newly diagnosed MM patients who were either transplant-eligible or ineligible for ASCT and received lenalidomide-dexamethasone up-front, both response duration and PFS, but not OS, were significantly worse when high-risk genetic abnormalities were present at baseline.

Renal failure

In patients with MM and renal failure, rapid reduction of myeloma cell mass and recovery of normal renal function are critical goals of both myeloma-specific therapy and supportive care measures. Neither thalidomide nor bortezomib are excreted through the kidneys and dose adjustments are not required for patients with renal impairment. In contrast, it is mandatory to modify the dose and schedule of lenalidomide according to renal clearance. In general, bortezomib-based regimens are the preferred treatment option in this setting, as recently recommended by the IMWG.

Major Toxicities with IMiDs- or bortezomib-based induction therapies

Thalidomide and Lenalidomide

For patients who receive thalidomide up-front, either as a single agent or in combination therapy, the most common toxicities include constipation, somnolence and peripheral neuropathy (PN). Thalidomide-induced PN is more frequently sensory or sensorimotor, is dose-dependent (more prevalent with doses higher than 200 mg/day) and duration-dependent (more likely to occur after 6-12 months). Reduction of the dose or discontinuation of thalidomide according to the severity of PN are measures commonly used in clinical practice. Unlike thalidomide, lenalidomide induces myelosuppression, mainly neutropenia and thrombocytopenia, which can be managed via dose reductions and/or hematopoietic growth factor support. PN is uncommonly seen with lenalidomide. Another major challenge to be considered in patients who receive thalidomide or lenalidomide up-front is the increased risk of thromboembolic complications.
guidelines on the most appropriate thromboprophylactic treatments have been provided by the IMWG. Finally, hypothyroidism is an additional important adverse event associated with long-term therapy incorporating thalidomide or lenalidomide. Long-term use of lenalidomide is also associated with severe diarrhea and cramps in a subset of patients.

The effect of newer induction regimens, in particular those incorporating lenalidomide, on PBSC mobilization and the optimal strategies to obtain adequate stem cell harvests have recently been reviewed by the IMWG.

Bortezomib

One of the most important non-hematologic toxicities of bortezomib is PN which may lead to impaired quality of life. Bortezomib-induced PN is predominantly sensory, though in less than 10% of cases motor neuropathy has been reported. Unlike neurological toxicity associated with thalidomide, neuropathic pain, mainly located in the fingertips and toes, is a major problem with bortezomib. Major risk factors of bortezomib-induced PN include the cumulative dose of the drug and treatment schedule. Attempts to decrease the rate and severity of neurological toxicity in transplant candidates have included either dose reduction of bortezomib given on a twice-weekly basis or once-weekly administration of the drug at a higher dose to maintain activity. In elderly, transplant-ineligible, patients for whom treatment plan comprised long-term exposure to MP combined with bortezomib (given twice-weekly for 4 cycles, followed by once-weekly administration for the next 5 cycles), the overall risk of PN was 47%, including 13% grade 3 or 4. In two recent studies of MP combined with standard-dose bortezomib given on a weekly basis for 6 to 9 cycles, the incidence of grade 3-4 PN was reduced to 6-7%, while efficacy was retained. Whether these favourable results may be obtained in transplant-eligible patients who usually receive a shorter induction therapy is an issue not yet addressed in clinical trials. Notably, in comparison with single-agent bortezomib short-term use of combined bortezomib and thalidomide was not associated with a major increase in the frequency of any grade and grade 3-4 PN. Besides symptomatic therapy, the optimal management of bortezomib-induced PN requires its early recognition and dose reduction or discontinuation of the drug using a validated algorithm; an alternative option may be to prolong the dosing schedule. Provided these procedures are promptly adopted, approximately 70% of patients have partial or complete reversibility of their neurological symptoms. The issue of the management of treatment-emergent PN in MM has been addressed by the IMWG. Severe thrombocytopenia occurs in approximately 5% or less of patients in the frontline setting. An additional adverse effect commonly seen with
bortezomib-based regimens is reactivation of varicella zoster virus (HZ),100 a complication which can be virtually abrogated with acyclovir prophylaxis.101

Role of novel agents as consolidation and maintenance therapies after autologous transplantation(s).

Consolidation treatment is generally short-term and aims to improve responses following ASCT. Upgraded rates of CR and CR-nCR, in the range between 10\% and 30\%, have been recently reported with post-ASCT use of bortezomib or lenalidomide as single agents102,103 or with VTD.104 In several of these studies, consolidation therapy with VTD yielded molecular remissions in up to 60\% of patients.38,105

Maintenance treatment is given for a prolonged time period with the goal of extending the duration of response, PFS and OS, while maintaining a good quality of life.106 Several randomized studies showed a PFS benefit with thalidomide as single agent or combined with prednisone as maintenance therapy after ASCT.46,47,80,81,107,108 In two of these studies, OS was extended in the thalidomide arm,80,107 a gain lost when thalidomide was also given as part of induction therapy before ASCT.46,47,81 Concerns exist about the use of thalidomide maintenance after ASCT, including the possible emergence of tumor resistant clones in patients with prolonged exposure to this agents and its lack of efficacy in patients with adverse cytogenetic abnormalities.109 However, the major caveat which precludes a widespread use of thalidomide maintenance is the toxicity related to long-term administration of this agent, primarily PN. In several studies, thalidomide-induced PN led to discontinuation rates in the 60\% range46,81 and impairment in patients’ quality of life.108 Lenalidomide is an attractive alternative to thalidomide due to the lack of neurological toxicity. Two independent randomized trials have recently shown a significantly longer PFS110,111 for patients randomized to lenalidomide maintenance (5-15 mg per day) in comparison with the placebo group after a single or double ASCT.105,106 An increased incidence of second primary malignancies, in the 7\% range, has been recently reported. While a concerted effort is needed to better define the underlying mechanisms and identify risk factors, the optimal role and duration of lenalidomide maintenance therapy needs to be tested in future clinical trials.

Conclusions

Incorporation of IMiDs and/or bortezomib into newer regimens given in preparation for ASCT has been extensively explored using a wide range of different combinations. Doublet therapies combining either an IMiD or bortezomib with dexamethasone (e.g. TD or
Rd or VD) affected higher overall response rates than traditional treatments, although the lowest rate of high-quality responses was seen with TD. In comparison with doublets like TD and VD, triplet induction regimens—in particular, bortezomib plus thalidomide and dexamethasone (VTD)—further increased the rate of CR and/or at least VGPR, both before and after autotransplantation. In the context of triplet regimens combining bortezomib with an IMiD, RVD is an attractive alternative to VTD, although favourable results reported so far are not backed by phase III clinical studies. Several newer induction treatments—like VD, VTD, PAD, and Rd—have been included as a category 1 recommendation, which signifies a high-level of evidence and uniform consensus among panel members, in the US National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for Multiple Myeloma, version 1.2011.

Enhanced high-quality responses affected by newer induction regimens translated into even higher frequencies of CR or at least VGPR after single or double ASCT. While extended PFS was reported in several of these studies, no OS benefit was generally seen, a finding which reflects the lack of adequate power and/or follow-up to detect survival differences. Furthermore, proving an OS benefit at this time is likely to be difficult, due to the rapidly increasing availability of effective salvage therapies at the time of relapse.

Based on these considerations and the close relationship between maximal response to induction therapy and favourable prognosis after ASCT, it is likely that many investigators in the IMWG would recommend using one of the bortezomib-containing triplet regimens as up-front induction therapy in a transplant-eligible MM patient. However, other IMWG investigators might feel that until OS differences emerge, low-risk patients may have the option of choosing either a doublet regimen with low morbidity, like Rd, or a bortezomib-based triplet, provided that they are properly informed about the pros and cons, particularly the risk of early PN with bortezomib. Besides once-weekly administration of bortezomib, the introduction into the clinical practice of subcutaneous bortezomib that has recently shown a significantly lower risk of PN in comparison with intravenous bortezomib in patients with relapsed/refractory disease and carfilzomib, a second generation irreversible proteasome inhibitor with significantly less neurotoxicity than bortezomib, may solve some of these issues in the near future.

In the absence of randomized studies comparing different induction regimens, it is difficult to recommend one induction regimen over another. However, particular patient and disease characteristics may guide the clinician to select the most appropriate therapy.
For instance, preliminary data suggest that bortezomib-based regimens like VTD, VD and PAD can partially or completely abrogate the poor prognosis related to t(4;14), while more mature data about del(17p) are needed. In patients presenting with acute renal failure, both bortezomib- and thalidomide-based regimens can be safely given, while lenalidomide requires appropriate dose reductions and frequent monitoring of blood counts. In patients at high risk of thromboembolic complications, a bortezomib-based regimen may be preferable. In contrast, the presence of neuropathy at baseline might suggest excluding bortezomib-based or thalidomide-based treatments in favour of a regimen such as Rd. In the studies reported so far, the dose of dexamethasone was variable. In the absence of data showing that less or more dose intense corticosteroids as part of induction therapy have a different impact on post-ASCT clinical outcomes, no specific recommendations about dexamethasone dosing can be given. However, high-dose dexamethasone is needed in those patients in whom a prompt reduction in tumor cell mass is required. Finally, it is worth remembering that in many countries novel-agent-based induction therapies for younger, transplant-eligible patients are not approved as yet. In these cases, the choice of induction regimen should be based on drug availability; furthermore, referral of patients to a specialized myeloma center with access to studies of novel agents is recommended.

The usual choice of giving 3 to 6 cycles of induction therapy to maximize the depth of response before early ASCT represents a reasonable balance between maximum benefit and minimum toxicity. However, an alternative choice which can be discussed with the patient, particularly if response to therapy is favourable and he/she is unwilling to proceed to early ASCT, is to continue induction for as long as maximal tumor reduction is achieved and then to maintain response until relapse or progression, at which time salvage ASCT can be performed. In this scenario, especially in patients treated with lenalidomide-based regimens, PBSCs should be collected early, after 4 to 6 cycles of induction therapy. The best timing of ASCT in the novel agent era represents an area of active debate and major interest. Unless final results of ongoing clinical trials comparing early versus late ASCT plus novel agents will be available, ASCT up-front should continue to be considered the preferred approach for a patient who is eligible to tolerate HDT.

More recently, the treatment paradigm for transplant-eligible MM patients has continued to evolve with the introduction of the novel agents as consolidation and maintenance therapies. Mature results demonstrating the role, if any, of consolidation therapy in improving clinical outcomes and the impact of maintenance therapy on OS are
needed before these strategies are widely adopted. In the meantime, the choice of using consolidation and/or maintenance therapy outside clinical trials is at the patient’s and physician’s discretion. If post-ASCT therapy with lenalidomide is planned, the IMWG recommends that the benefits of extended disease control versus potential risks of second malignancies with continued lenalidomide therapy be discussed with each patient. For many other important and still unaddressed questions, prospective randomized phase III studies are currently planned or underway.

Author Contributions
All authors developed the consensus, provided critical review and edits to the manuscript, and gave approval to the final manuscript. All authors significantly participated in the development of the manuscript and the writing of the manuscript.

Disclosures and Conflicts of Interest:
Michele Cavo
Honoraria from Janssen, Celgene and Millennium

S. Vincent Rajkumar
No COI

Antonio Palumbo
Honoraria from Celgene, Janssen, Merck, Amgen. Advisory boards for Celgene, Janssen

Philippe Moreau
Honoraria from Celgene and Janssen

Robert Orlowski
Research funding from Celgene and Millennium
Advisory boards for Celgene, Millennium, Novartis, and Onyx

Joan Bladé
Honoraria for lectures from Janssen and Celgene.
Grant support from Jansen and Celgene

Orhan Sezer
Honoraria from Amgen, Celgene, Janssen, Novartis. Research funding from Janssen and Novartis

Heinz Ludwig
Honoraria for advisory boards for Celgene.
Speakers bureau: Celgene, Ortho-Biotech

Meletios A. Dimopoulos
Honoraria from Ortho-Biotech, Celgene and Millenium.

Michel Attal
No COI

Pieter Sonneveld
Advisory boards for Janssen, Celgene, Millennium, Onyx
Research support from Janssen, Celgene, Onyx
Mario Boccadoro
Honoraria from Celgene, Janssen

Kenneth C. Anderson
Advisory boards for Celgene, Millennium, Onyx BMS, Merck and Novartis. Founder Acetylon

Paul G. Richardson
Advisory boards for Celgene, Millennium, Johnson & Johnson, Bristol Myers Squibb and Novartis.

William Bensinger
Millenium-consultant, speaker, clinical trials, Celgene-consultant, speaker, clinical trials, Onyx-consultant, clinical trials, Genzyme-consultant, clinical trials

Hans Johnssen
Advisory board for and honoraria from Janssen, Johnson & Johnson and Amgen.

Nicolaus Kroger
No COI

Gösta Gahrton
Consultancy: Fujomoto Pharmaceutical Cooperation Japan

P. Leif Bergsagel
Consultant: Celgene, Novartis

David H. Vesole
Advisory Boards for Amgen, Celgene, Onyx; Speaker’s bureau: Millennium, Celgene

Hermann Einsele
No COI

Sundar Jagannath
No COI

Ruben Niesvizky
Millenium and Celgene consultant, speaker and research support; Onyx consultant and research support

Brian GM Durie
Advisory Boards for Millennium, Celgene, and Onyx

Sagar Lonial
Consultant for Millennium, Celgene, BMS, Novartis, Merck and Onyx
References

29. Fermand J. High dose therapy supported with autologous blood stem cell transplantation in multiple myeloma: long term follow-up of the prospective studies of the MAG group. Haematologica 2005;90(s1) Abstract 40

81. Morgan GJ, Davies FE, Gregory WM, et al. Thalidomide maintenance significantly improves progression-free survival (PFS) and overall survival (OS) of myeloma patients when effective relapse treatments are used: MRC Myeloma IX Results. Blood 2010;116(21). Abstract 623

Table 1: Phase II and III studies of thalidomide-dexamethasone and triplet thalidomide-based combinations in preparation for ASCT. Studies incorporating thalidomide-dexamethasone throughout double ASCT are also included.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>N</th>
<th>After induction</th>
<th>After ASCT</th>
<th>PFS</th>
<th>OS</th>
<th>Author (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CR+PR (%)</td>
<td>CR/≥VGPR (%)</td>
<td>CR+PR (%)</td>
<td>CR/≥VGPR (%)</td>
<td></td>
</tr>
<tr>
<td>TD vs VAD</td>
<td>100</td>
<td>76</td>
<td>10/19</td>
<td>nr</td>
<td>nr</td>
<td>Cavo et al. (42)</td>
</tr>
<tr>
<td>(retrospective case-matched study)</td>
<td>100</td>
<td>52</td>
<td>8/14</td>
<td>nr</td>
<td>nr</td>
<td></td>
</tr>
<tr>
<td>TD vs VAD</td>
<td>103</td>
<td>63</td>
<td>4/nr</td>
<td>nr</td>
<td>nr</td>
<td>Rajkumar et al. (44)</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>41</td>
<td>0/nr</td>
<td>nr</td>
<td>nr</td>
<td></td>
</tr>
<tr>
<td>TD vs VAD</td>
<td>100</td>
<td>66</td>
<td>nr/35</td>
<td>68</td>
<td>nr/44</td>
<td>Macro et al. (43)</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>52</td>
<td>nr/13</td>
<td>62</td>
<td>nr/42</td>
<td></td>
</tr>
<tr>
<td>TAD vs VAD</td>
<td>268</td>
<td>71</td>
<td>3/37</td>
<td>84</td>
<td>14/54</td>
<td>Lokhorst et al. (47)</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>57</td>
<td>2/18</td>
<td>76</td>
<td>12/44</td>
<td></td>
</tr>
<tr>
<td>CTD vs CVAD</td>
<td>nr</td>
<td>87</td>
<td>19/nr</td>
<td>nr</td>
<td>51/nr</td>
<td>Owen et al (48)</td>
</tr>
<tr>
<td></td>
<td>nr</td>
<td>75</td>
<td>9/nr</td>
<td>nr</td>
<td>40/nr</td>
<td></td>
</tr>
<tr>
<td>TT2+THAL vs TT2 without THAL</td>
<td>323</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>62/nr</td>
<td>Barlogie et al. (46)</td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>43/nr</td>
<td></td>
</tr>
<tr>
<td>Double ASCT+THAL vs Double ASCT without THAL</td>
<td>135</td>
<td>nr</td>
<td>nr/30</td>
<td>nr</td>
<td>nr/68</td>
<td>Cavo et al. (45)</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>nr</td>
<td>nr/15</td>
<td>nr</td>
<td>nr/49</td>
<td></td>
</tr>
<tr>
<td>ASCT: autologous stem-cell transplantation; CTD: cyclophosphamide, thalidomide, dexamethasone; CVAD: cyclophosphamide added to VAD (vincristine, doxorubicin, dexamethasone); nr: not reported; TAD: thalidomide, doxorubicin, dexamethasone; TD: thalidomide, dexamethasone, THAL: thalidomide; TT2: total therapy 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regimen</td>
<td>N</td>
<td>CR + PR (%)</td>
<td>CR≥VGPR (%)</td>
<td>After induction</td>
<td>After transplant</td>
<td>PFS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>V (single agent)</td>
<td>64</td>
<td>41</td>
<td>nr (9)*/17</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>V±D</td>
<td>32</td>
<td>87.5</td>
<td>6 (25)*/nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>VD</td>
<td>48</td>
<td>66</td>
<td>nr (21)*/31</td>
<td>90</td>
<td>nr (33)*/55</td>
<td>nr</td>
</tr>
<tr>
<td>V alternated with D</td>
<td>40</td>
<td>65</td>
<td>12.5/22.5</td>
<td>88</td>
<td>33/55</td>
<td>nr</td>
</tr>
<tr>
<td>PAD-1</td>
<td>21</td>
<td>95</td>
<td>24 (5)*/62</td>
<td>95</td>
<td>43 (14)*/81</td>
<td>2-yr</td>
</tr>
<tr>
<td>PAD-2</td>
<td>20</td>
<td>89</td>
<td>11 (5)*/42</td>
<td>90</td>
<td>37 (5)*/53</td>
<td>2-yr</td>
</tr>
<tr>
<td>VDD</td>
<td>50</td>
<td>78</td>
<td>nr (27)*/nr</td>
<td>93</td>
<td>27/nr</td>
<td>nr</td>
</tr>
<tr>
<td>VDD</td>
<td>40</td>
<td>85</td>
<td>Nr (37.5)*/57.5</td>
<td>87</td>
<td>nr (57)*/77</td>
<td>2-yr</td>
</tr>
<tr>
<td>CyBorD</td>
<td>33</td>
<td>88</td>
<td>3 (39)*/61</td>
<td>nr</td>
<td>nr (70)*/74</td>
<td>nr</td>
</tr>
<tr>
<td>VCD</td>
<td>391</td>
<td>85.4</td>
<td>nr (15)*/37</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>VTD vs VTD-PACE</td>
<td>49</td>
<td>100</td>
<td>(29)/69</td>
<td>100</td>
<td>(50)/87</td>
<td>nr</td>
</tr>
<tr>
<td>VDTD</td>
<td>48</td>
<td>96</td>
<td>(31)/69</td>
<td>100</td>
<td>(44)/85</td>
<td></td>
</tr>
<tr>
<td>TT3+ VTD-PACE vs TT2 + THAL</td>
<td>303</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>2-yr 54/nr</td>
<td>2-yr</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>2-yr 51/nr</td>
<td></td>
</tr>
</tbody>
</table>

(*) retrospective comparison

ASCT: autologous stem-cell transplantation; CyBorD: cyclophosphamide, bortezomib, dexamethasone; D: dexamethasone; nr: not reported; PACE: cisplatin, doxorubicin, cyclophosphamide, etoposide; PAD: bortezomib, doxorubicin, dexamethasone (PAD-2: reduced-dose bortezomib); THAL: thalidomide; TT3: total therapy 3; V: bortezomib; VCD: bortezomib, cyclophosphamide, dexamethasone; VDD: bortezomib, pegylated liposomal doxorubicin, dexamethasone; VTD: bortezomib, thalidomide, dexamethasone
Table 3: Phase III trials of bortezomib-based regimens in preparation for ASCT

<table>
<thead>
<tr>
<th>Regimen</th>
<th>N</th>
<th>After induction</th>
<th>After ASCT</th>
<th>PFS</th>
<th>OS</th>
<th>Author (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CR + PR (%)</td>
<td>CR/≥VGPR (%)</td>
<td>CR + PR (%)</td>
<td>CR/≥VGPR (%)</td>
<td>median</td>
</tr>
<tr>
<td>VD vs VAD</td>
<td>223</td>
<td>78.5</td>
<td>6 (15)*/38</td>
<td>80</td>
<td>16(35)*/54</td>
<td>36 mos</td>
</tr>
<tr>
<td></td>
<td>218</td>
<td>63</td>
<td>1 (6)*/15</td>
<td>77</td>
<td>9 (18)*/37</td>
<td>30 mos</td>
</tr>
<tr>
<td>VTD vs TD</td>
<td>236</td>
<td>93</td>
<td>19 (31)*/62</td>
<td>93</td>
<td>42 (55)*/82</td>
<td>3-yr</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>79</td>
<td>5 (11)*/28</td>
<td>84</td>
<td>30 (41)*/64</td>
<td>56%</td>
</tr>
<tr>
<td>VBMCP/VBAD+V vs</td>
<td>129</td>
<td>75</td>
<td>21/36</td>
<td>73</td>
<td>38/51</td>
<td>median</td>
</tr>
<tr>
<td>VTD vs TD</td>
<td>130</td>
<td>85</td>
<td>35/60</td>
<td>77</td>
<td>46/65</td>
<td>38 mos</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>62</td>
<td>14/29</td>
<td>58</td>
<td>24/40</td>
<td>27 mos</td>
</tr>
<tr>
<td>PAD vs VAD</td>
<td>371</td>
<td>78</td>
<td>nr (11)*/42</td>
<td>88</td>
<td>nr (30)*/61</td>
<td>3-yr</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>55</td>
<td>nr (5)*/15</td>
<td>77</td>
<td>nr (15)*/36</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not reach, p=0.006</td>
</tr>
<tr>
<td>VD vs vTD</td>
<td>99</td>
<td>81</td>
<td>12 (22)*/35</td>
<td>84</td>
<td>33 (54)*/59</td>
<td>3-yr</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>90</td>
<td>13 (32)*/51</td>
<td>90</td>
<td>30 (61)*/73</td>
<td>36 mos</td>
</tr>
</tbody>
</table>

()* at least near CR

ASCT: autologous stem-cell transplantation; PAD: bortezomib, doxorubicin, dexamethasone; V: bortezomib; TD: thalidomide-dexamethasone, VAD: vincristine, doxorubicin, dexamethasone; VBAD: vincristine, carmustine, doxorubicin, dexamethasone; VBMCP: vincristine, carmustine, melphalan, cyclophosphamide, prednisone; VD: bortezomib, dexamethasone; VTD: bortezomib (1.3 mg/m²), thalidomide, dexamethasone; vTD: bortezomib (1.0 mg/m²), thalidomide, dexamethasone
Table 4: Phase II and III trials of doublet and triplet lenalidomide-based induction treatments for transplant-eligible and transplant-ineligible patients

<table>
<thead>
<tr>
<th>Regimen</th>
<th>N</th>
<th>After induction</th>
<th>After ASCT</th>
<th>PFS</th>
<th>OS</th>
<th>Author (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CR + PR (%)</td>
<td>CR≥VGPR (%)</td>
<td>CR + PR (%)</td>
<td>CR + nCR (%)</td>
<td></td>
</tr>
<tr>
<td>RD vs Rd 223</td>
<td>81</td>
<td>5/50</td>
<td>70</td>
<td>4/40</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>RD vs Rd 222</td>
<td>100</td>
<td>29 (39)*/67</td>
<td>nr</td>
<td>nr</td>
<td>18-mos</td>
<td>75%</td>
</tr>
<tr>
<td>RVD vs VCD vs RVCD 42</td>
<td>83</td>
<td>24 (40)*/50</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>RVD vs VCD vs RVCD 32</td>
<td>75</td>
<td>22 (31)*/41</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>RVDD 57</td>
<td>96</td>
<td>nr (30)*/58</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
<td>nr</td>
</tr>
</tbody>
</table>

(*) at least near CR

CRD: cyclophosphamide, lenalidomide, dexamethasone; nr: not reported; RD: lenalidomide, high-dose dexamethasone; Rd: lenalidomide, low-dose dexamethasone; RVD: lenalidomide, bortezomib, dexamethasone; RVCD: lenalidomide, bortezomib, cyclophosphamide, dexamethasone; RVDD: lenalidomide, bortezomib, pegylated liposomal doxorubicin, dexamethasone; VCD: bortezomib, cyclophosphamide, dexamethasone
International Myeloma Working Group (IMWG) consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem-cell transplantation