Recipient T lymphocytes modulate the severity of antibody-mediated transfusion-related acute lung injury (TRALI)

Yoke Lin Fung¹, Michael Kim², Arata Tabuchi³, Rukhsana Aslam²-⁴, Edwin R. Speck²-⁴, Leola Chow²-⁴, Wolfgang M. Kuebler³,⁸, John Freedman,²,³,⁶,⁷ and John W. Semple²-⁷

¹The Prince Charles Hospital, University of Queensland, Brisbane, Australia; ²Toronto Platelet Immunobiology Group, ³Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ⁴Canadian Blood Services, Departments of ⁵Pharmacology, ⁶Medicine, ⁷Laboratory Medicine and Pathobiology, and ⁸Surgery, University of Toronto, Toronto, Ontario, Canada.

Running title: Recipient immune mechanisms in TRALI.

Correspondence to: Dr. John W. Semple,
St. Michael's Hospital,
30 Bond Street,
Toronto, Ontario, Canada, M5B 1W8.

semplej@smh.toronto.on.ca
Transfusion-related acute lung injury (TRALI) is a serious complication of transfusion and has been ranked as one of the leading causes of transfusion-related fatalities. Nonetheless, many details of the immunopathogenesis of TRALI, particularly with respect to recipient factors are unknown. We utilized a murine model of antibody-mediated TRALI in an attempt to understand the role that recipient lymphocytes might play in TRALI reactions. Intravenous injection of an IgG2a anti-murine major histocompatibility complex (MHC) class I antibody (34-1-2s) into BALB/c mice induced moderate hypothermia and pulmonary granulocyte accumulation but no pulmonary edema nor mortality. In contrast, 34-1-2s injections into mice with severe combined immunodeficiency (SCID) caused severe hypothermia, severe pulmonary edema and approximately 40% mortality indicating a critical role for T and B lymphocytes in suppressing TRALI reactions. Adoptive transfer of purified CD8\(^+\) T lymphocytes or CD4\(^+\) T cells but not CD19\(^+\) B cells into the SCID mice alleviated the antibody-induced hypothermia, lung damage and mortality suggesting that T lymphocytes were responsible for the protective effect. Taken together, these results suggest that recipient T lymphocytes play a significant role in suppressing antibody-mediated TRALI reactions. They identify a potentially new recipient mechanism that controls the severity of TRALI reactions.
INTRODUCTION

Hemovigilance data from the Food and Drug Administration (FDA) and the Serious Hazards of Transfusion (SHOT) study still rate TRALI as the most serious complication of transfusion today.\(^1\)\(^2\) A 1983 seminal TRALI report presented evidence linking leukocyte antibodies in the transfused donations with the pathology of TRALI.\(^3\) Since that publication the number of TRALI reports associated with donor derived leukocyte antibodies has grown significantly, adding support to the central role of leukocyte antibodies in the pathogenesis of TRALI.\(^4\)\(^-\)\(^8\) Leukocyte antibodies appear to be a key stimulus of neutrophils in both the proposed immune mediated mechanism and the two event mechanism of TRALI.\(^9\)\(^-\)\(^12\) In spite of this, some enigmas remain, as not all leukocyte antibodies cause TRALI in recipients with the cognate antigen\(^13\)\(^,\)\(^14\) and some antibodies e.g. anti-human neutrophil antigen (HNA)-3a and anti-human leukocyte antigen (HLA)-A2 are associated with clinically more severe TRALI reactions.\(^7\)\(^,\)\(^8\)\(^,\)\(^15\)\(^,\)\(^16\)

Animal models have contributed significantly to our understanding of the immune mechanisms of TRALI. For example, an ex-vivo rabbit lung model of TRALI demonstrated that complement was required to induce anti-HNA-3a-mediated neutrophil activation and increased pulmonary vascular permeability.\(^17\) In contrast, an ex-vivo rat model found that an anti-CD177 antibody could activate HNA-2a positive neutrophils without the presence of complement\(^18\) suggesting that different antibodies may have different mechanisms of action. On the other hand, it has been demonstrated in an in vivo rat model that human plasma and lipids from stored blood component together with anti-MHC class I antibodies could cause neutrophil activation and acute lung injury.\(^19\)\(^-\)\(^21\) Taken together, these animal studies have shown that several immune mechanisms exist that can ultimately induce recipient neutrophil activation and TRALI induction.
A murine model of antibody-mediated TRALI was developed by Looney et al22 who observed that when BALB/c mice were injected with a mouse monoclonal MHC class I antibody (mAb, 34-1-2s), a significant increase in excess lung water, lung vascular permeability, mortality and neutropenia were observed within 2 hours after mAb infusion. This in vivo model has the advantage in that it will allow for studies on what recipient factors are responsible for antibody-mediated neutrophil accumulation, activation and lung damage. We report here that the severity of anti-MHC class I antibody-mediated TRALI is significantly dependent on the presence of recipient lymphocytes, particularly CD8$^+$ T cells and CD4$^+$ T cells. This lymphocyte-mediated suppression of TRALI reactions appeared to be an active process and not due to simple adsorption of the antibody on lymphocyte MHC molecules thus acting like a sink. These results suggest that studies on recipient immune factors particularly related to lymphocyte subsets may reveal potential recipient mechanisms that either reduce TRALI symptoms or perhaps more importantly, identify those recipients that may be more susceptible to TRALI reactions.
METHODS

Mice

Male BALB/c (H-2^d, BALB/cAnNCrl) mice and CB.17 (H-2^d, CB17/Icr-Prkdc^scid/IcrCrl) severe combined immunodeficient (SCID) mice, 6-12 weeks of age, were obtained from Charles River Laboratories (Montreal, PQ, Canada). All animal studies were approved by the St. Michael’s Hospital Animal Care Committee (Protocol No. 108). SCID mice were bled prior to the experiments and sera were screened for the presence of murine IgG by an ELISA as previously described; any mouse with a serum IgG concentration greater than 50 ug/ml was deemed “leaky” and sacrificed.

MHC Class I monoclonal antibody (mAb; 34-1-2s) production and purification.

The hybridoma 34-1-2s produces a mAb (IgG_{2a}, \kappa) against H-2K^d and H-2D^d MHC class I molecules and was purchased from the American Type Collection Culture (Manassas, VA). The mAb recognizes a monomorphic region of the MHC class I alpha-3 domain (independently of MHC/beta-2 microglobulin association) and also cross reacts with MHC class I molecules from the b,q,s and r strains of inbred mice. The 34-1-2s antibody induces TRALI-like symptoms independently of complement as it causes TRALI in C5-deficient DBA mice (JWS, unpublished observation). The hybridoma was grown in protein-free hybridoma medium, PFHM II, (Invitrogen, Burlington, ON) in CELLine flasks (BD Biosciences, Bedford, MA) and incubated at 37°C and 5% CO_2. Hybridoma supernatant containing the mAb was collected and filtered through a 0.2 \mu m filter. The mAb solution was then purified by protein A Sepharose affinity chromatography, concentrated and dialyzed in PBS (pH 7.4). The final concentration of the high purity mAb was adjusted to 5 mg/mL as determined by Bio-Rad protein assay (Bio-Rad Laboratories, Inc., Hercules, CA). Flow cytometric studies confirmed that active binding of 34-1-2s remained intact during the purification.
TRALI induction

BALB/c or SCID mice were weighed and then challenged intravenously (iv) via tail vein injection with the indicated titrations (0.45, 2.3, 4.5, 9.1, 22.7 mg/kg) of 34-1-2s mAb or phosphate buffered saline (PBS). Various physiological measurements were then performed at the indicated time points.

Temperature measurements.

Rectal temperatures were measured as an indication of systemic shock at 30 minute intervals up to 120 minutes post mAb infusion using a digital, blunt-tipped stem thermometer (VWR International, Mississauga, ON).

Wet/Dry Lung Weight Ratio

As a measure of pulmonary edema, wet-to-dry lung weight ratios were determined. Mice were sacrificed by cervical dislocation at the indicated times after 34-1-2s mAb infusion and the lungs were removed, weighed (wet weight) and then dried in an oven at 60° C for ≥ 48 hrs and then weighed for dry weight. The wet-to-dry weight ratio was calculated as: net wet weight/net dry weight.

MIP-2 Measurements.

Blood was collected from the indicated mice and sera was generated on ice and tested for the presence of the CXCL2 chemokine Macrophage Inflammatory Protein 2 (MIP-2) using an ultra-sensitive commercial solid-phase ELISA kit (Mouse CXCL2/MIP-2 Quantikine ELISA Kit, R&D Systems, Cedarlane Laboratories, Burlington, ON, Cat# MM200). The MIP-2 assay had a sensitivity of >1.5 pg/ml.

Acute lung injury measurements.

To characterize the magnitude of lung injury, oxygenation monitoring, lung function measurements and intravital microscopy were performed. Mice were anesthetized with ketamine (200 mg/kg ip, Bimed MTC Animal Health Inc., Cambridge, ON) and xylazine...
(10mg/kg ip, Bayer, Toronto, ON) and placed in the supine position on a homeothermic blanket (Harvard Apparatus, Holliston, MA). Body temperature was maintained at 37°C with a feedback coupled rectal thermoprobe. Following tracheotomy, mice were intubated with a polyethylene tube (Portex® FineBore Polythene Tubing, 0.58 mm ID/0.96 mm OD; Smiths Medical International Ltd., London, UK) and ventilated with room air at 100 breaths/min (tidal volume of 10 mL/kg at a positive end-expiratory pressure of 2 cmH₂O, flexiVent; Scireq, Montreal, QC). Arterial oxygenation was monitored continuously by pulse oximetry (MouseOx; Starr Life Sciences, Oakmont, PA). Respiratory mechanics were assessed with the flexivent system by use of the forced oscillation technique and subsequent fitting of the acquired impedance data to the constant phase model, allowing for direct measurements of inspiratory capacity (IC), pressure-volume (P-V) relationships, Newtonian resistance of the central airways (Rᵃ), quasi-static compliance (Cₛᵗ) and tissue damping (G), i.e. energy dissipation of lung tissue (tissue resistance), in the ventilated mouse. Following baseline recordings, 150 µg of 34-1-2s Ab were infused via a catheter (Portex® FineBore Polythene Tubing, 0.28 mm ID/0.61 mm OD, Smiths Medical International Ltd.) positioned in the right external jugular vein. Measurements of arterial oxygenation and respiratory mechanics were repeated at the indicated time points after mAb infusion. Lung intravital microscopy was performed in a separate set of experiments as previously described. Briefly, mice were anesthetized with medetomidine (0.5 mg/kg ip, Domitor; Dr E. Graeub AG, Basel, Switzerland), fentanyl (0.05 mg/kg ip; Janssen Cilag, Neuss, Germany), and midazolam (5 mg/kg ip, Dormicum; Roche, Basel, Switzerland), tracheotomized, intubated, and ventilated with room air at 100 breaths/min with end-inspiratory and end-expiratory pressures of 11 and 1 cmH₂O, respectively (Animal Respirator Compact 4600 Series, TSE Systems, Bad Homburg, Germany). Visual access to the surface of the upper right lung lobe was obtained by preparation of a thoracic window. The window was resealed with a transparent...
membrane, and intrathoracic air was removed via a transdiaphragmally placed intrapleural catheter. Mice were positioned under an upright microscope (Axiotechvario 100HD; Zeiss, Jena, Germany) and subpleural alveoli were visualized during the expiratory plateau phase using darkfield illumination (Maxxvison, Suhl, Germany), imaged by a silicone intensified tube camera (CF 8/4 FMC; Kappa, Gleichen, Germany) and digitally recorded (DVCAM, DSR-25; Sony Deutschland GmbH, Berlin, Germany). For measurement of interstitial thickness, areas of interest (AOIs) encompassing 5-7 alveoli were defined by anatomic landmarks. Areas of individual alveoli within each AOI were planimetrically measured (ImageJ 1.36b; NIH, Bethesda, MD), and the fraction of interstitial space reflecting the amount of interstitial thickening was calculated as area of the AOI/(area of the AOI – sum of the areas of the individual alveoli within the AOI). Intravital microscopic images were obtained at baseline and 30 min after iv infusion of 150 µg 34-1-2s Ab.

Pulmonary neutrophil accumulation.

Mice were anaesthetized using avertin (2% final in PBS) and the chest cavity was exposed, the lung lobes excised, homogenized and filtered through a 40μm cell strainer (BD Biosciences, Bedford, MA). The cell suspension was then washed with PBS (Ca++/Mg++-free, Invitrogen, Burlington, ON) and centrifuged at 280 x g for 7 minutes at 4° C. Red blood cells in the preparation were removed by Ammonium Chloride/Potassium (ACK) lysis solution (0.15M NH₄Cl, 10mM KHCO₃, Na₂EDTA, pH 7.2-7.4). The cell preparation was then washed twice with cold PBS and cells were mounted on microscope slides using a Shandon Cytospin 4 (ThermoFisher Scientific, Nepean, ON) and stained with a haematoxylin-and-eosin (H&E) kit (Harleco - Hemacolor, EMD Chemicals, Inc., Darmstadt, Germany). PMN were enumerated and calculated as a percent of total nucleated cells.
Lung Histology

For lung histology, lungs were removed and fixed in 10% formalin, paraffin embedded and sectioned by a microtome. The sections were stained with haematoxylin-and-eosin (Harleco/Surgipath) and examined by light microscopy using a microscope with a 60X oil immersion lens. Using standard histological techniques, lung tissue sections were prepared, stained and mounted on microscope slides by the Pathology Diagnostic Laboratories at St. Michael’s Hospital.

Lymphocyte production and adoptive transfers.

BALB/c splenocytes were produced for adoptive transfer of lymphocyte populations into SCID mouse recipients. Briefly, spleens were removed from BALB/c mice, homogenized into a cell suspension and layered over a Percoll (GE Healthcare, Baie d’Urfé, PQ, Canada) density gradient (52%, 69% and 78%) and centrifuged at 1,660 x g for 30 min. Mononuclear lymphocytes were harvested from the 69/78% interface and the lymphocytes were washed 2x. To deplete the indicated lymphocyte populations, the mononuclear lymphocytes were applied to the EasySep Magnetic cell sorting kit (StemCell Technologies, Vancouver, BC) to extract either CD4+ CD8+ and/or CD19+ lymphocytes. The depletion efficiencies were determined to be > 95% by flow cytometry. SCID mice were reconstituted by injecting 20x10^6 cells isolated cell populations iv, via the tail vein immediately followed by a 2.3 mg/kg dose 34-1-2s in the opposite tail vein.

Statistical Analysis.

Significance between means was determined by Student’s t test.
RESULTS

34-1-2s caused significant hypothermia in SCID mice.

Rectal temperatures were monitored as a measure of systemic shock induced by the 34-1-2s infusions. When BALB/c mice were administered titrations of 34-1-2s, rectal temperatures decreased within 5 minutes post infusion and reached nadirs within 30 minutes in a dose-dependent fashion (Figure 1a). Maximal reductions were observed by 90 min post infusion, but within 2 hours, however, the rectal temperatures began to recover (Figure 1a). In contrast, compared with BALB/c mice, when SCID mice were infused with titrations of 34-1-2s, a significant reduction in rectal temperatures was observed (Figure 1b). The temperature reduction in the infused SCID mice was maximal by 90 minutes post-infusion but did not recover during the experimental time points (Figure 1b).

34-1-2s caused mortality in SCID mice but not in BALB/c mice.

When BALB/c mice were injected with 34-1-2s, there was no mortality observed. In contrast, when SCID mice were infused with the antibody, a dose dependent mortality was noted; within 60 minutes post mAb infusion, high doses (22.7 mg/kg) of the antibody induced 40 percent mortality (Figure 2).

34-1-2s induced quicker pulmonary neutrophil accumulation and serum levels of MIP-2 in SCID mice.

Pulmonary neutrophil accumulation induced by 34-1-2s was measured and showed that while both BALB/c and SCID mice had significant increases in neutrophils within the lungs after mAb infusion (Figure 3a), the accumulation within SCID mouse lungs began within 5 min compared with BALB/c mice (Figure 3b). Correlated with these finding were the observation that levels of serum MIP-2, the murine equivalent to human IL-8, occurred quicker compared with BALB/c mice and the levels remained high throughout the protocol (Figure 4).
34-1-2s caused significant lung injury in SCID mice but not BALB/c mice.

Post-mortem measurement of wet-to-dry lung weight ratios were used to determine extravascular pulmonary fluid, an indicator of pulmonary edema. The wet-to-dry lung weight ratios of BALB/c mice infused with titrations of 34-1-2s did not significantly change over the 2 hours post mAb infusion (Figure 5). In contrast, however, significant increases in wet-to-dry ratios were observed in SCID mice infused with titrations of 34-1-2s (Figure 5).

To visualize the lung damage induced by 34-1-2s antibody infusions, BALB/c mice and SCID mice were paired and prepared for pulmonary oxygenation measurements and intravital microscopy. BALB/c mice infused with 34-1-2s did not have any change in saturated oxygen (SO₂) levels over time (Figure 6a). In contrast, however, SCID mice infused with antibody displayed significant reductions in SO₂ levels within 5 minutes after antibody administration (Figure 6a). Similarly, although quasi-static lung compliance (Cst) was reduced in BALB/c mice after antibody infusion (Figure 6b), SCID mice had significantly more pronounced reductions in pulmonary compliance within 10 minutes after antibody infusion (Figure 6b). Likewise, inspiratory capacity (IC) and the total volume inspired during an increase in airway pressure from 2 to 30 mmHg (V) were much more reduced by 34-1-2s in SCID as compared to BALB/c mice, while tissue resistance (G) was increased (Table 1). Central airway resistance (Rn) was higher in SCID as compared to BALB/c at baseline, but did not decrease markedly in response to 34-1-2s in either strain (Table 1). Histological analyses revealed moderate interstitial leukocytosis in antibody-infused BALB/c mice. In contrast, lungs of 34-1-2s treated SCID mice showed significant interstitial accumulations of leukocytes and concomitant septal thickening indicative of interstitial edema (Figure 6c). In line with this notion, the analysis of intravital microscopic recordings (Supplemental Figure 2) revealed that the fraction of pulmonary interstitial space...
was significantly increased in the antibody-infused SCID mice compared with BALB/c mice by 30 minutes after administration of 34-1-2s (Figure 6d).

SCID mice reconstituted with purified T lymphocytes populations were protected from severe TRALI.

We analysed whether the absence of T and/or B cells in the SCID mice was responsible for the severe pulmonary damage observed. CD19+ B cells, CD4+ T cells or CD8+ T cells were purified from BALB/c spleens and infused into SCID mice before administration of 34-1-2s. Transfer of CD19+ B cells did not significantly alter the induction of hypothermia (Figure 7) in the SCID mice nor did they change the lung damage as measured by lung wet/dry ratios (Figure 8). In contrast, transfer of CD8+ T cells significantly reduced the ability of 34-1-2s to induce hypothermia in the SCID mice (Figure 7). In addition, CD8+ T cells and to a lesser extent, purified CD4+ T cells, significantly reduced the ability of 34-1-2s to induce lung damage as measured by wet-to-dry weight ratios (Figure 8).
DISCUSSION

A previous report of 34-1-2s-induced TRALI in a murine model demonstrated that the antibody caused TRALI reactions in male BALB/c mice characterized by hypothermia, increased pulmonary permeability, pulmonary pathology and mortality.31 It was also shown that recipient granulocytes and leukotrienes significantly contributed to the lung pathology.31 Subsequently, Looney et al22 demonstrated the central role played by neutrophil Fc\gamma receptors (R) in mediating this mAb lung injury. The results of the present study additionally reveal that recipient CD8+ and CD4+ T cells significantly reduce severe TRALI reactions.

In contrast to Looney et al.,22 our results with BALB/c mice showed that while 34-1-2s mAb induced significant neutrophil accumulation within the lungs, even high concentrations (22.7mg/kg) of the mAb did not cause significant lung damage nor mortality (Figures 2 and 4). The reasons for this are unclear but may relate to the environmental conditions that the mice are raised in. Looney et al32 have recently shown that when mice are moved from standard vivarium conditions into germ-free housing, the ability of 34-1-2s to induce TRALI reactions was lost. Our results do not appear to be an isolated case as it has also been shown by others that 34-1-2s induces only mild TRALI reactions in male BALB/c mice.33 Thus, the possible reasons for differences in observations between the various in vivo murine models of TRALI using 34-1-2s may relate to environmental conditions e.g. murine gut flora.34 Nonetheless, it is clear that 34-1-2s can induce a spectrum of TRALI reactions in male BALB/c mice from mild to severe depending on several factors including mAb dose and environmental factors.

The absence of any significant lung damage in BALB/c mice in our hands led us to study whether recipient factors such as lymphocytes might influence the severity of TRALI reactions. Because neutrophil activation is known to be a key effector cell response in the pathogenesis of TRALI and SCID mice contain normal levels of neutrophils compared with
BALB/c mice, we expected to observe TRALI in both mouse strains. Instead we observed that compared with BALB/c mice, infusion of the 34-1-2s antibody induced significantly more severe hypothermia (Figure 1), mortality (Figure 2), granulocyte accumulation (Figure 3) and lung injury (Figures 4 and 6). Since 34-1-2s induced similar amounts of PMN accumulation in both BALB/c and SCID mice, we hypothesized that the absence of lymphocytes in SCID mice made them more susceptible to antibody-mediated TRALI. This was confirmed by demonstrating that when the SCID mice were reconstituted with purified lymphocyte populations and then challenged with 34-1-2s, there was a differential ability of the different lymphocyte populations to modulate TRALI reactions. The adoptive transfer of purified CD19+ B cells did not significantly affect the mAb’s ability to induce TRALI reactions. In contrast, only purified CD8+ T cells or CD4+ T cells were able to protect SCID mice against 34-1-2s-mediated lung damage (Figures 7 and 8). The mechanisms responsible for T cell’s ability to modulate TRALI reactions are unclear but they did not relate to simple adsorption of the antibody onto the lymphocytes making them act as an antibody sink. This was confirmed by demonstrating that splenocytes, depleted of both CD4+ and CD8+ T cell populations, had significantly higher binding reactivity with 34-1-2s (Supplemental Figure 1), but nonetheless failed to reduce the severe TRALI reactions (Figure 8).

There is evidence that recipient T cells have a role to play in other inflammatory lung injury models although earlier reports demonstrated an apparent controversy whether these cells are involved. For example, horses treated with anti-thymocyte globulin exhibited an acute respiratory distress syndrome whereas lethal fibroinflammatory lung injury induced in mice by bleomycin-treatment was markedly reduced by antagonizing CD3+ T cells in vivo. In contrast, however, Morris et al showed that neutrophil accumulation in LPS-treated nude mice was not different than that of BALB/c mice and they suggested that T cells...
may not have a role in the resolution of endotoxin-induced acute lung injury. On the other hand, Majeski et al38 showed the murine acute respiratory distress syndrome mediated by reovirus was critically dependent on T cells and their ability to secret interferon-gamma. They speculated that removing T cells from the mice would reduce the lung damage induced by the infectious insult.

More recently, however, several reports have suggested a significant role for T cells in lung injury models. CD4+ regulatory T cells have been shown to be important in controlling PMN recruitment in a murine model of chronic lung injury,39 while others have demonstrated that $\alpha\beta$ T cells could mediate cecal puncture-induced inflammatory lung injury.40 Furthermore, Sekine et al41 have recently demonstrated that IL-18 secreted by Th1 cells plays a significant role in modulating the lung injury associated with acute graft versus host disease. The results of our study further implicate recipient T cells in playing an important role in reducing the pathogenesis of antibody-mediated TRALI. It is possible that T cells mediate their suppressive effects by direct interactions with neutrophils where mAb-armed neutrophils bind to T cells via an antibody bridge and the T cells inactivate the neutrophils in a reverse cytolytic pathway; the so-called veto effect.42 On the other hand, there is increasing evidence of the co-localization of neutrophils and T cells at sites of persistent infections, chronic inflammation or sites of tumors.43 For example, it has been demonstrated that both CD4+ and CD8+ T cells can contribute to the delayed cell death of neutrophils via the production of cytokines, particularly IFN-gamma which is known to extend the life-span of neutrophils.44 Our current data may be the first to suggest that T cells may actively suppress neutrophil activation in antibody-mediated TRALI. We are currently studying this.

In summary, we have demonstrated that the presence of recipient CD4+ and CD8+ T cells reduces the severity of antibody-mediated TRALI by actively inhibiting neutrophil-
mediated lung damage. These results suggest that understanding how lymphocytes may modulate neutrophil activity may identify recipient factors that may be predictive of whether a severe TRALI response will take place.

Acknowledgements.

This work was supported by a Canadian Institutes of Health Research/Canadian Blood Services (CIHR/CBS) Priority Research Grant. The authors would like to thank Dr. Alan H. Lazarus (St. Michael's Hospital) for his helpful discussions and critical review of this manuscript.

Authors Contributions.

Y.L.F. designed research, performed and supervised all experiments, collected data, analyzed and interpreted data, performed statistical analysis, and wrote the manuscript first draft; M.K., A.T., R.A., E.R.S. and L.C. performed experiments, collected, analyzed and interpreted data; W.M.K. and J.F. designed research, edited the manuscript, and contributed animals and J.W.S. provided financial resources, designed research, analyzed and interpreted data, and edited the manuscript.

Conflict-of-interest disclosure.

The authors declare no competing financial interests.
References

1. Chapman CE, Stainsby D, Jones H et al. Ten years of hemovigilance reports of
transfusion-related acute lung injury in the United Kingdom and the impact of

2. FDA Center for Biologics Evaluation and Research. Fatalities Reported to FDA
Following Blood Collection and Transfusion, Annual Summary for Fiscal Year 2008.
http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/Trans
fusionDonationFatalities/ucm113649.htm

3. Popovsky MA, Abel MD, Moore SB Transfusion-related acute lung injury associated
with passive transfer of antileukocyte antibodies. Amer Rev Resp Dis..

4. Kopko PM, Popovsky MA, MacKenzie MR et al. HLA class II antibodies in

5. Fung YL, Goodison KA, Wong JK, Minchinton RM. Investigating transfusion-related

in transfusion-related acute lung injury and results of leucocyte antibody screening of

Table 1: Respiratory mechanics in 34-1-2s treated BALB/c and SCID mice

<table>
<thead>
<tr>
<th></th>
<th>BALB/c</th>
<th>SCID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 min</td>
<td>60 min</td>
</tr>
<tr>
<td>IC/bw (mL/kg)</td>
<td>42.8±1.15</td>
<td>40.0±2.25</td>
</tr>
<tr>
<td>V (µL)</td>
<td>949±555</td>
<td>876±7#5</td>
</tr>
<tr>
<td>G (cmH₂O/mL)</td>
<td>4.30±0.47</td>
<td>4.19±0.28</td>
</tr>
<tr>
<td>Rₙ (cmH₂O·s/mL)</td>
<td>0.45±0.07</td>
<td>0.40±0.02</td>
</tr>
</tbody>
</table>

Respiratory mechanics in BALB/c and SCID mice as analyzed by the flexiVent technique at baseline (0 min) and 60 min after induction of TRALI by infusion of 34-1-2s (150 µg). Data from n=5 each; * p<0.05 vs. baseline, # p<0.05 vs. BALB/c.
Figure 1.

34-1-2s induced severe hypothermia in SCID mice.

Rectal temperatures over time in a) BALB/c mice and b) SCID mice either not injected (naïve, ●) or injected with 2.3 mg/kg (○), 4.5 mg/kg (□), 9.1 mg/kg (◇) or 22.7 mg/kg (△) of 34-1-2s mAb. There were 5-25 mice per group. The data is expressed as mean ±(SD) temperatures.

Figure 2.

34-1-2s caused mortality only in SCID mice.

Kaplan-Meyer survival plot of SCID mice (n > 5 for each dose group) injected with the indicated doses of 34-1-2s mAb. No mortality occurred in BALB/c mice (N=21). Results are presented for SCID mice injected with either 2.3 mg/kg (○), 4.5 mg/kg (□), 9.1 mg/kg (◇) or 22.7 mg/kg (△) of 34-1-2s mAb.

Figure 3.

34-1-2s induced a concentration-dependent pulmonary neutrophil accumulation.

a) BALB/c mice (●, N>5) or SCID mice (○, N > 5) were injected with the indicated doses of 34-1-2s mAb and at 2h post injection, the mice were sacrificed and their lungs were homogenized and the cells were loaded on to microslides by a cytospin and stained with H&E. b) BALB/c mice (●, N>5) or SCID mice (○, N > 5) were injected with a 2.3 mg/kg dose of 34-1-2s mAb (determined from Panel a) and at the indicated times, the mice were sacrificed and their lungs were homogenized and the cells were loaded on to microslides by a cytospin and stained with H&E. The data in both panels is expressed as Percent Neutrophils counted within total nucleated cells.
Figure 4.

34-1-2s induces a concentration dependent lung edema in SCID mice.

BALB/c mice (●, N>5) or SCID mice (○, N > 5) were injected with the indicated doses of 34-1-2s mAb and at 2h post-injection the mice were sacrificed and lung wet/dry ratios were measured. The data is expressed as the wet/dry ratio at 2h post mAb infusion.

Figure 5.

34-1-2s induces a quicker serum MIP-2 response in SCID mice.

BALB/c mice (●, N=5) or SCID mice (○, N=5) were injected with 2.3 mg/kg of 34-1-2s mAb and MIP-2 levels were measured in the sera of the mice at the indicated times by commercial ELISA. The data is expressed mean MIP-2 concentration (+SEM) from 5 mice in each group. The insert graph shows the MIP-2 standard curve.

Figure 6

34-1-2s causes significant lung damage in SCID mice.

BALB/c mice (●, N=5) or SCID mice (○, N=5) were injected with 2.3 mg/kg of 34-1-2s mAb and (a) saturated oxygen (S0₂) levels and (b) quasi-static pulmonary compliance (Cst) were determined at the indicated time points. Histological micrographs (c; 40x magnification) reveal moderate leukocyte infiltration in BALB/c mice, but marked cellular infiltration and septal thickening in SCID mice 2 h after infusion of 34-1-2s mAb (500 µg). Interstitial space fraction (d) as a quantitative measure of septal thickening was determined intravital microscopic recordings in BALB/C and SCID mice at baseline and 30 min after infusion of 34-1-2s mAb (150 µg). Representative darkfield images are given in supplemental figure 2.
Figure 7.

CD8+ T cells relieve 34-1-2 mAb-induced hypothermia in SCID mice.

Rectal temperatures over time (min) in control mice receiving nothing (●, N=10) or SCID mice injected with 2.3 mg/kg 34-1-2s alone (○, =20) or SCID mice receiving antibody and a transfer of either 2x10⁷ purified CD8+ T cells (△, N=6), CD4+ T cells (▽, N=7), purified CD19+ B cells (◇, N=6) or splenocytes depleted of both CD4+ and CD8+ T cells (▲, N=6). Temperatures in BALB/c mice receiving only antibody (□, N=21) are also shown.

Figure 8.

Purified CD4+ and CD8+ T cells rescue 34-1-2 mAb-induced lung damage.

Wet/dry ratios of the lungs from control SCID mice receiving nothing (Ab-) or in SCID mice 2h after being injected with 2.3 mg/kg 34-1-2s alone (Ab+) or in SCID mice receiving antibody (Ab+) and a transfer of either 2x10⁷ splenocytes depleted of both CD4+ and CD8+ T cells (CD4-CD8-) or purified CD19+ B cells, CD4+ T cells or CD8+ T cells. Numbers above the x-axis refer to the number of mice in each group studied.
Figure 1

(a) and (b) show the rectal temperature (°C) over time post-injection (Min) for different groups. The graphs indicate a decrease in rectal temperature with time, reflecting the cooling effect of the injection.
Figure 2
Figure 3

a. Pulmonary Neutrophils (Percent)

34-1-2s Injected

b. Time post-injection (Min)
Figure 4

Wet/Dry ratio

Naive
BALBc 50ug
BALBc 100ug
BALBc 500ug
SCID 50ug
SCID 100ug
SCID 500ug

*
Figure 5
Figure 6

(a) and (b) show the changes in SO2 and Cst over time for Balb/c and SCID mice. The graphs indicate a significant decrease in SO2 and Cst for both strains, with SCID mice showing a slightly greater decrease compared to Balb/c mice. The data points are marked with asterisks to indicate statistical significance.

(c) Images of lung tissue from BALB/c and SCID mice. The images show differences in the interstitial space between Naïve and Ab conditions.

(d) Bar chart comparing the fraction of interstitial space for Balb/c and SCID mice at baseline and 30 min. The SCID mice have a significantly higher fraction of interstitial space compared to Balb/c mice at 30 min.
Figure 7

Rectal Temperature (°C) vs. Time post-injection (Min)
Figure 8
Recipient T lymphocytes modulate the severity of antibody-mediated transfusion-related acute lung injury (TRALI)

Yoke Lin Fung, Michael Kim, Arata Tabuchi, Rukhsana Aslam, Edwin R. Speck, Leola Chow, Wolfgang M. Kuebler, John Freedman and John W. Semple