Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues

Yasuyuki Saito,1,2 Hiroko Iwamura,1 Tetsuya Kaneko,1 Hiroshi Ohnishi,1 Yoji Murata,1 Hideki Okazawa,1 Yoshitake Kanazawa,1 Miho Sato-Hashimoto,1 Hisae Kobayashi,1 Per-Arne Oldenborg,3 Makoto Naito,4 Yoriaki Kaneko,2 Yoshihisa Nojima,2 and Takashi Matozaki1,*

1Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
2Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
3Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, S-901 87 Umeå, Sweden
4Division of Cellular and Molecular Pathology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori 1-757, Chuou-ku, Niigata 951-8510, Japan

Running title: SIRPα and DC homeostasis
Scientific category: Immunobiology

*To whom correspondence should be addressed: Takashi Matozaki, Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
E-mail: matozaki@showa.gunma-u.ac.jp
Abstract
The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11c^{high} DCs (conventional DCs, or cDCs), in particular that of CD8^{-} CD4^{+} (CD4^{+}) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for homeostasis of splenic CD4^{+} cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either granulocyte-macrophage colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4^{+} cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for homeostasis of CD4^{+} cDCs and CD8^{-} CD4^{−} (DN) cDCs in the spleen. SIRPα as well as its ligand CD47 are thus important for homeostasis of CD4^{+} cDCs or DN cDCs in lymphoid tissues.
Introduction

Dendritic cells (DCs) are professional antigen-presenting cells that play two major roles in the immune system: initiation and modulation of the immune responses of T cells to exogenous pathogens, and maintenance of T cell tolerance to self-components. The mouse spleen harbors two major subtypes of DCs, namely CD11chigh conventional DCs (cDCs) and plasmacytoid DCs (pDCs), defined as CD11cint B220+ cells. The latter DCs produce type I interferons in response to viral and bacterial pathogens. The cDCs are further classified into CD4+ CD8− cDCs (CD4+ cDCs), CD4− CD8− cDCs (DN cDCs), and CD4− CD8+ cDCs (CD8+ cDCs). CD8− cDCs are present predominantly in the marginal zone of splenic lymphoid follicles as well as in marginal zone–bridging regions, whereas CD8+ cDCs are enriched in the periarteriolar lymphoid sheaths, which are populated largely by T cells, in the white pulp of the spleen. These cDC subtypes are in dynamic balance. The estimated half-life of mature cDCs in the spleen under steady state conditions is only 2 to 3 days. The immediate precursors of cDCs, defined as lineage-negative CD11c+ MHC class II+ SIRP\textalphaint Flt3+ cells (pre-cDCs), are widely distributed in bone marrow (BM) as well as in secondary lymphoid tissues and circulating blood, and they are thought to maintain cDCs in lymphoid tissues under steady state conditions.

Genetic analysis of cDC development and homeostasis has revealed that many gene products regulate cDC development, with some of them selectively controlling CD8− cDCs or CD8+ cDCs. Development of CD8− cDCs is markedly suppressed in mice deficient in transcription factors such as interferon regulatory factor (IRF)–2, IRF-4, RelB, or RBP-J. Moreover, the lymphotxin-β receptor–mediated signaling pathway as well as tumor necrosis factor receptor–associated factor 6 (TRAF6) are also thought to be important for the development of CD8− cDCs. In contrast, the development of CD8+ cDCs is affected by genetic deficiency of Batf3, interferon consensus sequence–binding protein (ICSBP), or the helix-loop-helix transcription factor Id2 (inhibitor of DNA binding 2). However, the molecular basis for regulation of homeostasis of cDC subpopulations remains incompletely understood.
Signal regulatory protein α (SIRPα), also known as SHPS-1 or BIT, is a transmembrane protein whose extracellular region comprises three immunoglobulin (Ig)-like domains and whose cytoplasmic region contains immunoreceptor tyrosine-based inhibition motifs that mediate the binding and activation of the protein tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of SIRPα is triggered by various growth factors and cytokines as well as by integrin-mediated cell adhesion to extracellular matrix proteins. SIRPα is especially abundant in DCs, macrophages, and neutrophils, being barely detectable in T or B lymphocytes. In addition, the level of SIRPα expression differs among cDC subtypes, being greater in CD8− cDCs than in CD8+ cDCs. The extracellular region of SIRPα interacts with its ligand, CD47, which is also a member of the Ig superfamily, with such interaction promoting the tyrosine phosphorylation of SIRPα. In contrast to the relatively restricted distribution of SIRPα, CD47 is expressed in most cell types including a variety of hematopoietic cells. The interaction of SIRPα on DCs with CD47 on T cells is thought to be important for regulation of priming by DCs of naïve T cells, which then differentiate into T helper cells, or of induction by DCs of antigen-specific cytotoxic T cell responses. Given that the expression of SIRPα is predominant in both CD4+ cDCs and DN cDCs among cDC subtypes, SIRPα is likely important specifically for regulation of these subtypes. Indeed, we here show that SIRPα, as well as CD47, is important for the homeostasis of CD4+ or DN cDCs in secondary lymphoid tissues.
Methods

Animals

Mice that express a mutant version of SIRPα that lacks most of the cytoplasmic region were described previously23,26 and were backcrossed to the C57BL/6 background for five generations. CD47-deficient (CD47 KO) mice were described previously27 and were backcrossed to the C57BL/6 background for >10 generations. C57BL/6 mice congenic for the CD45 gene locus (B6-Ly5.1) were kindly provided by H. Nakauchi (University of Tokyo, Tokyo, Japan). Sex- and age-matched mice at 6 to 10 weeks of age were studied. Mice were bred and maintained at the Institute of Experimental Animal Research of Gunma University under specific pathogen–free conditions and were handled in accordance with the animal care guidelines of Gunma University.

Cell preparation and flow cytometry

Cell suspensions were prepared from the spleen, peripheral lymph nodes (pLNs), thymus, and BM as described previously.26 For preparation of splenocytes or pLN cells, the spleen or pLNs were minced and then digested with collagenase (Wako, Osaka, Japan) at 400 U/ml in the presence of 5 mM EDTA for 30 min at 37°C. The undigested fibrous material was removed by filtration through a 70-μm cell strainer (BD Falcon, San Jose, CA), and red blood cells in the filtrate were lysed with Gey’s solution. The remaining cells were washed twice with phosphate-buffered saline (PBS) and then subjected to flow cytometric analysis.

For preparation of a DC-enriched, low-density fraction of thymocytes, the thymus was digested as described above, and the recovered cells were suspended in 2 ml of Ca2+- and Mg2+-free Hanks’ balanced salt solution (Invitrogen, Carlsbad, CA) containing 17% Optiprep (Axis-Shield, Oslo, Norway) and then overlaid consecutively with 2 ml of 12% Optiprep in a solution containing 10 mM HEPES-NaOH (pH 7.4), 0.88% NaCl, 1 mM EDTA, and 0.5% bovine serum albumin and with 2 ml of Ca2+- and Mg2+-free Hanks’ balanced salt solution. The resulting gradient was centrifuged at 700 × g for 15 min at 20°C, after which cells at the interface of the top two layers were collected, washed twice with
PBS, and subjected to flow cytometric analysis. For preparation of BM cell suspensions, BM cells were isolated from the femur and tibia with the use of a syringe fitted with a 23-gauge needle. Fibrous material was removed by filtration through a 70-μm cell strainer, and red blood cells in the filtrate were lysed with Gey’s solution. The remaining cells were washed twice with PBS. Cells isolated from each organ were analyzed by flow cytometry with the use of a FACSCalibur, FACSCantoII, or FACSAriaII instrument (BD Biosciences, San Jose, CA), and all data were analyzed with FlowJo software (Tree Star, Ashland, OR).

BM chimeras

Recipient B6-Ly5.1 mice were subjected to lethal irradiation (9.5 Gy) and then injected intravenously with 5×10^6 BM cells obtained from Ly5.2+ wild-type (WT) or SIRPα mutant (MT) mice. Conversely, recipient Ly5.2+ WT, SIRPα MT, or CD47 KO mice were subjected to lethal irradiation and injected intravenously with 5×10^6 BM cells obtained from B6-Ly5.1 mice. For generation of mixed chimeras, recipient B6-Ly5.1 mice were lethally irradiated and then injected intravenously with 5×10^6 mixed BM cells obtained from both B6-Ly5.1 mice and Ly5.2+ SIRPα MT mice (1:1 ratio). Six to eight weeks after BM transplantation, the recipient mice were killed and splenocytes were analyzed by flow cytometry. CD47 hematopoietic chimeras were established as previously described with minor modifications. In brief, recipient B6-Ly5.1 mice were subjected to sublethal irradiation (6 Gy) and then injected intravenously with 5×10^6 BM cells obtained from Ly5.2+ WT or CD47 KO mice. To prevent initial rejection of CD47 KO donor BM cells by macrophages of the recipient, we injected the recipient intravenously with liposome-entrapped dichloromethylene diphosphonate (liposome-MDPCl$_2$) according to the following treatment schedule: 0.2 mg per gram of body weight at 2 days before and 0.1 mg/g at 3, 6, and 11 days after transplantation. Four weeks after transplantation, the recipient mice were killed and splenocytes were analyzed by flow cytometry.

Isolation and injection of pre-cDCs
Adoptive transfer of pre-cDCs was performed as described previously with minor modifications. In brief, BM cells derived from Ly5.2+ WT or SIRPα MT mice were incubated with a biotin-conjugated mAb to mouse Fms-like tyrosine kinase 3 (Flt3) and Flt3+ cells were then collected with the use of anti-biotin microbeads and magnetic-activated cell sorting (MACS). The isolated cells were stained with a fluorescein isothiocyanate (FITC)-conjugated mAb to mouse I-A; phycoerythrin (PE)-conjugated streptavidin; PE-Cy5–conjugated mAbs to mouse CD3ε, CD19, B220, NK1.1, and TER-119; an allophycocyanin (APC)-conjugated mAb to CD11c; and PI. Pre-cDCs were sorted as PI– CD3– CD19– NK1.1– TER-119– B220– I-A– CD11c+ Flt3+ cells with the use of the FACS Aria II instrument. Purified pre-cDCs (1 × 10⁵) were then injected intravenously into B6-Ly5.1 mice, and splenic cDCs were analyzed 8 days after the transfer.

Determination of the turnover rate of splenic cDCs

Measurement of the turnover rate of splenic cDCs was performed as described previously. In brief, mice were initially injected intraperitoneally with 1 mg of bromodeoxyuridine (BrdU) and were then continuously provided with BrdU (0.8 mg/ml) in sterile drinking water that was changed daily. At various times after BrdU injection, the spleen was isolated and digested with collagenase as described above. Control splenocytes from mice that were not given BrdU were prepared in parallel. The cells were washed and then incubated with a PE-conjugated mAb to mouse CD8α, a PE-Cy7–conjugated mAb to mouse CD4, an APC-conjugated mAb to mouse CD11c, and an APC-Cy7–conjugated mAb to B220. The cells were washed again, fixed, permeabilized, stained with the use of an FITC BrdU Flow kit (BD Biosciences), and analyzed by five-color flow cytometry.

Further details of the materials and methods are provided in Supplemental Methods (available on the Blood website; see the Supplemental Materials link at the top of the online article).
Results

Selective deficiency of CD4+ cDCs in secondary lymphoid tissues of mice lacking the cytoplasmic region of SIRPα

We and others have previously shown that the level of SIRPα expression on CD8− cDCs is much greater than that on CD8+ cDCs,21,23 and we confirmed this observation in the present study (Supplemental Figure S1). To clarify the role of SIRPα in regulation of CD8− cDCs, we investigated the size of cDC subpopulations in the spleen of SIRPα mutant (MT) mice that express a form of SIRPα lacking most of the cytoplasmic region.23,26 The mutant protein expressed in the transgenic mice does not undergo tyrosine phosphorylation or form a complex with SHP-1 or SHP-2.26 Given the importance of the cytoplasmic region of SIRPα for signaling by this protein, the function of SIRPα is thought to be eliminated in the mutant mice.26 Furthermore, the cellular abundance of the mutant protein is markedly reduced compared with that of the full-length protein in WT cells.26 We confirmed that the expression of SIRPα was markedly reduced in both CD4+ cDCs and DN cDCs in the spleen of SIRPα mutant mice compared with that observed with WT mice (Supplemental Figure S1). With the use of flow cytometric analysis, we found that the proportion as well as the absolute number of cDCs in the spleen of SIRPα MT mice were markedly decreased compared with those in WT mice, whereas the proportion and number of pDCs in the spleen were similar for WT and SIRPα MT mice (Figure 1A). In addition, among the cDC subpopulations, the proportion as well as the absolute number of CD4+ cDCs in the spleen were greatly reduced for SIRPα MT mice, whereas those of either CD8+ cDCs or DN cDCs were similar for WT and SIRPα MT mice (Figure 1B). We also examined the distribution of CD11c+ DCs in the spleen of WT or SIRPα MT mice. Immunohistofluorescence analysis revealed that staining for CD11c in the splenic marginal zones, likely corresponding to CD8− cDCs, was markedly reduced in SIRPα MT mice compared with that in WT mice (Figure 1C). By contrast, staining for CD11c in the splenic periarteriolar lymphoid sheaths, which mostly reflects CD8+ cDCs, did not appear to differ between the two genotypes.

In the peripheral lymph nodes (pLNs), there exist three subtypes of DCs: cDCs, pDCs,
and CD11c^{hi}I-A_{high} migratory DCs (mDCs), which represent Langerhans cells or dermal DCs that originally resided in the skin but have migrated to the pLNs. Both CD8⁻ cDCs and mDCs in pLNs express SIRPα at a high level. The proportions as well as the absolute numbers of cDCs and mDCs in pLNs were markedly reduced in SIRPα MT mice compared with those in WT mice (Figure 2A). Among cDCs in pLNs, the proportion as well as the absolute number of CD4⁺ cDCs were substantially reduced in SIRPα MT mice compared with those in WT mice (Figure 2B).

Two major subtypes of CD11c^{hi} cDCs—CD8⁺CD11b^{lo} cDCs and CD8⁻CD11b^{hi} cDCs—are present in the thymus. The expression of SIRPα, however, is relatively low in both CD8⁺ cDCs and CD8⁻ cDCs in the thymus. We found that the proportions of CD8⁺CD11b^{lo} cDCs or CD8⁻CD11b^{hi} cDCs in the thymus did not differ between WT and SIRPα MT mice (Figure 2C). Together, these results thus suggested that SIRPα is important for homeostatic regulation of CD4⁺ cDCs as well as for mDCs in secondary lymphoid organs.

Intrinsic requirement of SIRPα for cDC homeostasis in the spleen

Given that splenic CD4⁺ cDCs express SIRPα at a high level, we next examined whether SIRPα intrinsic to CD4⁺ cDCs is indeed important for homeostasis of this cDC subset in the spleen. For this purpose, irradiated B6-Ly5.1 mice were reconstituted with BM cells from Ly5.2-expressing SIRPα MT (MT Ly5.1 chimeras) or control WT (WT Ly5.1 chimeras) mice. More than 99% of splenic CD11c⁺ DCs in the recipient mice did not express surface Ly5.1, suggesting that these cells were derived from the BM of donor mice (data not shown). The frequency of total cDCs as well as that of CD4⁺ cDCs were greatly reduced in MT Ly5.1 chimeras compared with those in WT Ly5.1 chimeras (Figure 3A). In contrast, the frequency of CD8⁺ cDCs or that of DN cDCs did not differ between the two types of chimera. The extent of the decrease in the proportion of CD4⁺ cDCs in MT Ly5.1 chimeras was similar to that observed in SIRPα MT mice (Figure 1B). We also reconstituted irradiated WT or SIRPα MT mice (B6-Ly5.2) with BM cells from B6-Ly5.1 WT mice. The
frequencies of total cDCs or of any subtype of cDCs in the spleen were similar in the Ly5.1 MT and Ly5.1 WT chimeras (Figure 3B). These results suggested that hematopoietic SIRPα is important for development of CD4+ cDCs in the spleen. To examine whether the SIRPα requirement is intrinsic to DCs, we reconstituted irradiated B6-Ly5.1 mice with an equal mixture of Ly5.1+ BM cells from WT mice and Ly5.2+ BM cells from SIRPα MT mice. The frequency of Ly5.2+ CD4+ cDCs, which represent cells derived from the BM of SIRPα MT donor mice, was markedly reduced compared with that apparent for Ly5.1+ WT CD4+ cDCs (Figure 3C). The frequency of mutant DN cDCs was also reduced compared with that of the corresponding WT cells, although this difference was not statistically significant. In contrast, the frequency of CD8+ cDCs or of B cells derived from SIRPα MT mice did not differ from that of the corresponding cells from WT mice. These results therefore suggested that SIRPα is required within cDCs or cDC precursors for normal accumulation of CD4+ cDCs in the spleen.

No impairment of in vitro differentiation of DCs from BM of SIRPα MT mice

To investigate the mechanism underlying the deficiency of CD4+ cDCs in the spleen of SIRPα MT mice, we first examined the ability of BM cells of the mutant mice to differentiate into CD11c+ DCs in vitro. Culture of BM cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) results in the efficient generation of CD11c+ DCs.32 Culture of BM cells from SIRPα MT mice with GM-CSF for 7 days yielded a similar number of CD11c+ DCs as did that of WT BM cells (Figure 4A), and the extent of surface expression of CD11c on these cells was also similar for the two genotypes (Figure 4B). Culture of BM cells with Flt3 ligand also generates B220−CD11c+CD24highCD11blow cells (functionally equivalent to CD8+ cDCs), B220−CD11c+CD24lowCD11bhigh cells (functionally equivalent to CD4+ or DN cDCs), as well as B220+CD11cint pDCs in vitro.33 To evaluate further the ability of BM cells to differentiate into cDCs in vitro, we thus cultured BM cells of WT or SIRPα MT mice with Flt3 ligand for 7 days. Culture of BM cells from SIRPα MT mice with Flt3 ligand yielded a similar number of DCs as did that of WT
BM cells (Figure 4C). The proportions of B220− cDCs and B220+ pDCs generated from BM cells in the presence of Flt3 ligand were similar for WT and SIRPα MT mice (Figure 4D). Moreover, the proportions of CD24^{high} CD11b^{low} cDCs and of CD24^{low} CD11b^{high} cDCs also did not differ between BM cells from WT or SIRPα MT mice (Figure 4E). Collectively, these data suggested that the differentiation of BM cells from SIRPα MT mice into CD11c⁺ DCs is not impaired, at least not in vitro.

No deficiency of pre-cDCs but a reduced half-life of CD4⁺ cDCs in the spleen of SIRPα MT mice

To investigate further the cause of the reduced number of splenic CD4⁺ cDCs in SIRPα MT mice, we next determined the number of the immediate precursors of cDCs (pre-cDCs), defined as lineage-negative CD11c⁺ MHC class II⁺ Flt3⁺ cells, in the spleen of the mutant animals. These pre-cDCs are widely distributed in BM as well as in secondary lymphoid tissues and circulating blood, and they are thought to give rise to all subtypes of cDCs in order to maintain these cells in lymphoid tissues under steady state conditions. The proportion of pre-cDCs in the spleen was not decreased in SIRPα MT mice compared with that in WT mice (Figure 5A). Given that all subtypes of cDCs arise from these pre-cDCs in the spleen, the deficiency of splenic CD4⁺ cDCs of SIRPα MT mice is thus unlikely to be attributable to a defect in development of pre-cDCs from BM cells or in the migration of these cells to the spleen.

To confirm further that the accumulation of CD4⁺ cDCs derived from pre-cDCs is indeed reduced in the spleen of SIRPα MT mice, we sorted pre-cDCs from BM of either Ly5.2⁺ WT or SIRPα MT mice (Supplemental Figure S2) and adoptively transferred these cells to Ly5.1⁺ WT mice. Eight days after transfer, the frequency of Ly5.2⁺ CD4⁺ cDCs as well as that of Ly5.2⁺ DN cDCs derived from SIRPα MT donor mice in the recipient spleen were markedly reduced compared with those of the corresponding cells from WT donor mice (Figure 5B). In contrast, the frequency of Ly5.2⁺ CD8⁺ cDCs derived from SIRPα MT donor mice was similar to that for the corresponding cells derived from WT mice. These
data thus suggested that either the development of CD4+ cDCs from pre-cDCs or the survival of CD4+ cDCs in the spleen is impaired in SIRPα MT mice.

We therefore next examined the turnover rate of the three splenic cDC subpopulations by monitoring the kinetics of cell labeling with BrdU in the continuous presence of this agent. In the spleen of WT mice, the turnover rate of CD8+ cDCs is greater than that of the other two subtypes of cDCs, with the estimated half-lives of CD8+ cDCs, DN cDCs, and CD4+ cDCs being 1.5, 2.0, and 2.9 days, respectively. We also found that the labeling of CD8+ cDCs by BrdU in WT mice was much faster than that of CD4+ cDCs or DN cDCs (Figure 5C). However, the labeling of CD4+ cDCs was markedly faster in SIRPα MT mice than in WT mice. The estimated half-life of CD4+ cDCs in SIRPα MT mice was thus markedly shortened compared with that for those in WT mice (2.0 ± 0.1 versus 3.2 ± 0.2 days; means ± SE, n = 3, P < 0.05) (Figure 5C). By contrast, the rate of labeling with BrdU and the estimated half-life of CD8+ or DN cDCs in the spleen of SIRPα MT mice were similar to those in WT mice. These results suggested that the deficiency of CD4+ cDCs in the spleen of SIRPα MT mice is attributable, at least in part, to a reduced half-life of these cells.

Importance of both hematopoietic and nonhematopoietic CD47 for homeostasis of splenic CD4+ cDCs and DN cDCs

We and others have previously shown that the number of CD4+ cDCs is selectively decreased in the spleen of CD47-deficient (CD47 KO) mice on either the C57BL/6 or Balb/c background. We confirmed this observation in the present study and also found that the number of DN cDCs, but not that of CD8+ cDCs, was markedly decreased in the spleen of CD47 KO mice compared with that in WT mice (Figure 6A). This phenotype of CD47 KO mice is thus similar to that of SIRPα MT mice, suggesting that the interaction of CD47 with SIRPα might be important for homeostatic regulation of CD4+ cDCs. CD47 is expressed widely in both hematopoietic cells, including three subtypes of cDCs (Supplemental Figure S3), and nonhematopoietic cells, however. We therefore next
examined whether hematopoietic or nonhematopoietic CD47 is important for accumulation of CD4⁺ cDCs or DN cDCs in the spleen. The transfer of BM cells from CD47 KO mice into WT recipient mice results in the rapid elimination of these cells, likely as a result of the lack of prevention by CD47-SIRPα interaction of phagocytosis by splenic macrophages. Indeed, we failed to reconstitute the BM of irradiated WT mice with BM cells from CD47 KO mice (data not shown). Intravenous injection of liposome-MDPCl₂ results in the death of splenic macrophages, and such depletion of macrophages by injection of liposome-MDPCl₂ before BM cell transfer resulted in successful reconstitution of irradiated WT mice with BM cells from CD47 KO mice (Figure 6B). The frequency of CD4⁺ cDCs as well as that of DN cDCs were markedly reduced in the spleen of CD47 KO Ly5.1 chimeras compared with those in WT Ly5.1 chimeras. In contrast, the frequency of CD8⁺ cDCs did not differ between the two types of chimera (Figure 6B). Conversely, when irradiated CD47 KO mice were reconstituted with BM cells from WT mice, the frequencies of both CD4⁺ cDCs and DN cDCs, but not that of CD8⁺ DCs, in the spleen were markedly reduced compared with those in Ly5.1 WT chimeras (Figure 6C). These data thus indicated that both hematopoietic and nonhematopoietic CD47 is important for homeostasis of both CD4⁺ cDCs and DN cDCs in the spleen.
Discussion

We have shown here that the number of splenic CD4+ cDCs is specifically reduced in the spleen of SIRPα MT mice. Furthermore, the decrease in the number of splenic CD4+ cDCs was also observed in hematopoietic or mixed BM chimeras, indicating that SIRPα is required in a cell autonomous manner for homeostatic regulation of CD4+ cDCs. This conclusion is consistent with the finding that the level of SIRPα expression on CD4+ cDCs is much greater than that on CD8+ cDCs. The numbers of CD4+ cDCs and mDCs in pLNs, both of which express SIRPα at a high level, were also markedly reduced, whereas the number of SIRPαlow cDCs in the thymus was not, in SIRPα MT mice. We further investigated the cause of the reduction in the number of CD4+ cDCs in the spleen of SIRPα MT mice. We found that neither the differentiation of DCs from BM cells in vitro nor the accumulation of pre-cDCs in the spleen was impaired for SIRPα MT mice, suggesting that SIRPα is not important for differentiation of pre-cDCs from BM cells or for migration of pre-cDCs to the spleen. Indeed, either the LN homing capacity of or chemotactic migration of BMDCs from SIRPα MT mice was not impaired (H.I, Y.S and T.M., unpublished data). In contrast, the accumulation of CD4+ cDCs as well as that of DN cDCs derived from pre-cDCs that had been adoptively transferred from SIRPα MT mice were markedly reduced in extent in the spleen of recipient WT mice. Finally, we showed that the half-life of CD4+ cDCs was markedly shortened in the spleen of SIRPα MT mice. Together, our results thus indicate that SIRPα is important for the survival of CD4+ cDCs in the spleen.

The molecular mechanism underlying regulation by SIRPα of cDC survival remains only partially elucidated. Both CD40 and receptor activator of NF-κB (RANK), both of which are expressed on DCs, are thought to promote DC survival through activation of nuclear factor–κB (NF-κB) and up-regulation of the antiapoptotic protein Bcl-xL. However, promotion of the survival of DCs by a mAb to CD40 or by RANK ligand was similar for cells isolated from the BM of either SIRPα MT or WT mice (Y.S and T.M., unpublished data), suggesting that the deficiency of splenic CD4+ cDCs in SIRPα MT mice is unlikely attributable to impairment of the CD40- or RANK-mediated signaling pathways.
In contrast, the expression of SIRPα on CD4+ cDCs or their progenitors may have consequences on their phagocytosis and consequently antigen-presentation function. Diminished presentation of self- or foreign antigens by SIRPα-deficient DCs might lead to diminished interaction with naïve and memory T cells. Given that activated T cells promote the survival of DCs by CD40L or RANKL,36-39 less “survival signals” from T cells in SIRPα MT mice may also contribute to the reduction in the survival of CD4+ cDCs. The Notch–RBP-J signaling pathway is also thought to be important for homeostasis of CD8– cDCs through promotion of cell survival,13 but it is unclear whether SIRPα-mediated signaling interacts with Notch–RBP-J signaling. In contrast, SHP-2, a protein tyrosine phosphatase that binds to the immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region of SIRPα, is implicated in the activation of mitogen-activated protein kinase (MAPK) or NF-κB in response to growth factors or cytokines.40,41 Indeed, forced expression of either SIRPα or SHP-2 enhanced the prosurvival action of brain-derived neurotrophic factor in cultured neurons.42,43 Such effects also require the activities of MAPK and phosphatidylinositol 3-kinase, signaling molecules that are important for promotion of cell survival. The binding of SHP-2 to the tyrosine-phosphorylated cytoplasmic region of SIRPα is thought to increase the catalytic activity of this protein tyrosine phosphatase.19,20 SIRPα MT mice express a version of SIRPα that lacks the cytoplasmic region of this protein. The action of SHP-2 downstream of SIRPα might be thus responsible for the promotion of the survival of CD4+ cDCs in the spleen.

Similar to SIRPα MT mice, CD47 KO mice manifested a marked decrease in the number of both CD4+ cDCs and DN cDCs, but not in that of CD8+ cDCs, in the spleen. Moreover, the accumulation of pre-cDCs in the spleen was also not impaired but rather increased in CD47 KO mice (Supplemental Figure S4). Examination of the kinetics of cDC labeling with BrdU previously showed that the labeling of CD4+ cDCs at 48 h was markedly increased in the spleen of CD47 KO mice compared with that in WT mice,34 indicating that the turnover rate of CD4+ cDCs in the spleen of CD47 KO mice is increased, as observed with SIRPα MT mice in the present study. Given that CD47 is a ligand for
SIRPα, the similarity of these CD47 KO mouse phenotypes to those of SIRPα MT mice suggests that interaction of CD47 with SIRPα is important for homeostatic regulation of CD4+ cDCs. In contrast to SIRPα, however, our results with BM chimeras suggest that both hematopoietic and nonhematopoietic CD47 is important for the homeostasis of both CD4+ cDCs and DN cDCs in the spleen. With regard to the role of hematopoietic CD47, *cis* interaction of CD47 with SIRPα within cDCs or *trans* interaction of CD47 on other hematopoietic cell types (such as T or B cells) with SIRPα on DCs might be important for the regulation of CD4+ cDCs in the spleen. However, it seems unlikely that CD47 on cDCs directly regulates CD4+ and DN cDC homeostasis, given that CD47 is expressed in all cDC subsets (*Supplemental Figure S3*), whereas only CD4+ cDCs and DN cDCs (but not CD8+ cDCs) are deficient in the spleen of CD47 KO mice.

With regard to the role of nonhematopoietic CD47, *trans* interaction of CD47 on nonhematopoietic cells, such as stromal cells or endothelial cells, with SIRPα on cDCs might be important for the regulation of CD4+ cDCs in the spleen. Indeed, CD47 is expressed in splenic and BM stromal cells44 (Y.S. and T.M., unpublished data) as well as in endothelial cells.24 Stromal cells in BM or secondary lymphoid organs are implicated in regulation of the proliferation, maturation, and survival of DCs.45-47 Both soluble factors, such as interleukin-7,48 produced by stromal cells as well as cell-to-cell contact with stromal cells49 are thought to be important for such regulation. Indeed, the Notch ligands Delta-1 and Jagged-1 expressed on BM stromal cells regulate DC differentiation by interacting with Notch on DC precursors.50 CD47-SIRPα signaling is thus another important contributor to regulation of cDC homeostasis by stromal cell–DC interaction. Ligation of SIRPα by CD47 is thought to promote the tyrosine phosphorylation of the cytoplasmic region of SIRPα.20 We therefore propose that either *cis* or *trans* interaction of CD47 with SIRPα on cDCs promotes CD4+ cDCs survival in secondary lymphoid organs by inducing the tyrosine phosphorylation of SIRPα. In contrast, ligation of CD47 by SIRPα might activate the signaling downstream of CD47 and change the microenvironment of developing DCs, thus leading to enhanced survival of SIRPα+ cDCs. CD47 KO mice manifested a decrease in the
number of DN cDCs but SIRPα MT mice did not, suggesting that regulation by CD47 of DN cDCs is independent of SIRPα. Thus, further investigation will be necessary to clarify the precise mechanism by which SIRPα and CD47 regulates the homeostasis of cDCs in secondary lymphoid tissues.
Acknowledgments

We thank C. F. Lagenaur for the mAb to SIRPα; K. Okumura for the mAb to CD16/32; H. Nakauchi for B6-Ly5.1 congenic mice; D. Hashimoto for technical suggestions; T. Ohteki and N. Onai for suggestions and discussion; as well as Y. Hayashi, Y. Niwayama-Kusakari, E. Urano, and R. Koitabashi for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas Cancer, a Grant-in-Aid for Scientific Research (B), a Grant-in-Aid for Young Scientists (B), and a grant of the Global COE Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; a grant from the Swedish Research Council (31X-14286) and the Faculty of Medicine, Umeå University; and a Young Researcher Award from Umeå University.

Authorship Contributions

Y.S. designed and performed the experiments, analyzed the data, and wrote the manuscript; H.I., T.K., Y. Kanazawa, M.S.-H., and H.K. performed experiments; H. Ohnishi, Y.M., H. Okazawa, Y. Kaneko, and Y.N. contributed conceptually to the project; P.-A.O. generated and provided CD47 knockout mice; M.N. prepared liposome-MDPC12; and T.M. supervised the entire project and wrote the manuscript.

Conflict of Interest Disclosure

The authors declare no competing financial interests.
References

12. Wu L, D'Amico A, Winkel KD, Suter M, Lo D, Shortman K. RelB is essential for the...

42. Takai S, Masahi Y, Araki T, Koshimizu H, Nawa H, Hatanaka H. Shp-2 positively regulates brain-derived neurotrophic factor-promoted survival of cultured ventral mesencephalic dopaminergic neurons through a brain immunoglobulin-like molecule

Figure Legends

Figure 1. Selective deficiency of CD4+ cDCs in the spleen of SIRPα MT mice.

(A, B) Splenocytes from WT or SIRPα MT mice were incubated with a biotin-conjugated mAb to CD4. The cells were also stained with an FITC-conjugated mAb to CD8, PE-conjugated streptavidin, an APC-conjugated mAb to CD11c, an APC-Cy7–conjugated mAb to B220, and propidium iodide (PI). The expression of CD11c and B220 on PI-negative cells (A) or that of CD4 and CD8 on CD11c^{high} B220^{−} cells (cDCs) (B) was analyzed by five-color flow cytometry (left panels). The relative numbers of cDCs and CD11c^{int} B220^{+} cells (pDCs) (A) or those of CD4^{−} CD8^{+} (CD8^{+} cDCs), CD4^{+} CD8^{−} (CD4^{+} cDCs), and CD4^{−} CD8^{−} (DN cDCs) cells (B) are expressed as a percentage of all viable splenocytes (A) or cDCs (B) on each plot. The absolute numbers of cDCs and pDCs (A) and of CD8^{+} cDCs, CD4^{+} cDCs, and DN cDCs (B) in the spleen were also determined (right panels); data are means ± SE for four mice per group and are representative of five independent experiments. **P < 0.01 (Student’s t test). (C) Frozen sections of the spleen from WT or SIRPα MT mice were stained with an FITC-conjugated mAb to B220 (green, left panels) or to Thy1.2 (green, right panels) as well as with a biotin-conjugated mAb to CD11c and Cy3-conjugated streptavidin (red). Images were visualized with a BX-51 microscope equipped with a 10×/0.4 objective lens (Olympus) and a DP71 camera (Olympus), were analyzed with DP controller software (Olympus), and were processed with Adobe Photoshop CS2 software. Data are representative of three separate experiments. Areas of white pulp are demarcated by dotted lines. B and T represent B cell and T cell areas, respectively. Scale bar, 200 μm.

Figure 2. Deficiency of CD4+ cDCs and mDCs in pLN of SIRPα MT mice.

(A, B) Cells prepared from pLNs of WT or SIRPα MT mice were incubated with a biotin-conjugated mAb to CD4. The cells were also stained with PE-conjugated streptavidin, an APC-conjugated mAb to CD11c, an APC-Cy7–conjugated mAb to B220, an FITC-conjugated mAb to CD8 or to I-A, and PI. The expression of CD11c and either B220
or I-A on PI-negative cells (A) and that of CD4 and CD8 on cDCs (B) were analyzed by five-color flow cytometry (left panels). The relative numbers of cDCs, pDCs, or CD11cint I-A^high mDCs are expressed as a percentage of all viable cells from pLNs in each plot (A), as are the relative numbers of CD8^+, CD4^+, or DN cDCs among all cDCs (B). The absolute numbers of cDCs, pDCs, and mDCs (A) or of CD8^+, CD4^+, or DN cDCs (B) in pLNs were also determined (right panels); data are means ± SE for three mice per group and are representative of three independent experiments. *P < 0.05, **P < 0.01 (Student’s t test).

(C) A DC-enriched, low-density fraction of thymocytes from WT or SIRPα MT mice was incubated with a biotin-conjugated mAb to CD11b. The cells were also stained with an FITC-conjugated mAb to CD8, PE-conjugated streptavidin, an APC-conjugated mAb to CD11c, an APC-Cy7–conjugated mAb to B220, and PI. The expression of CD11b and CD8 on cDCs was analyzed by five-color flow cytometry (left panel). The relative numbers of CD11b^high CD8^- and CD11b^low CD8^+ cells are shown as a percentage of all viable cDCs of the thymus on each plot. The percentage of such CD8^+ or CD8^- cDCs among viable cDCs was also determined (right panel); data are means ± SE for three mice of each group and are representative of three independent experiments.

Figure 3. Intrinsic requirement of SIRPα for cDC homeostasis in the spleen.

(A, B) B6-Ly5.1 mice were lethally irradiated and then reconstituted with 5 × 10^6 BM cells from WT or SIRPα MT mice (A). Conversely, WT or SIRPα MT mice were lethally irradiated and reconstituted with 5 × 10^6 BM cells from B6-Ly5.1 mice (B). Six to eight weeks after transplantation, splenocytes from each chimera were incubated with a biotin-conjugated mAb to CD4. The cells were also stained with an FITC-conjugated mAb to CD8, PE-conjugated streptavidin, a PE-Cy7–conjugated mAb to Ly5.1, an APC-conjugated mAb to CD11c, an APC-Cy7–conjugated mAb to B220, and PI. The expression of CD11c and B220 on PI-negative cells or that of CD4 and CD8 on cDCs was analyzed by six-color flow cytometry (left panels). The relative numbers of cDCs and of CD8^+, CD4^+, or DN cDCs are expressed as a percentage of all viable splenocytes or of cDCs,
respectively, on each plot. The percentages of cDCs as well as of CD8+, CD4+, or DN cDCs among total splenocytes were also determined (right panels); data are means ± SE for a total of seven to nine mice in three independent experiments. **P < 0.01 (Student’s t test). (C) B6-Ly5.1 mice were lethally irradiated and then reconstituted with an equal mixture of WT (Ly5.1+) and SIRPα MT (Ly5.1−) BM cells. Six to eight weeks after transplantation, splenocytes from the mixed chimeras were stained and analyzed as in (A). The expression of CD4 and CD8 on Ly5.1+cDCs or Ly5.1−cDCs was analyzed by six-color flow cytometry (left panel). The relative numbers of CD8+, CD4+, or DN cDCs are expressed as a percentage of Ly5.1+cDCs or Ly5.1−cDCs on each plot. The ratios of the percentages of MT BM (Ly5.1−)-derived CD8+cDCs, CD4+cDCs, DN cDCs, or B cells (defined as CD11c− B220+ cells) among total Ly5.1− splenocytes to those of the corresponding cell types derived from WT BM (Ly5.1+) cells were also calculated (right panel). Data in the right panel are means ± SE for three mice per group and are representative of two independent experiments. **P < 0.01 (one-way ANOVA followed by Bonferroni’s test).

Figure 4. No impairment of differentiation of DCs from BM of SIRPα MT mice in vitro.

(A) BM cells from WT or SIRPα MT mice were cultured with GM-CSF (10 ng/ml) for 7 days in 24-well plates, after which the total number of BM-derived DCs was determined with a Burker-Turk counting chamber. Data are means ± SE from three independent experiments. (B) Cells cultured as in (A) were incubated with a biotin-conjugated mAb to CD11c (open traces) or control mAb (filled traces) and were also stained with PE-conjugated streptavidin and PI. The expression of CD11c on PI-negative cells was analyzed by two-color flow cytometry. The relative number of CD11c+ cells is expressed as a percentage of all PI-negative cells on each plot. Data are representative of three independent experiments. (C) BM cells from WT or SIRPα MT mice were cultured with Flt3 ligand (200 ng/ml) for 7 days, after which the total number of BM-derived DCs was determined with a Burker-Turk counting chamber. Data are means ± SE from three
independent experiments. (D, E) Cells cultured as in (C) were incubated with a biotin-conjugated mAb to CD11b and also stained with an FITC-conjugated mAb to CD24, PE-conjugated streptavidin, an APC-conjugated mAb to CD11c, an APC-Cy7–conjugated mAb to B220, and PI. The expression of CD11c and B220 on PI-negative cells (D) or that of CD11b and CD24 on cDCs (E) was analyzed by five-color flow cytometry (left panels). The relative numbers of CD11c+ B220− cells (cDCs) and CD11cint B220+ cells (pDCs) (D) or those of CD24low CD11bhigh (CD11bhi) and CD24high CD11blow (CD24hi) cDCs (E) are expressed as a percentage of all PI-negative cells (D) or of cDCs (E) on each plot. The percentages of cDCs or pDCs (D) and those of CD11bhi or CD24hi subsets (E) among PI-negative cells were also determined (right panels); data are means ± SE from three independent experiments.

Figure 5. No deficiency of pre-cDCs but a reduced half-life of CD4+ cDCs in the spleen of SIRPα MT mice.

(A) Splenocytes from WT or SIRPα MT mice were incubated with a biotin-conjugated mAb to Flt3 or an isotype-matched control mAb and were also stained with an FITC-conjugated mAb to I-A, PE-conjugated streptavidin, PE-Cy5–conjugated mAbs to lineage markers (CD3ε, CD19, B220, NK1.1, and TER-119), an APC-conjugated mAb to CD11c, and PI. The expression of CD11c and I-A on lineage-negative and PI-negative (Lin− PI−) cells (upper left panel) or that of Flt3 on CD11c+ I-A− cells (open traces; filled traces represent staining with the isotype control) (lower left panel) was analyzed by four-color flow cytometry. The relative numbers of CD11c+ I-A− cells or CD11c+ I-A+ cells (upper left panel) and those of Flt3+ cells (pre-cDCs, lower left panel) are expressed as a percentage of all Lin− PI− splenocytes (upper left panel) or of CD11c+ I-A− cells (lower left panel) on each plot. The percentage of pre-cDCs among total viable splenocytes was also determined (right panel); data are means ± SE from three separate experiments. (B) Pre-cDCs that had been sorted from BM cells of WT or SIRPα MT mice (see Supplemental Figure S2) were injected intravenously into B6-Ly5.1 mice. Eight days after injection, splenocytes from
recipient mice were stained as in Figure 3A. The expression of Ly5.1 on cDCs (upper left panel) or that of CD4 and CD8 on Ly5.1− cDCs (derived from transferred cells of Ly5.2+ WT or MT mice) (lower left panel) was analyzed by six-color flow cytometry. The relative numbers of Ly5.1− cells (upper left panel) and of CD8+, CD4+, or DN cDCs (lower left panel) are expressed as a percentage of all PI-negative cDCs (upper left panel) or of Ly5.1− cDCs (lower left panel) on each plot. The percentages of donor (Ly5.1−)–derived CD8+, CD4+, or DN cDCs among total cDCs were also determined (right panel); data are means ± SE from three independent experiments. **P < 0.01 (Student’s t test). (C) WT or SIRPα MT mice were injected intraperitoneally with 1 mg of BrdU and then continuously supplied with BrdU (0.8 mg/ml) in sterile drinking water. At various times after BrdU administration, splenocytes were isolated from the mice and stained with a PE-conjugated mAb to CD8, a PE-Cy7–conjugated mAb to CD4, an APC-conjugated mAb to CD11c, and an APC-Cy7–conjugated mAb to B220. The cells were then fixed, permeabilized, and stained with an FITC-conjugated mAb to BrdU. The percentage of BrdU-positive cells among total CD8+, CD4+, or DN cDCs in the spleen at each time point was then determined (left panels), and from these data the half-lives of CD8+, CD4+, and DN cDCs were estimated (right panel). Data are means ± SE from three independent experiments. *P < 0.05 (Student’s t test).

Figure 6. Importance of both hematopoietic and nonhematopoietic CD47 for homeostasis of splenic CD4+ cDCs and DN cDCs.

(A) Splenocytes from WT or CD47 KO mice were stained as in Figure 1A, and the expression of CD4 and CD8 on cDCs was analyzed by five-color flow cytometry (left panel). The relative numbers of CD8+, CD4+, and DN cDCs are expressed as a percentage of PI-negative cDCs in each plot. The absolute numbers of CD8+, CD4+, and DN cDCs in the spleen were also determined (right panel); data are means ± SE from three mice per group and are representative of three independent experiments. *P < 0.05, **P < 0.01 (Student’s t test). (B) B6-Ly5.1 mice were subjected to sublethal irradiation and then reconstituted with
5×10^6 BM cells from either WT or CD47 KO mice on day 0 (BMT). MDPCl$_2$ entrapped in liposomes (Lipo-MDP) was administrated intravenously on days –2, 3, 6, and 11 as indicated in the upper panel to prevent initial rejection of CD47 KO donor cells by recipient macrophages. Splenocytes were prepared from recipient mice on day 28 and stained as in Figure 3A. The expression of CD4 and CD8 on cDCs was analyzed by six-color flow cytometry (lower left panel). The relative numbers of CD8$^+$, CD4$^+$, and DN cDCs are expressed as a percentage of Ly5.1$^-$ cDCs on each plot. The percentages of CD8$^+$, CD4$^+$, and DN cDCs among total PI-negative Ly5.1$^-$ cells were also determined (right panel); data are means ± SE from five or six mice per group in two independent experiments. **$P < 0.01$ (Student’s t test). (C) WT or CD47 KO mice were subjected to lethal irradiation and reconstituted with 5×10^6 BM cells from B6-Ly5.1 mice. Eight weeks after transplantation, splenocytes were prepared from recipient mice and stained as in (B). The expression of CD4 and CD8 on cDCs was analyzed by six-color flow cytometry (left panel). The relative numbers of CD8$^+$, CD4$^+$, and DN cDCs are expressed as a percentage of total cDCs in each plot. The percentages of CD8$^+$, CD4$^+$ and DN cDCs among total splenocytes were also determined (right panel); data are means ± SE from three mice per group and are representative of two independent experiments. *$P < 0.05$, **$P < 0.01$ (Student’s t test).
Figure 1
SAITO et al.

A

Spleen

WT

MT

B220

CD11c

0.7

1.8

0.7

Cell number (10^6)

WT

MT

cDCs

pDCs

B

cDCs

WT

MT

CD8

CD4

11.5

39.8

39.3

45.3

45.0

11.2

Cell number (10^6)

WT

MT

CD8^+

CD4^+

DN

C

B220 / CD11c

Thy1.2 / CD11c

WT

MT
Figure 2
SAITO et al.

A

WT
MT

B

WT
MT

C

WT
MT

Cell number (10^6)

CD8⁺
CD4⁺
DN

% of cDCs

CD8⁺
CD8⁻
Figure 3
SAITO et al.
Figure 4
Saito et al.

A
![Graph showing cell number (10^6) for WT and MT groups.]

B
![Graph showing cell number distribution for CD11c with WT and MT groups.]

C
![Graph showing cell number (10^6) for WT and MT groups.]

D
![Graph showing % of total cells for cDCs and pDCs with WT and MT groups.]

E
![Graph showing % of total cells for CD24 with WT and MT groups.]

From www.bloodjournal.org by guest on October 28, 2017. For personal use only.
Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues

Yasuyuki Saito, Hiroko Iwamura, Tetsuya Kaneko, Hiroshi Ohnishi, Yoji Murata, Hideki Okazawa, Yoshitake Kanazawa, Miho Sato-Hashimoto, Hisae Kobayashi, Per-Arne Oldenborg, Makoto Naito, Yoriaki Kaneko, Yoshihisa Nojima and Takashi Matozaki

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.