Eradication of neutralizing antibodies to factor VIII in canine hemophilia A following liver gene therapy

Jonathan D. Finn¹, Margareth C. Ozelo², Denise E. Sabatino³, Helen W. G. Franck⁴, Elizabeth P. Merricks⁴, Julie M. Crudele¹, Shangzhen Zhou¹, Haig H. Kazazian³, David Lillicrap², Timothy C. Nichols⁴, Valder R. Arruda¹,⁵.

¹The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
²Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Canada.
³Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
⁴Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
⁵Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA

Running head: Eradication of FVIII inhibitors by gene therapy

Key words: hemophilia, neutralizing antibodies, immune tolerance, inhibitor, gene therapy, AAV

Correspondence
Valder R. Arruda, MD, PhD
The Children’s Hospital of Philadelphia
3501 Civic Center Boulevard
5056 Colket Center for Translational Research
Philadelphia, PA 19104
Phone: (215) 590-4907
Fax: (215) 590-3660
email: arruda@email.chop.edu
Abstract

Inhibitory antibodies to FVIII are a major complication in the treatment of hemophilia A (HA), affecting approximately 20-30% of patients. Current treatment for inhibitors is based on long-term daily injections of large amounts of FVIII protein. Liver-directed gene therapy has been used to induce antigen-specific tolerance but there are no data in hemophilic animals with pre-existing inhibitors. To test whether sustained endogenous expression of FVIII could eradicate inhibitors, we injected adeno-associated viral vectors encoding canine FVIII (cFVIII) in two strains of inhibitor HA dogs. In three dogs, a transient increase in inhibitor titers (up to 7 Bethesda Units, BU) at 2 weeks was followed by continuous decline to complete disappearance within 4-5 weeks. Subsequently an increase in cFVIII levels (1.5%-8%), shortening of clotting times and reduction (>90%) of bleeding episodes was observed. Immune tolerance was confirmed by lack of antibody formation following repeated challenges with cFVIII protein and normal protein half-life. A fourth dog exhibited a strong early anamnestic response (216 BU) with slow decline to 0.8 BU and cFVIII antigen detection by 18 months post-vector delivery. Together these data suggest that liver gene therapy has the potential to eradicate inhibitors and could improve the outcomes of HA patients.
Introduction

The development of neutralizing antibodies to replacement protein is a major complication of protein and enzyme replacement therapies for several genetic diseases. Hemophilia A is an X-linked bleeding disorder characterized by deficiency in the activity of factor VIII, a key component of the coagulation cascade. The disease occurs in ~ 1 in 10,000 live births worldwide and >40% of these patients have severe disease with factor VIII activity <1% of normal. Infusion of plasma-derived or recombinant FVIII is the standard treatment. Alloantibodies (inhibitors) that neutralize the protein replacement therapy develop in 20-30% of young severe and moderate HA patients resulting in high morbidity and mortality and are also growing problems for adults. Risk factors for inhibitor formation include both genetic and environmental factors. The underlying mutation in the FVIII gene such as large gene deletions, nonsense mutations, and the most common mutation in severe HA patients, the inversion of intron 22, are all associated with inhibitor formation, however, it is not possible to predict with certainty which patients will develop inhibitors. Thus, preventive strategies are not currently feasible. Patients with high titers of inhibitors, defined as >5 Bethesda Units (BU) cannot usually be treated with FVIII replacement, necessitating the use of products that bypass the procoagulant effect of FVIII and are extremely expensive. Thus, strategies for eradication of inhibitors are of fundamental clinical relevance.
Currently, the only proven therapy for inhibitors is based on antigen-specific immune tolerance induction (ITI) protocols that stem from observations in the 1970’s that showed that continuous administration of large amounts of FVIII protein could lead to a reduction in inhibitor titers. Current ITI involves daily infusions of FVIII protein for an average of 33 months to achieve complete eradication and is commonly followed by long-term prophylaxis. This imposes enormous challenges for pediatric patients that often require central venous catheters that are associated with a high risk of infection and thrombosis. In addition, the economic burden of this strategy is remarkable (~US$ 1 million) and prohibitive for many patients outside the developed world.

Adeno-associated viral (AAV) vectors are one of the most extensively studied and highly used vector platforms for gene therapy applications. The safety profile of AAV vectors in clinical studies enrolling adult and pediatric populations has been excellent. The first clinical studies using AAV to deliver the Factor IX gene to the muscle or liver in subjects with hemophilia B were safe without sustained toxicity. The therapeutic doses defined in canine hemophilia B models were excellent predictors of the efficacy observed in clinical trials. Thus, the use of large animal models has been essential for the successful translation of gene therapy protocols from the bench to the clinic.

Liver-directed gene expression by AAV vectors has been associated with antigen-specific immune tolerance induction in naïve adult large animals including severe HA dogs. More difficult than preventing an immune
response is the challenge of reversing an ongoing immune response to FVIII. We hypothesize that continuous expression of FVIII could mimic ITI protocols with the additional advantage that after inhibitor eradication, the continuous expression of FVIII above 1% of normal would convert the disease phenotype from severe to moderate or mild.

Materials and Methods:

AAV vector administration

Recombinant AAV vectors were produced by a triple transfection protocol as previously described, using plasmids expressing canine FVIII (cFVIII) light chain (LC) or heavy chain (HC) in separate vectors under the control of a liver-specific promoter, a second plasmid supplying adenovirus helper functions, and a third plasmid containing the AAV-2 rep gene and the AAV-8 cap gene. Vectors were purified by repeated cesium chloride density gradient centrifugation.

Animal procedures

All animal experiments were approved by the Institutional Animal Care and Use Committee at the Children's Hospital of Philadelphia, the University of North Carolina (UNC) at Chapel Hill, and Queen's University. Four adult male HA dogs were administered 2.5 x 10^{13} vg/kg of AAV8-cFVIII-LC and 2.5 x 10^{13} vg/kg AAV8-cFVIII-HC intravenously via the saphenous vein in a total volume of 10 mL/kg PBS. Pooled normal plasma was concurrently given for cFVIII
replacement to dog K03 to control an ongoing bleeding episode from a previous jugular vein puncture the day prior to vector delivery.

Systemic and local toxicity

Hematologic and comprehensive biochemical analyses of blood and serum samples for liver and kidney function tests were performed as previously described.\(^{19,23}\)

Canine FVIII antigen, activity and antibody assays

The whole blood clotting time (WBCT) was determined as previously described.\(^{24}\) Pooled normal canine plasma was used as a standard for the quantitation of the activity by Chromogenix Coatest SP4 FVIII (Diapharma, Lexington, MA). cFVIII-LC antigen levels were analyzed by enzyme-linked immunosorbent serologic assay (ELISA) using a monoclonal antibody against cFVIII-LC (2C4.1C3) as capture antibody as previously described.\(^{24}\) Anti-cFVIII antibodies were detected by Bethesda assay or as cFVIII-specific IgG antibodies by ELISA as previously described.\(^{24}\) It should be noted that the detection of inhibitor titers less than 1 BU is unreliable in the canine HA system.

Flow cytometry

Anti-canine CD25 antibody (P4A10) was generously provided by V.K. Abrams (Seattle, WA).\(^{25}\) P4A10 was conjugated to AlexaFluor 488 using a commercially
available kit (Invitrogen, Carlsbad, CA). Peripheral blood mononuclear cells (PBMCs) were surface stained for canine CD4-PE (AbD Serotech, Raleigh, NC), CD25-AF-488 (P4A10) and intracellular stained with a cross-reactive mouse FoxP3 –APC (eBioscience, San Diego, CA). Samples were run on a BD Canto flow cytometer and data was analyzed using FlowJo software (Treestar, Ashland, OR).

Protein infusion for immunologic challenges and pharmacokinetic analysis

Recombinant B-domain deleted canine FVIII (rBDD-cFVIII) purified protein was infused intravenously (100 IU/kg) for pharmacokinetics assessment and blood was collected at time points indicated. Canine FVIII levels were determined by ELISA and the half-life was calculated as previously described. Immunologic challenges were carried out by infusion of 25 IU/kg/dose body weight of rBDD-cFVIII on a weekly basis (total 4 doses). Pooled normal dog plasma was infused at 25 ml/dose in a similar fashion.

Results

We used two strains of severe HA dogs prone to inhibitor formation to test our hypothesis that continuous expression of FVIII could eradicate inhibitors. These dogs have circulating FVIII antigen and activity levels <1% of normal and faithfully reproduce many of the symptoms and phenotype of severe hemophilia in humans. Moreover, the causative mutation in both canine models mimics the intron 22 inversion observed in ~40% of severe disease in humans.
first strain is from a subset of the UNC-Chapel Hill colony that developed anti-cFVIII inhibitory antibodies upon exposure to normal canine plasma. The second strain is from the Queen’s University dog colony, which has a high risk of inhibitor formation upon cFVIII protein replacement. This immunological phenotype makes these subsets of dogs more representative of the human hemophilia population, and dogs with inhibitors are ideal candidates for testing the safety and efficacy of AAV-mediated immune tolerance induction protocols.

Due to the large size of the canine \(F8 \) gene, even the fully functional B-domain deleted FVIII, and the limited packaging capacity of AAV vectors (4.7 Kb), the cFVIII cDNA was divided into two different AAV8 vectors expressing either the cFVIII light chain (LC) or heavy chain (HC) under control of a liver-specific promoter.

Three HA dogs with inhibitors (K01, K03 and L44) from the UNC-Chapel Hill dog colony were administered \(2.5 \times 10^{13} \) vg/kg of AAV8 expressing LC and HC vector (\(5 \times 10^{13} \) vg/kg total). The clinical characteristics of these dogs are shown in Table 1. The inhibitory antibodies identified in these dogs are restricted to the IgG2 subclass (equivalent to IgG4 in humans, the most common inhibitor subclass).

To overcome the challenges of achieving hemostasis in these fragile animals, the vector was delivered by peripheral intravascular administration via the saphenous vein. Thus, no exogenous recombinant cFVIII or transfusion of normal plasma was required during the vector infusion (except in K03, see below).
K01 had a historical maximum inhibitor titer of 12 BU and his inhibitor titer at the time of treatment was ~3 BU. After vector administration we observed a rapid increase in cFVIII expression (Figure 1A), peaking at day 3 (38 ng/mL LC antigen, 1.5% activity). This is consistent with the pattern of early expression of AAV-8 vectors. However, transgene expression levels decreased to near background levels for 3-4 weeks and then slowly increased over time to reach cFVIII plateau levels of 30 ng/ml LC antigen and 1.5% activity. Inhibitor titers followed an inverse relationship with cFVIII antigen and activity levels. There was an initial decrease in inhibitor titer to undetectable levels, followed by rapid increase, peaking at 7 BU on day 8 and then slowly decreasing over time, and no longer detectable by day 42 (Figure 1B). During this time, we documented an increase in inhibitor titers corresponding to a decrease in cFVIII expression, indicating an anamnestic inhibitor response followed by inhibitor eradication. This is a common observation during the early phase of ITI.32

The kinetics of cFVIII expression in dogs L44 (2.2 BU) and K03 (3 BU) were similar to K01. It should be noted that K03 was the only dog that received a transfusion of normal canine plasma at the time of vector injection to control bleeding from a jugular puncture wound suffered the previous day when collecting baseline samples. Thus the cFVIII antigen and activity at early time points (days 2-3) from the transfusion confounds the quantification of the AAV-cFVIII mediated expression. In both dogs there was a rapid increase in the circulating cFVIII levels followed by a decrease to undetectable levels from 7 to 21 days (Figure 2A, 3A). This transient decrease in transgene expression is not
observed in non-inhibitor hemophilia dogs administered AAV and is an indication of an anamnestic immune response against cFVIII.17,19,22,23 This was due to an increase in the inhibitor titers starting at 1 week after treatment followed by a slow decrease with complete eradication after 4-5 weeks post AAV delivery (Figure 2B, 3B). We observed an expected inverse relationship between cFVIII expression and inhibitor titers, with cFVIII levels steadily increasing as inhibitor titers decreased to undetectable levels. Canine FVIII levels stabilized at 1.5\% (for dogs L44 and K01) and 8\% for K03. The reasons for this discrepancy in cFVIII expression levels are unclear; however, we previously showed that normal hemostasis at the time of AAV-2 vector delivery enhances transgene expression in murine models.33 Thus, it is possible that correction of hemostasis by normal plasma infusion in K03 may have contributed to the higher efficiency of gene transfer.

A consequence of using a dual-chain approach is that there is an imbalance in circulating cFVIII LC and HC antigen levels, with the LC antigen being secreted 10-25 times more efficiently than the HC.34,35 A large proportion of cells are transduced with only one of the vectors, and these cells will produce cFVIII antigen that is inactive without its complementary chain. Thus, cFVIII antigen levels are higher than the cFVIII activity levels (~10 fold). We speculate that this excess of non-functional antigen is perhaps beneficial in inducing immune tolerance by increasing the overall amount of circulating antigen, as shown before in murine models.36 The cFVIII activity observed in these dogs reached therapeutic levels as demonstrated by a sustained shortening of the
whole blood clotting time (Figure 4) in all three dogs and a remarkable improvement of the disease phenotype with reduction of more than 90% of bleeding episodes (Table 1).

In order to determine whether these animals were tolerant to cFVIII, we performed immunological challenges with purified recombinant B domain-deleted cFVIII (rBDD-cFVIII). K01, K03, and L44 were challenged with 4 weekly intravenous injections of 25 IU/kg body weight (2.5 μg/kg) of rBDD-cFVIII initiated on various days post vector administration (day 240, 125, and 113 respectively) and monitored for inhibitor formation. As can be seen in Figure 1-3, there was no change in cFVIII expression levels or indication of either inhibitor formation or non-neutralizing antibodies after challenge in any dog. In order to confirm that tolerance induction is sustained upon exposure to the wild type (full-length) cFVIII, we further challenged K03 starting on day 400 with 4 weekly injections of 25 ml of pooled normal canine plasma per dose. However, no evidence of inhibitors or antibodies to cFVIII was observed.

In order to further confirm the eradication of inhibitors and exclude the presence of non-neutralizing antibodies that might increase the clearance of cFVIII, we determine the recovery and half-life of cFVIII protein in K01 and K03. Both dogs were infused with 100 IU/kg of rBDD-cFVIII and plasma was collected between 5 minutes to 48 hours post-infusion. As can be seen in Figure 5, there was an excellent recovery of more than 80% of the infused protein measured at 5-10 min post injection. We determined similar cFVIII fall-off curves, with a terminal half-life of ~14hrs in both dogs. These findings are comparable to our
previously reported data on pharmacokinetic parameters obtained in naïve HA dogs.24

As previous data using liver-directed gene transfer to prevent immune responses in animal models has shown the involvement of regulatory T cells,37-40 we used flow cytometry to determine the frequency of CD4+, CD25+, FoxP3+ T cells at baseline, week 1, and week 12. Interestingly, we observe an increase in CD4+, CD25+ FoxP3+ T cells at week 1, with a return to baseline levels by week 12 (Table 2). While further studies are required to determine the exact mechanism of tolerance induction in this model, our data is consistent with the hypothesis that regulatory T cells might be, at least in part, involved in this phenomenon.

Next we treated a dog (Wembley) from the colony at Queen’s University.41 Wembley developed inhibitors after primary exposure to human FVIII, and these inhibitory antibodies were found to cross-react with canine FVIII. He received further infusions of cryoprecipitate containing large amounts of cFVIII. At the time of vector injection, the inhibitor titers against cFVIII were 3.5 BU. After administration of AAV8-cFVIII vector we observed a rapid increase in cFVIII antigen and activity reaching levels of 74 ng/ml and 10\%, respectively. These levels quickly decreased to pretreatment levels coinciding with a remarkable increase in inhibitor titers and anti-cFVIII IgG2 (\textbf{Figure 6A}). A similar finding was observed for anti-cFVIII IgG1 (data not shown). His inhibitors showed a strong anamnestic response, with Bethesda titers peaking at 216 BU on day 21 (\textbf{Figure 6B}). We continued to monitor the levels of cFVIII and anti-cFVIII antibodies. And
over the following 80 weeks the inhibitor titers gradually decreased to current levels of 0.8-1.0 BU/ml at day 550 (ongoing observation). As the inhibitor titers decreased, we began to observe a rise in cFVIII LC antigen (12 ng/ml). However, cFVIII activity levels remain below the limit of detection (<1%). We are continuing to follow this animal and hypothesize that as the inhibitor titers are completely eradicated, the cFVIII activity levels will increase and eventually reach a detectable level. This dog resembles to a certain extent the kinetics of high responder patients with substantial increase in the inhibitor levels upon exposure to FVIII protein.32 In the high responders patients, ITI failure rates increase to more than double that of non-high responders.2 Interestingly, Wembley’s anti-human FVIII inhibitors rose from a baseline value of 7.4 BU to a peak of 271 BU at d14 and have stabilized at 2.2 BU. A similar pattern was observed for the anti-hFVIII IgG2 levels, with current levels ∼20 μg/ml (data not shown). We speculate that this indicates Wembley was tolerized to specific epitopes shared between human and canine FVIII, however there continue to be inhibitors specific for epitopes unique to hFVIII.

In order to confirm that the immune tolerance to cFVIII was specific, we measured anti-AAV8 IgG2 antibody levels. As seen in Figure 7, all animals developed a robust and sustained anti-capsid immune response, indicating that these animals are fully capable of generating and maintaining humoral immune responses to other antigens following vector administration.

Discussion
The contrast in the immunological profile and response following AAV mediated expression of cFVIII between the three Chapel Hill dogs, and the dog from the Queen’s colony is remarkable. Despite the fact that these dogs have a similar underlying causative mutation, all three Chapel Hill dogs (K01, K03, L44) showed mild anamnestic responses and rapid eradication of inhibitors in 4-5 weeks, while Wembley had a very strong immune response that has taken over a year and a half for inhibitor titers to decrease to background levels. There are several factors that may explain these distinct outcomes, including the previous exposure to xenoantigen (human FVIII) that could hamper the ability to induce antigen-specific immune tolerance. Second, there are the differences in strains of dogs that may reflect inherited factors similar to ethnicity as a genetic risk factor in humans.7,8 Lastly, the long duration (~2 years) between inhibitor development and AAV administration may also influence the rates of success as observed in humans on ITI.2

Collectively, the data presented here demonstrate for the first time in an adult large animal model of disease the potential of liver-directed, AAV-mediated gene expression to induce tolerance to the transgene in the setting of pre-existing inhibitory antibodies. The sustained expression of cFVIII from the transgene after inhibitor eradication recapitulates the secondary prophylactic replacement protocols required to maintain the immune tolerance post successful inhibitor eradication.2 In this model, we observed both inhibitor eradication and complete normalization of pharmacokinetics of FVIII protein infusion as well as improved disease phenotype. Overall, vector administration was well tolerated
with no abnormalities on serial determinations of hematologic and biochemical analyses of blood and serum samples for liver and kidney function tests.

The underlying mechanism of the success of ITI in humans is still unclear, but it has been investigated in preclinical studies and revealed to depend on both B and T cell response.42,43 The exact mechanism of the immune tolerance induction in this HA dog study is currently unknown. Previous work in murine and non-human primate models has shown that sustained AAV-mediated expression of transgenes can induce tolerance, and that this sustained expression is dependent on regulatory T cells.37-39 In addition, recent work using microRNA to restrict transgene expression from a lentiviral vector to hepatocytes has also shown sustained transgene expression and the induction of antigen-specific T regulatory cells.40 While our observation that CD4+ CD25+ FoxP3+ T cells are transiently up-regulated following gene transfer is consistent with the hypothesis that regulatory T cells are involved, much work still needs to be done, including testing the function and antigen specificity of these cells, to fully investigate the mechanism of immune tolerance induction in this model. It is also likely that this immune tolerance induction involves multiple mechanisms including anergy and/or deletion. This is an area of research currently under investigation.

Our group and others have previously demonstrated that using viral vectors to direct gene transfer to the liver of adult17,19,21,23 or neonatal44,45 large animal models can induce tolerance to the expressed transgene and prevent immune responses. Data on tolerance induction by gene therapy and/or immune
modulatory strategies in the pre-existing immune responses has been limited to murine models.46-48 Considering the limited numbers of HA dogs in this study and the modest inhibitor titers at the time of vector administration, these findings have to be considered a proof-of-principle that immune tolerance induction is feasible in the setting of pre-existing immunity in a large animal model for an unmet medical need. These data may have relevance not only for hemophilia but also for a variety of diseases whereby antibody formation to the therapeutic protein or enzymes could prevent optimal clinical responses.49,50

Acknowledgements

This work was supported by a grant from the Hemophilia Association of New York (V.R.A), grants from the National Institutes of Health (HL084220, V.R.A.; HL083017, H.H.K, and R2414L063098 to T.C.N), and the Canadian Institutes of Health Research MOP-10912 to D.L. D.L. is the recipient of a Canada Research Chair in Molecular Hemostasis.

Authorship Contributions and Disclosure of Conflicts of Interest

J.D.F. directed design and execution of the experiments and drafted the paper. M.C.O., H.W.G., E.P.M., J.M.C., D.L., T.C.N, performed the vector administration, provided care to the animals, collected laboratory samples, and assisted with experimental design and interpretation. S.Z. provided the AAV vectors used in this study. H.H.K. and D.E.S. provided insights on protocol design, interpretation of data, and manuscript preparation. V.R.A directed
experimental design, conducted data analysis and interpretation, and drafted the manuscript. None of the authors have any Conflicts of Interest to disclose.
References

45. Xu L, Nichols TC, Sarkar R, McCorquodale S, Bellinger DA, Ponder KP. Absence of a desmopressin response after therapeutic expression of factor VIII.

Table 1: Summary of inhibitor eradication in HA dogs following cFVIII expression by AAV vector

<table>
<thead>
<tr>
<th>Dog</th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>Duration before treatment</th>
<th>Inhibitors</th>
<th>cFVIII plateau (activity)</th>
<th>Bleeds per month</th>
<th>Time to Eradication</th>
<th>Historical Peak (BU)</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>K01</td>
<td>1.7</td>
<td>20.1</td>
<td>8 months</td>
<td>12</td>
<td>1.5 %</td>
<td>3/20</td>
<td>5 weeks</td>
<td>12</td>
<td>5</td>
<td>1/23</td>
</tr>
<tr>
<td>K03</td>
<td>1</td>
<td>19.3</td>
<td>7 months</td>
<td>12</td>
<td>8 %</td>
<td>7/12</td>
<td>4 weeks</td>
<td>12</td>
<td>7</td>
<td>1/29</td>
</tr>
<tr>
<td>L44</td>
<td>0.7</td>
<td>16</td>
<td>4 months</td>
<td>4.5</td>
<td>1.5 %</td>
<td>5/8</td>
<td>4 weeks</td>
<td>4.5</td>
<td>5</td>
<td>0/16</td>
</tr>
<tr>
<td>Wembley</td>
<td>4.92</td>
<td>16.5</td>
<td>~ 2 years</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>80 weeks</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total | 15/40 | 2/68 |
Table 2: Flow cytometry analysis of total PBMC’s from Chapel Hill inhibitor dogs

<table>
<thead>
<tr>
<th>Dog</th>
<th>% CD25+ FoxP3 + of total CD4+ (SD*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (d0)</td>
</tr>
<tr>
<td>K01</td>
<td>1.05 (0.09)</td>
</tr>
<tr>
<td>K03</td>
<td>2.45 (0.05)</td>
</tr>
<tr>
<td>L44</td>
<td>1.01 (0.10)</td>
</tr>
</tbody>
</table>

SD = standard deviation of triplicate analysis of sample
Figure Legends

Figure 1: cFVIII expression and anti-cFVIII antibody responses in Chapel Hill hemophilia A (HA) dog K01 following liver delivery of AAV-cFVIII. An HA dog (K01) with pre-existing inhibitors to cFVIII were administered 2.5 x 10^{13} vg/kg of AAV8-TBG-cFVIII-HC and AAV8-TBG-cFVIII-LC by peripheral venous injection. cFVIII antigen levels were assayed by a cFVIII-LC specific ELISA and activity was monitored by Coatest (Panel A). Anti-cFVIII antibody responses were measured by anti-cFVIII IgG2 ELISA and Bethesda assay (Panel B). Black arrows indicate 4 weekly challenges with 500 U recombinant B-domain deleted cFVIII.

Figure 2: cFVIII expression and anti-cFVIII antibody responses in Chapel Hill hemophilia A (HA) dog L44 following liver delivery of AAV-cFVIII. An HA dog (L44) with pre-existing inhibitors to cFVIII were administered 2.5 x 10^{13} vg/kg of AAV8-TBG-cFVIII-HC and AAV8-TBG-cFVIII-LC by peripheral venous injection. cFVIII antigen levels were assayed by a cFVIII-LC specific ELISA and activity was monitored by Coatest (Panel A). Anti-cFVIII antibody responses were measured by anti-cFVIII IgG2 ELISA and Bethesda assay (Panel B). Black arrows indicate 4 weekly challenges with 500 U recombinant B-domain deleted cFVIII.
Figure 3: cFVIII expression and anti-cFVIII antibody responses in Chapel Hill hemophilia A (HA) dog K03 following liver delivery of AAV-cFVIII. An HA dog (K03) with pre-existing inhibitors to cFVIII were administered 2.5×10^{13} vg/kg of AAV8-TBG-cFVIII-HC and AAV8-TBG-cFVIII-LC by peripheral venous injection. cFVIII antigen levels were assayed by a cFVIII-LC specific ELISA and activity was monitored by Coatest (Panel A). Anti-cFVIII antibody responses were measured by anti-cFVIII IgG2 ELISA and Bethesda assay (Panel B). Black arrows indicate 4 weekly challenges with 500 U recombinant B-domain deleted cFVIII and gray arrows indicate 4 weekly injections of 25 ml of pooled normal canine plasma per dose.

Figure 4: Whole blood clotting time of Chapel Hill HA inhibitor dogs following vector administration. Whole blood clotting time (WBCT) for all three hemophilia A (HA) Chapel Hill dogs is shown. WBCT range for a normal dog is shown in light gray (8-12 minutes), and WBCT range for an HA dog is down in dark gray (>45 minutes).

Figure 5: Recovery of cFVIII following i.v. administration. Recombinant B-domain deleted (rBDD) cFVIII was administered (100 IU/kg) to K01 or K03 by intravenous injection and cFVIII activity was monitored over time by Coatest assay.
Figure 6: cFVIII expression and anti-cFVIII antibody response high responding hemophilia A (HA) dog following AAV-mediated liver expression of cFVIII. A high responding HA dog from the Kingston HA colony (Wembley) was administered 2.5×10^{13} vg/kg of AAV8-TBG-cFVIII-HC and AAV8-TBG-cFVIII-LC by peripheral venous injection. A) cFVIII antigen levels were assayed by a cFVIII-LC specific ELISA and activity was monitored by Coatest. B) Anti-cFVIII antibody responses were measured by anti-cFVIII IgG2 ELISA and Bethesda assay.

Figure 7: Anti-AAV8 capsid humoral responses. Anti-AAV8 capsid IgG2 responses were assayed in all four dogs. Plasma samples were assayed for capsid specific IgG2 by ELISA with plates coated with empty AAV8 capsid.
Figure 1

A

- Antigen
- Activity

B

- Bethesda
- IgG2
Figure 2

A

B

- Antigen
- Activity

Antigen

Activity

day

0 10 20 30 40 50 100 150 200 250 300
cFVIII:C activity (%)

cFVIII LC antigen (ng/mL)

day

0 10 20 30 40 50 100 150 200 250 300

IgG2 (ng/mL)

B.U.

Bethesda

IgG2

day

0 10 20 30 40 50 100 150 200 250 300

IgG2 (ng/mL)

0 1 0 2 0 3 0 4 0 5 0
Figure 3

A

- Antigen
- Activity

cFVIII LC antigen (ng/mL)
cFVIII:C activity (%)
day

B

- Bethesda
- IgG2

B.U.
IgG2 (ng/mL)
day
Figure 4
Figure 5

- K01
- K03
Figure 7

The graph shows the anti-AAV8 IgG2 (ng/mL) over days for different groups labeled as K01, Wembley, L44, and K03. The x-axis represents the days, and the y-axis represents the anti-AAV8 IgG2 concentrations (ng/mL).
Eradication of neutralizing antibodies to factor VIII in canine hemophilia A following liver gene therapy

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.