Notch 1 as a potential therapeutic target in cutaneous T-cell lymphoma

Maria R. Kamstrup, Lise Mette Rahbæk Gjerdrum, Edyta Biskup, Britt Thyssing Lauenburg, Elisabeth Ralfkiaer, Anders Woetmann, Niels Ødum and Robert Gniadecki

1Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Denmark; 2Institute of Medical Microbiology and Immunology, Rigshospitalet, University of Copenhagen, Denmark; 3Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark, 4Faculty of Health Sciences, University of Copenhagen, Denmark

Corresponding author: Maria Rørbæk Kamstrup
Department of Dermatology D92
Bispebjerg Hospital
Bispebjerg Bakke 23, Copenhagen DK-2400
Denmark
E-mail: mk43@bbh.regionh.dk
Phone: +45 3531 6005
Fax: +45 3531 6010

Short title: Notch in cutaneous T-cell lymphoma
Scientific category: Lymphoid Neoplasia
Abstract: Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signalling is involved in the pathogenesis of mycosis fungoides and Sezary syndrome, the most common subtypes of cutaneous T cell lymphoma. By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sezary syndrome we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The γ-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from mycosis fungoides (MyLa) and Sezary syndrome (SeAx, HuT-78) and in primary leukemic Sézary cells. Specific downregulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of NF-κB, which is the most important prosurvival pathway in cutaneous T cell lymphoma. Our data show that Notch is present in cutaneous T cell lymphoma and that its inhibition may provide a new way to treat cutaneous T cell lymphoma.

Introduction

Primary cutaneous T-cell lymphomas (CTCL) comprise a heterogenous group of lymphoproliferative disorders of the skin. The most frequent entities are mycosis fungoides (MF) and Sézary syndrome (SS). The disease typically presents in the form of skin patches and/or plaques, which can progress to skin tumors, with subsequent involvement of lymph nodes, peripheral blood and visceral organs. Large-cell transformation increases the likelihood of systemic dissemination and is associated with a worse prognosis1.

Notch is a transmembrane receptor family comprising in humans four homologues (Notch1-4), which is initiated through direct cell contact with membrane-bound ligands of the Jagged or Delta family. Notch signaling is indispensable in the normal T-cell development2-4. The receptor/ligand interaction induces two successive proteolytic cleavages by TNF-α converting enzyme (TACE) and the γ-secretase/presenilin complex resulting in the release and nuclear translocation of the intracellular domain (N-IC). In the nucleus, N-IC binds with transcriptional regulators such as CBF-1 (also termed CSL or RBP-Jκ) resulting in the expression of various effector genes including HES (Hairy Enhancer of Split)5. Since these signaling pathways are crucially involved in the control of
proliferation, differentiation and apoptosis, deregulation of Notch may result in cancer. A t(7;9)(q34;q34.3) chromosomal translocation, which brings an activated form of the Notch1 receptor under the control of the T-cell receptor gene, is a cause of the acute lymphoblastic T-cell leukemia. Subsequently, Notch has been shown to be upregulated and potentially involved in various solid tumors and hematologic malignancies such as B-chronic lymphocytic leukemia, acute myeloid leukemia, multiple myeloma, Hodgkin and nodal anaplastic large cell lymphoma.

The known role of Notch1 in normal T-cell development and its powerful influence on malignant T-cell growth and survival impelled us to investigate its potential oncogenic role in CTCL. We were encouraged by our earlier findings of a markedly increased expression of Notch1 in primary cutaneous CD30+ lymphoproliferative disorders such as anaplastic large cell lymphoma and lymphomatoid papulosis. In this study we studied the expression and functional significance of Notch in CTCL. We found that Notch is expressed in a stage-dependent manner in mycosis fungoides and in Sezary syndrome. Notch inhibition, either with γ-secretase inhibitors (GSIs) or a specific Notch1 down-regulation induced apoptosis in CTCL cell lines, paralleled by the inhibition of major pro-survival pathways mediated by nuclear factor-κB (NF-κB) and FoxO3a.

Material and Methods

Tissue samples and patient data:
Forty cases of MF (n=35) and SS (n=5) were selected from the archives of our Institutions. The patients were 26 males and 13 females with a median age of 65 years (range 33–84 years) at diagnosis. One patient had biopsies taken on two occasions and biopsies from stages with tumor MF and transformed MF were included from this patient. Histology and immunohistochemistry was confirmed by two pathologists (LMRG and ER) in accordance with the WHO-EORTC classification. Early patch lesions were found in 6 patients with MF, 10 had infiltrated plaques, 9 cases had tumors and 10 cases had MF with transformation to large T-cell lymphomas. Five of the latter were positive for CD30. Five patients had SS. A multi-block, containing samples of tonsils, kidney and liver was used as control. The study was approved by the Ethics Committee of Copenhagen and Frederiksberg and the Danish Data Protection Agency.
Cell culture and harvesting

Three CTCL cell lines have been used: MyLa2000 derived from a plaque biopsy of a patient with MF16, SeAx17 and HuT-7818 derived from peripheral blood of patients with Sezary syndrome. MyLa and SeAx were cultured in DMEM containing 4.5g/l glucose, 25mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic and at 37°C under 5% CO\textsubscript{2} and HuT-78 in RPMI 1640 medium with L-glutamine, with 10% fetal calf serum, at 37°C and 5% CO\textsubscript{2}. P1051 are alloantigen-specific CD4+ T-cells generated from a healthy donor (described in detail elsewhere19) cultured in RPMI 1640, 10% human serum, 2mM L-glutamine, 0,1mg/ml penicillin and 0,1 mg/ml streptomycin as well as 103U/ml interleukin-2. Peripheral blood mononuclear cells were isolated from buffy-coats provided by the blood bank at Rigshospitalet, Copenhagen, by using density gradient centrifugation (LymphoprepTM) and cultured under the same conditions as P1051. The cell lines were tested regularly to be negative for Mycoplasma.

Isolation of CD7- CD4+ Sézary cells

Peripheral blood mononuclear cells were isolated from blood of a 53-year-old male patient diagnosed with Sézary syndrome according to the WHO-EORTC classification. This patient had peripheral lymphocytosis of 9.5 x109/l with CD4/CD8 ratio of 19. T-cell receptor gene rearrangement showed a monoclonal population containing TCR\textgreek{y}-V2/V4-J1/J2 in the peripheral blood and in the bone marrow. CD7- CD4+ cells were isolated by using Anti-Biotin Multisort Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) together with an anti-CD7 biotin conjugated antibody (eBioscience, San Diego, CA) and anti-CD4 micro beads (Miltenyi Biotec) as described previously20.

Reagents and Antibodies

GSI I (Z-Leu-Leu-Nle-CHO), GSI IX (DAPT, N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine \textit{t}-Butyl Ester), GSI XX (Dibenzazepine, (S,S)-2-[2-(3,5-Difluorophenyl)acetylamino]N-(5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)propionamide), GSI XXI (Compound E, (S,S)-2-[2-(3,5-Difluorophenyl)-acetylamino]-N-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)-propionamide), MG132 (Z-Leu-Leu-Leu-CHO), LY294002 (2-(4-morpholino)-8-phenyl-4H-1-benzopyran-4-one) and Akt
Inhibitor X (10- (4′- (N-diethylamino)butyl)-2-chlorophenoxazine, HCl) were from Merck Calbiochem (Darmstadt, Germany). Rapamycin (23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine) and helenalin were from Sigma Aldrich (St. Louis, MO). GSIs, LY294002, Rapamycin, MG132 and helenalin were dissolved in dimethyl sulphoxide (DMSO). Mock-treated cells were cultured with DMSO at final concentrations of 0.04-0.2%. Antibodies specific for Notch1, Notch3, Notch 4, Delta and NF-κB p65 were from Santa Cruz Biotechnology (Santa Cruz, CA). The Notch2 antibody developed by Artavanis-Tsakonas was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. Antibodies against PARP, Akt total, phosphorylated Akt (Ser473; Thr 308), total FoxO3a and phosphorylated FoxO3a (Ser318/321) were from Cell Signaling (Beverly, MA). Anti-HES1 was from Abcam (Cambridge, UK). To detect total protein in western blotting, anti–actin antibody (Sigma Aldrich) was used.

Immunohistochemistry

Affinity-purified monoclonal rabbit anti-human Notch1 c-20 was purchased from Santa Cruz. The sections were deparaffinized, rehydrated and incubated in 3% H₂O₂ for 10 min. Following microwave heat-induced epitope retrieval, sections were incubated for 60 min at room temperature with a 1:200 dilution of Notch1 in 1% BSA/TBS and then stained using the DAKO EnVision+ Detection System-HRP for use with rabbit primary antibodies (DakoCytomation, Glostrup, Denmark). Following DAB treatment, the slides were incubated in 0.5% copper sulphate and counterstained in Mayer’s hematoxylin. The procedure was performed manually.

Scoring of Notch1 labeling in tumor cells was performed by trained pathologists (LMRG and ER). The malignant cells were scored as negative (no visible staining or positive staining in <10%), moderately positive (positive staining in 10–50% of the tumor cells) and positive in a majority (>50%) of the tumor cells.

Western Blot

Whole cell extracts were prepared by lysis in sample buffer (0.5M Tris-HCl pH 6.8; 5% glycerol; 10% SDS; DTT 0.2M) supplemented with protease inhibitor cocktail from Roche (Indianapolis,
IN). Equal amounts of protein were separated by a 12% Bis-Tris gel electrophoresis at 200 V followed by electrophoretic transfer to a nitrocellulose membrane (Bio-Rad Laboratories, CA). Membranes were blocked for 1 hour at 4°C with Li-Cor blocking agent (Lincoln, NE) before incubation with primary mouse, rabbit or rat antibody overnight at 4°C. Subsequently, they were incubated for 1 hour with the appropriate secondary antibodies labelled with 800IR dye (anti-rabbit) (Li-Cor), Alexa Fluor 680 (anti-mouse or anti-rat) (both from Molecular Probes, Invitrogen Cooperation, Carlsbad, CA). Protein bands were detected and quantified with the infrared Odyssey imaging System (Li-Cor). Preparation of cytoplasmic and nuclear protein extractions was made using the NucBuster protein extraction kit from Novagen, following the manufacturer’s protocol (Novagen, Merck KgaA, Darmstadt, Germany).

Cell viability, proliferation and apoptosis

Viability was assessed with the fluorescent dye, calcein-AM (Invitrogen) according to the manufacturer’s protocol. Briefly, cell cultures were treated with GSI, washed twice with PBS and incubated for 40 minutes at 37°C with calcein-AM in PBS. In 6-day cultures the media was changed at day 3. Cellular fluorescence was measured using a Wallac 1420 Victor™ II microplate reader (PerkinElmer, Wellesley, MA).

For assessment of cell proliferation, cell lines were grown in 96-well round-bottom tissue culture plates in a final volume of 200 μL and treated with GSI I for 24 hours. Sixteen hours before harvest, 3H-thymidine (1 μCi [0.037 MBq]/well) was added, the cells harvested onto glass fiber filters and 3H-thymidine incorporation was measured in a TopCount scintillation counter (PerkinElmer). The proliferation was expressed as mean counts per minute (CPM) of triplicated cultures. To determine the effects on the cell cycle, cells were pelleted by centrifugation, washed in phosphate-buffered saline, and resuspended in Nuclear Isolation and Staining Solution (NPE Systems, Florida). DNA content was analyzed by flow cytometry using a Cell Lab Quanta SC MPL (Beckman Coulter, Fullerton, CA) and Cell Lab Quanta SC MPL Analysis Software Version 1.0.

The Caspase-Glo 3/7 (Promega Cooperation, Madison, WI) detecting the activity of apoptotic terminal caspases 3 and 7 was performed according to the manufacturer’s protocol. The luminescence was measured using a Wallac 1420 Victor™ II microplate-based luminometer.
Additionally, apoptosis was determined by flow cytometry using FITC-annexin V/PI protocol of the manufacturer (Beckman Coulter) and analysed by flow cytometry in a Cell Lab Quanta SC MPL flow cytometer.

Confocal microscopy
Cytospin preparations of cells were fixed at 4°C in acetone for 20 minutes followed by permeabilization with 0.5% Triton X-100 for 10 min and rehydration with 0.5% PBS/BSA for 15 minutes. The cells were incubated with primary antibodies, washed twice in PBS and incubated with Alexa 568-conjugated anti-rabbit antibody (Molecular Probes, Invitrogen). Cells were imaged with an Olympus IX70 laser scanning microscope (Olympus, FluoView Confocal System). Fluorescence was determined in randomly selected 10 cells using the proprietary Fluoview software.

siRNA
One day before transfection the cells were transferred to 2 cm diameter Petri dishes at 300,000 cells/mL. Transfections were done by lipofection using Notch 1, Notch 2, Notch 3, Notch 4 or non-targeting ON-TARGETplus SMART-pool siRNAs (Dharmacon, Chicago, IL) at 20nM and Lipofectamine RNAiMax (Invitrogen) according to the manufacture’s protocol. One day after transfection the media was changed and the cells were assayed for viability and apoptosis. The extent of protein knockdown was quantified by Western blotting.

Statistics
Notch1 immunostaining data were analyzed with Kruskal-Wallis test for non-parametric data. Continuous data are reported as means with standard deviation (SD) and the differences were evaluated by the Student’s t-test. Since all experiments were performed as a minimum in triplicate and repeated 2 or 3 times, all data were pooled for statistical analysis. P-value <0.05 was considered to be statistically significant. Statistical analysis was performed by the SPSS Version 17.0 (SPSS Inc., Chicago, IL), GraphPad Prism Version 4.03 (GraphPad Software Inc., San Diego, CA) or Excel (Microsoft Corp., Redmond, WA).
Results

CTCL cell lines (SeAx, MyLa, Hut-78) but not normal human lymphocytes express Notch
Using antibodies directed against the intracellular domains of the Notch1-4 receptors, we detected as the fragments of expected length ∼110kDa (Notch 1- and 2), ∼90kDa (Notch 3) and ∼52 kDa (Notch 4) in all 3 tested cell lines (Fig 1A). They represent the active, intracellular forms of the receptors. The full-length receptors were difficult to visualize by Western blot and their expression was not possible to evaluate reproducibly. Further evidence for the functional activation of Notch was provided by demonstrating the presence of its natural ligand Delta in CTCL cell lines as well as the expression of HES1, which is stimulated almost exclusively by Notch. In contrast, normal proliferating T-cells (P1051) and non-proliferating leukocytes from 2 healthy donors showed either very weak or undetectable protein levels of the Notch family members with an exception of Notch2 in P1051 (Fig 1B). However, the P1051 did not express Hes1, so it was likely that Notch signalling pathway was inactive.

Notch1 is expressed in advanced MF and SS in tumor cells
To address whether lymphoma cells in vivo resemble CTCL cell lines with respect to the expression of Notch, we performed immunohistochemical stainings of skin specimens from MF patients in all stages (I-IV) with an anti-Notch1 antibody. All biopsies were suitable for immunohistochemical analyses. Of 40 tumor specimens, 21 cases displayed positivity for Notch1 in tumor cells (Table 1), as recognized by the irregular and/or pleomorphic nuclei (Fig 1C). The stain was mainly cytoplasmic and occasionally nuclear. Expression of Notch increased with the more advanced stage; 8 of 9 cases of tumor-stage MF and 7 of 10 cases of transformed MF displayed positivity, whereas positive Notch staining was seen in only 1 of 6 patch-stage MF and 2 of 10 cases of plaque-stage MF (Fig 1C-D). A Kruskal–Wallis test confirmed the statistical significant dependence of Notch expression on the stage \((P=0.017)\). In SS, half of the cases displayed positivity for Notch1 in tumor cells. In reactive tonsils, scattered large lymphoid cells in the paracortical and interfollicular areas as well as in the germinal centers were positive for Notch1, displaying cytoplasmic and occasionally nuclear staining. In the skin biopsies, endothelium, fibroblasts and basal keratinocytes showed cytoplasmatic positivity to a varying degree as reported by others \(^{21}\). Small reactive appearing lymphocytes were mainly negative (Fig 1C).
Notch targeting by GSIs induces apoptosis and decrease cell viability

GSIs block the proteolytic cleavage of all Notch receptors and hereby prevent release of N-IC\(^\text{22}\). The expression of Notch in malignant T-cells suggests that GSIs could have a therapeutic effect in CTCL. First, we confirmed that inhibition of \(\gamma\)-secretase with GSI I treatment for 18 hours blocked Notch processing resulting in concentration-dependent decreased levels of active, intracellular Notch 1-4 (Fig 2A). To exclude that the observed effect was due to a general cytotoxicity and protein degradation, the expression of STAT3 was also examined showing no decrease in total protein level (supplementary figure 1). MyLa, SeAx and Hut78 were incubated for 48 hours with increasing GSI concentrations or a vehicle, and apoptosis assessed by caspase 3/7 activity. Results showed that GSI I induced apoptosis in a concentration-dependent manner with the greatest effect observed at a concentration of 1\(\mu\)M or greater (p<0.00001). GSI IX, XX and XXI had a much less pronounced effect (Fig 2B and supplementary figure 2A-B). To evaluate the time-response of GSIs on apoptosis, caspase 3/7 activity was measured 0, 3, 12, 48 and 72 hours after treatment with GSI I at 5\(\mu\)M and GSI IX, XX and XXI at 20\(\mu\)M. For GSI I treatment the apoptotic effect peaked after 24 hours in MyLa and Hut 78, whereas the peak was seen as rapidly as after 3 hours for SeAx (p<0.00001) (Fig 2C and supplementary figure 2C-D). The finding of a superior potency of GSI I (a tripeptide \(\gamma\)-secretase inhibitor (z-Leu-Leu-Nle-CHO)) was expected in view of the earlier data reported for other neoplasms\(^{23,24}\).

To further document the effects of GSIs on apoptosis and cell cycle, NIMDAPI stainings for total DNA were used to evaluate cell cycle phase in the three cell lines treated with GSI I 5\(\mu\)M over a time course of 0–48 h. The percentage of cells in the sub-G\(_0\)/G\(_1\) phase increased significantly in all three cell lines after 24 hours of treatment, indicative of apoptosis (Fig 2D). Correspondingly, analysis by annexin V/PI staining after treatment with GSI I 5\(\mu\)M showed an increase in apoptotic cells in all cell lines most pronounced after 24 hours (the early and late apoptosis rate after 24 hours treatment was respectively 34.3\% and 38.6\% for MyLa, 13.4\% and 42.9\% for SeAx, and 32.0\% and 52.0\% for HuT-78, compared with respectively 10.1\% and 15.1\% for MyLa, 7.1\% and 8.9\% for SeAx, and 6.8\% and 11.4\% in the vehicle treated cells) (Fig 2E and supplementary figure 2E). The effect of GSI I on apoptosis was also confirmed by western blot detection of PARP cleavage (Fig 2F and supplementary figure 2F).
Calcein assays after GSI I treatment for 0, 1, 3 and 24 hours showed a significant decrease in cell viability compared to control cultures after 24 hours (mean-percentage decrease in calcein activity for MyLa, SeAx and Hut78 was 84.6% ± 5.5%, 90.0% ± 4.1% and 78.8% ± 5.4%, respectively). Proliferation, measured by 3H-thymidine incorporation, demonstrated a significant dose-dependent decrease in proliferation of the malignant T-cells after treatment with GSI I for 24 hours (Fig 2G). The influence on cell viability induced by GSI IX, XX and XXI were concordant with the lower effects seen on apoptosis data. The mean-percentage decrease in viable cells reached significant values for GSI IX only in SeAx at day 3 and 6 (18.7% ± 7.1% and 35.5% ± 10.6%, respectively), for GSI XX in MyLa at day 3 and 6 (22.4% ± 8.9% and 35.8% ± 7.8%, respectively) and in SeAx at day 2, 3 and 6 (17.6% ± 6.7%, 25.1% ± 5.7% and 48.4% ± 7.4%, respectively) and for GSI XXI in MyLa at 24 hours (28.9% ± 6.8%) and in SeAx at day 6 (35.6% ± 7.5%).

Cell line results were validated in the short-term culture of leukemic cells (CD7$^-$ CD4$^+$) obtained from peripheral blood of a patient with Sézary syndrome. Figure 3A shows a decrease in N-IC expression following treatment with 5 μM GSI I for 12 and 24 hours, respectively. As expected of a primary culture, leukemic Sézary cells had a very low rate of proliferation and a further, significant decrease in proliferation in response to GSI I treatment was detected (Fig 3B). Apoptosis was induced by treatment with increasing concentrations of GSI I as observed in the tumor cell lines (Fig 3C).

Specific down regulation of Notch1 by RNA interference technology induces apoptosis in vitro

Since GSIs may affect other signaling pathways than γ-secretase25, we specifically down regulated Notch by siRNA nucleofection. SeAx line was successfully transfected with control nontargeting or Notch1, 2 or 3 siRNA. At 24, 48 and 72 hours after transfection cells were examined for expression of Notch by western blot to demonstrate a knockdown of protein levels. Data are shown for Notch1 in figure 4A. The protein level of intracellular Notch1 was downregulated in Notch1 siRNA-transfected cells compared with the control siRNA-transfected groups. To verify that the reduction of Notch1 by siRNA was sufficient to block Notch1 pathway, HES1 expression was analyzed. Down-regulation of Notch1 expression by siRNA led to a decrease in HES1 protein expression.
Results showed that down-regulation of Notch1 influenced cell proliferation (Fig 4B) and induced apoptosis. The caspase 3/7 activity increased significantly in Notch1 siRNA-transfected group compared with control siRNA-transfected group 24 hours after transfection (p<0.0001) (Fig 4C). In contrast, transfection with Notch 2 and 3 did not exhibit any significant increase in apoptosis (Supplementary figure 3). The early and late apoptosis rate in the Notch1 siRNA-transfected group was respectively 11.3% and 14.2% after 24 hours, 19.3% and 18.1% after 48 hours, and 36.0% and 12.2% after 72 hours, compared with respectively 9.5% and 6.5% after 24 hours, 9.9% and 9.9% after 48 hours and 11.6% and 9.1% after 72 hours in the control siRNA-transfected group (Fig 4D). These values were lower than obtained for GSI I, and there are two possible explanations of this fact. One is that some residual Notch 1 was detectable in the cells despite the successful siRNA transfection. Second, unlike GSIs, which prevent activation of all four Notch receptors, RNA interference technology allows a specific down-regulation of each receptor. Our data suggest that tumor cells are mainly dependent on Notch1 for the protection against apoptosis. This was not surprising given the major role Notch1 plays in both normal T-cell development2-4 and other hematologic malignancies7,11-14.

GSI I treatment is accompanied by decreased activity in Akt and NF-κB signalling

To explore the molecular mechanisms underlying Notch inhibition, we focused on the phosphoinositide 3-kinase (PI3K)-Akt signaling, which is important for development and progression of cancers26. Previous studies have indicated that Notch is able to modulate the activity of Akt27-30. We examined the phosphorylation status of Akt using anti-phospho-Akt Ser473 and -Thr308 antibodies 4 hours after GSI I treatment. Treatment resulted in reductions in phosphorylated Akt (Supplementary figure 4A). However, the effects of 2 different blockers of Akt (Ly294002 and Akt Inhibitor X) and mTOR (rapamycin) were very modest and not comparable to the effect detected by GSI I (mean-fold increase in caspase activity for MyLa, SeAx and Hut78 was in the range of 1.1-5.1) (Supplementary figure 4B). Neither, did we find any additive effects of Akt blockers on GSI I-induced apoptosis, implying that GSI I-induced Akt inhibition is only a minor contributor to apoptosis (data not shown).

NF-κB is constitutively activated in CTCL cells and its inhibition leads to apoptosis31. In preliminary experiments we confirmed that two NF-κB inhibitors (MG-132 and helenalin) potently
induced apoptosis in MyLa and SeAx cell lines. Since Notch can control NF-κB activity13,32,33, we studied the effect of Notch inhibition by GSI I on the activation status of NF-κB in MyLa and SeAx cells. As shown in figure 5A, the nuclear fraction of NF-κB (representing active form) decreased after GSI I treatment, in a concentration-dependent manner suggesting that the GSI I mechanism of apoptosis involves the inhibition of NF-κB. Results from western blot were confirmed by studies of nuclear NF-κB localization using confocal microscopy, which revealed a decrease in p65 nuclear staining of the NF-κB subunit p65 following GSI I treatment of CTCL cell lines (data not shown).

A major downstream target of the NF-κB pathway is the Forkhead FoxO3a transcription factor (FXHRL1)26,34,35. Active, nuclear FXHRL1 induces cell cycle arrest or apoptosis, whereas inactivation through phosphorylation and nuclear exclusion promotes cell growth and tumorigenesis. As predicted, western blot showed that GSI I treatment induced FoxO3A dephosphorylation (not observed for SeAx which has very low, barely detectable levels of phosphorylated FoxO3a prior to treatment) and nuclear translocation. Confocal microscopy confirmed the nuclear translocation of FoxO3a following GSI I treatment (Fig 5B-E). Taken together, these data suggest that inhibition of the NF-κB is involved in the proapoptotic effect of GSI.

Discussion

Aberrant Notch signaling has been linked to a variety of neoplastic malignancies, such as breast cancer8,10, malignant melanoma9,36, acute lymphoblastic T-cell leukemia6,7 and B-chronic lymphocytic leukemia13. In contrast to its oncogenic role in these cancers, Notch acts as a tumor suppressor in other neoplasms, such as murine basal cell carcinoma37, demonstrating the complexity of this pathway. In primary cutaneous CD30+ lymphoproliferative disorders, we have recently reported a more intense expression of Notch1 in anaplastic large cell lymphoma compared to the clinically more benign variant lymphomatoid papulosis15. To further explore a potential oncogenic role for Notch signaling in CTCL, we here expanded our studies to the most common subtypes of CTCL: MF and SS.
We showed that cell lines derived from MF and SS patients express activated Notch1-4. Immunohistochemical stainings of skin biopsies from 40 patients with MF stage I-IV and SS showed the presence of Notch. Importantly, Notch expression was positively correlated with the stage of the disease, which supports the hypothesis on the involvement of Notch in the progression of the lymphoma. A similar stage-specific expression of Notch has been described for other cancers and the level of expression has been found to correlate inversely to the clinical outcomes\cite{10,36}, probably via increased apoptotic resistance conferred by the high Notch activity\cite{38}. While oncogenic Notch signaling in acute lymphoblastic T-cell leukemia has been ascribed to activating chromosomal translocations\cite{6,7}, no translocations or mutations of Notch have been found in CTCL\cite{39}. It is thus likely that the activation of Notch in CTCL occurs due to continuous ligand stimulation as previously observed in Hodgkin lymphoma and nodal anaplastic large cell lymphoma\cite{11}.

Therapeutic targeting of Notch by small molecules has been achieved by gamma-secretase inhibitors (GSIs), which inhibit the proteolytic cleavage and release of the biologically active intracellular fragment of Notch to the cytoplasm. Treatment of CTCL cell lines with different GSIs resulted in apoptosis. There were marked differences between different compounds tested; GSI IX, XX and XXI exhibited only a modest effect whereas GSI I in the micromolar range was a very potent inducer of cell death. The superiority of GSI I has also been reported in other malignancies\cite{23,24} and GSI plasma concentration in the micromolar range has been shown to be physiologically achievable in clinical trials of human leukaemias\cite{40}. Furthermore, we reproduced the proapoptotic activity of GSI I in a short-term culture model of leukemic cells obtained from a patient with Sézary syndrome, which further underscores the potential of Notch blockade for the therapy of cutaneous lymphoma.

We have considered the possibility that the effect of GSI I was not specific to the inhibition of Notch. GSIs are known to exert pleiotropic effects including inhibition of proteolytic cleavage of amyloid precursor protein, the epidermal growth factor receptor and the cell-adhesion molecules E-cadherin and CD44\cite{25}. However, this possibility was considered unlikely in view of the fact specific blocking of individual Notch receptors by RNA interference resulted in apoptosis. Downregulation of Notch 1 had a potent proapoptotic effect, but Notch 2 or Notch 3 did not. Thus, in cutaneous
lymphoma Notch 1 is primarily responsible for cell survival, similarly to what has been observed for normal T-cell development2-4 and in other hematologic malignancies7,11-14.

The molecular mechanisms through which Notch activation affects apoptotic programs are not understood but a complex cross talk with the PI3K/Akt survival pathway has been suggested in different models, including T-cells27,41. Indeed, we were able to show that GSI I treatment resulted in dephosphorylation of Akt. However, this contribution of Akt inactivation to the apoptotic effect of GSI I seem to be small, since the specific inhibition of Akt by Ly294002, Rapamycin and Akt Inhibitor X resulted in a weak apoptotic response. Moreover, we did not see any additive effect between GSI I and Akt inhibitors on apoptosis in CTCL cell lines.

Previous reports have suggested that Notch can display both stimulatory and inhibitory control of NF-\(\kappa\)B activity32,33,42,43. Regulation occurs through several potential mechanisms including direct interactions of Notch with NF-\(\kappa\)B subunits, indirect effects on I\(\kappa\)B phosphorylation, and transcriptional effects. It has been hypothesized that activated Notch in T-cells may result in constitutive NF-\(\kappa\)B activation leading to T-cell leukaemia/lymphoma32,33. It is also known that NF-\(\kappa\)B inhibition produces apoptosis in cutaneous lymphoma lines, including SeAx and Myla31,44. We observed that GSI I had a potent blocking effect on NF-\(\kappa\)B inhibiting its translocation from the cytoplasm to the nucleus. Moreover, FoxO3a, which is an effector of both NF-\(\kappa\)B and Akt inhibition was shuffled to the nucleus. It is thus likely, that the blockade of the NF-\(\kappa\)B pathway significantly contributes to apoptosis after inhibition of Notch 1.

Treatment of advanced cutaneous lymphoma is an area of high medical need. Besides radiotherapy, no treatments are available. Several chemotherapy regimes, including pegylated, liposomal doxorubicine, gemcitabine, fludarabine and CHOP produce transient responses, but the effect is short-lived and relapses are usually observed. Our data open the possibility of using inhibitors of Notch in the therapy of CTCL.

Acknowledgements: We thank Ms Vibeke Pless, Ms Eva Hoffmann, Ms Ingelise Pedersen and Ms Anne Jørgensen for excellent technical assistance. We thank Gunhild L. Skovgaard for general
support and critical comments. This work was supported in part by research funding from the
Danish Cancer Society, Aage Bang Foundation, Minister Erna Hamilton Foundation, Jens and
Maren Thstrup Foundation, and Soeren and Helene Hempel Foundation.

Authorship:
Contribution: MRK and RG designed the research. MRK, EB and BTL performed the research.
MRK, LMRG, ER and RG analyzed data. MRK, LMRG and RG wrote the paper. AW and NO
advised in research design.
Conflict-of-Interests disclosure: The authors declare no competing financial interests.
Reference List

Table 1. Patient characteristics and Notch1 immunohistochemical stain scores

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>Stage</th>
<th>Notch status in tumor cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>F</td>
<td>MF patch</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>F</td>
<td>MF patch</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>M</td>
<td>MF patch</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>M</td>
<td>MF patch</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>M</td>
<td>MF patch</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>F</td>
<td>MF patch</td>
<td>IB</td>
<td>>50%</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>F</td>
<td>MF plaque</td>
<td>I</td>
<td>Neg</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td>M</td>
<td>MF plaque</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>F</td>
<td>MF plaque</td>
<td>I</td>
<td>Neg</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>M</td>
<td>MF erythrodermic</td>
<td>IIIA</td>
<td>Neg</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>M</td>
<td>MF plaque</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>12</td>
<td>49</td>
<td>F</td>
<td>MF plaque</td>
<td>IB</td>
<td>Neg</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
<td>M</td>
<td>MF plaque</td>
<td>IA</td>
<td>Neg</td>
</tr>
<tr>
<td>14</td>
<td>56</td>
<td>M</td>
<td>MF plaque</td>
<td>I</td>
<td>>10%--<50%</td>
</tr>
<tr>
<td>15</td>
<td>44</td>
<td>M</td>
<td>MF folliculotropic</td>
<td>IB</td>
<td>>10%--<50%</td>
</tr>
<tr>
<td>16</td>
<td>33</td>
<td>M</td>
<td>MF plaque</td>
<td>IA</td>
<td>>50%</td>
</tr>
<tr>
<td>17</td>
<td>74</td>
<td>F</td>
<td>MF tumor</td>
<td>IIB</td>
<td>Neg</td>
</tr>
<tr>
<td>18</td>
<td>84</td>
<td>F</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>19</td>
<td>50</td>
<td>F</td>
<td>MF tumor</td>
<td>IVB</td>
<td>>50%</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>F</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>21</td>
<td>82</td>
<td>M</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>22</td>
<td>66</td>
<td>M</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>23</td>
<td>57</td>
<td>F</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>24</td>
<td>79</td>
<td>M</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>25</td>
<td>58</td>
<td>M</td>
<td>MF tumor</td>
<td>IIB</td>
<td>>50%</td>
</tr>
<tr>
<td>26</td>
<td>84</td>
<td>F</td>
<td>MF transformed</td>
<td>IIB</td>
<td>Neg</td>
</tr>
<tr>
<td>27</td>
<td>83</td>
<td>M</td>
<td>MF transformed</td>
<td>IIB</td>
<td>Neg</td>
</tr>
<tr>
<td>28</td>
<td>71</td>
<td>M</td>
<td>MF transformed</td>
<td>IIB</td>
<td>Neg</td>
</tr>
<tr>
<td>29</td>
<td>77</td>
<td>M</td>
<td>MF transformed</td>
<td>II</td>
<td>>10%--<50%</td>
</tr>
<tr>
<td>30</td>
<td>63</td>
<td>M</td>
<td>MF transformed</td>
<td>IIB</td>
<td>>10%--<50%</td>
</tr>
<tr>
<td>31</td>
<td>57</td>
<td>M</td>
<td>MF transformed</td>
<td>IVB</td>
<td>>10%--<50%</td>
</tr>
<tr>
<td>32</td>
<td>51</td>
<td>F</td>
<td>MF transformed</td>
<td>IVB</td>
<td>>10%--<50%, same patient as nr. 19</td>
</tr>
<tr>
<td>33</td>
<td>61</td>
<td>F</td>
<td>MF transformed</td>
<td>IVA</td>
<td>>50%</td>
</tr>
<tr>
<td>34</td>
<td>67</td>
<td>M</td>
<td>MF transformed</td>
<td>IIA</td>
<td>>50%</td>
</tr>
<tr>
<td>35</td>
<td>77</td>
<td>M</td>
<td>MF transformed</td>
<td>IVA</td>
<td>>50%</td>
</tr>
<tr>
<td>36</td>
<td>68</td>
<td>M</td>
<td>SS</td>
<td>IVA</td>
<td>Neg</td>
</tr>
<tr>
<td>37</td>
<td>71</td>
<td>M</td>
<td>SS</td>
<td>IVB</td>
<td>Neg</td>
</tr>
<tr>
<td>38</td>
<td>72</td>
<td>M</td>
<td>SS</td>
<td>IVA</td>
<td>Neg</td>
</tr>
<tr>
<td>39</td>
<td>73</td>
<td>M</td>
<td>SS</td>
<td>IVB</td>
<td>>50%</td>
</tr>
<tr>
<td>40</td>
<td>65</td>
<td>M</td>
<td>SS</td>
<td>IV</td>
<td>>50%</td>
</tr>
</tbody>
</table>
Abbreviations: MF – mycosis fungoides, SS – sezary syndrome, Neg – negative, when <10% of tumor cells are labelled in Notch 1, nr – number, M – male, F- female

Figure Legends:

Figure 1: Expression of Notch family proteins in cutaneous T-cell lymphoma (CTCL).

A: Western blot analysis of whole-cell lysates from CTCL cell lines: MyLa (lane 1), SeAx (lane 2) and Hut78 (lane 3). The blots were probed with the antibodies against Notch 1-4 (the intracellular domains are visualized as bands at ~110kDa (Notch 1- and 2), ~90kDa (Notch 3) and ~52 kDa (Notch 4)), Notch ligand, Delta and Hes, the transcriptional factor induced by Notch signaling.

B: Western blot analysis of normal proliferating T-cells (P1051) and non-proliferating leukocytes from 2 healthy donors probed for Notch1-4 and Hes1.

C: Immunostaining for Notch1 in skin biopsies from a patient with tumor-stage MF (upper images, UplanSApo 40x/0.90; lower images, UplanSApo 60x/0.90 using Olympus BX51 microscope with camera Olympus DP70) showing high Notch1 expression in tumor cells. The staining was mainly cytoplasmic and membranous. The arrow head in upper right image shows epidermotropic Notch1 positive tumor cells as displayed in lower right image at higher magnification. The arrow displays Notch1 negative small reactive T-lymphocytes.

D: Quantification of Notch 1 expression in biopsies from lesional skin from patients with MF in stage I (patch and plaque), stage II (tumors), transformed MF, and SS. The histograms show the percentage of patients classified into one of the three categories (negative, moderately positive and positive), as described in Methods. Comparison of the expression profiles shows statistical significant increase in Notch expression with stage (P=0.017).

Figure 2: Inhibition of Notch by GSIs stimulates apoptosis and blocks cell proliferation in CTCL cell lines.

A: SeAx cells were treated with GSI I (0.05-5 μM) or the vehicle (DMSO) and analyzed with Western blot for activated Notch 1-4 and Hes, as in Fig 1.

B-C: Induction of proapoptotic caspases 3 and 7 after treatment of MyLa by different GSIs: I, IX, XX and XXI. The cells were treated by the increasing concentrations of GSIs for 48 h (B) or with 5 μM GSI I and 20 μM of GSI IX, XX, XXI for 0-72 h (C). Data are shown as a fold-increase over the residual caspase 3/7 activity in the control, vehicle-treated cells. P<0.05 in both graphs for GSI I treatment compared to vehicle treatment. P<0.05 for all tested GSI XX concentrations and for GSI XXI 20 μM. P<0.05 for GSI IX and XXI after 24 hours, for GSI XXI after 48 hours and GSI XXI after 72 hours in MyLa. Means with SD.

D: Sub-G1 population in MyLa, SeAx and Hut78 cells which were treated with 5 μM GSI I (0, 3, 24 and 48 hours). DNA was stained with NIMDAPI and the cells analysed by flow cytometry. Bars are mean values; the experiment was repeated 3 times with similar result. *P<0.05.

E: MyLa was treated with GSI I (5 μM; 0, 3 and 24 hours) and stained with annexin V and propidium iodide for flow cytometry, as described in Methods. Cells were gated according to the annexin V (green FL1 channel, x-axis) and PI-specific (red, FL3 channel, y-axis) fluorescence. Values in the quadrants represent the percentages of cells; the experiment was repeated twice with similar results.
F: PARP cleavage in MyLa, SeAx and Hut78 cells treated with 5 μM GSI I for 24 h. Whole-cell extracts were prepared for Western blot as in Fig 1 and the blots were probed with the antibody against PARP detecting its intact form (116 kDa) and the caspase-cleaved 89 kDa fragment.

G: Cell proliferation of MyLa, SeAx and Hut78 cells treated with increasing concentrations of GSI I for 24 hours. Sixteen hours before harvest, ³H-thymidine (1 μCi [0.037 MBq]/well) was added and the results are expressed as mean counts per minute of triplicate experiments with SD, *P<0.05.

Figure 3: GSI I treatment in primary leukemic Sézary cells inhibits Notch and induces apoptosis
A: CD7⁻ CD4⁺ cells isolated from peripheral blood of a patient diagnosed with Sézary syndrome were treated with GSI I 5 μM for 12 and 24 hours and analyzed with Western blot for Notch1.
B: Primary leukemic Sézary cells treated with increasing concentrations of GSI I for 24 hours and analyzed for thymidine incorporation as in Fig 1G. *P<0.05.
C: Induction of proapoptotic caspases 3 and 7 after treatment of primary leukemic Sézary cells with increasing concentrations of GSI I for 24 hours. Means with SD. *P<0.05.

Figure 4: Specific downregulation of Notch1 by siRNA induces apoptosis.
A: Downregulation of Notch1 and Hes expression by Notch1 siRNA. Whole-cell extracts were prepared from SeAx cell 24-72 h after transfection with siRNA or scRNA (control) and probed with antibodies against intracellular Notch1 and Hes1, as in Fig 1. Band intensity quantification showed a decrease in Notch1 and Hes expression by 73% and 45%, respectively 72 h after transfection.
B: Influence of Notch1 siRNA on cell proliferation. Cells were transfected as in A and enumerated by flow cytometry 24, 48 and 72 hours after transfection. Bars represent mean values (n=3) with SD. *P<0.05 in comparison to the scRNA-treated, control group.
C: Increase in caspase 3/7 activity in SeAx cells transfected with Notch1 siRNA. Caspases were measured as described in Fig 2 24 hours after transfection. Means with SD, *P<0.0001.
D: Induction of annexin V-positive, apoptotic cells 24-72 h after transfection with Notch 1 siRNA in comparison to the scRNA-transfected cells. Flow cytometry and enumeration of cells was done as described in Fig 2.

Figure 5: Inhibition NF-κB signaling and nuclear translocation of FoxO3a by GSI I.
A: Western blot of cytoplasmic (C) and nuclear (N) extracts of MyLa cells treated with GSI I (0-5 μM, 6 h) showing a concentration-dependent decrease in the nuclear NF-κB content. The positive control was treated with the NF-κB inhibitor, MG132 (10 μM). Immunoblotting with anti-PARP documented the purity of the cytoplasmic and nuclear extracts.
B: The cytoplasmic (C) and nuclear (N) fractions of MyLa cells were obtained as in Fig 4A and the blots were probed with the FoxO3a-specific antibody. The blot shows a translocation of FoxO3a from the cytoplasm to the nucleus. PARP is a marker of fraction purity, as in Fig 4A.
C: MyLa cells were treated with 5 μM GSI I or the vehicle for 4 h or 12 h, fixed and stained with the anti-FoxO3a antibody followed by the AlexaFluor568-conjugated secondary antibody. The cells were observed in confocal microscope (Olympus, FluoView Confocal System). The scale of the images is 50 μm x 50 μm.
D: Nuclear FoxO3a fluorescence was quantified from the confocal microscopy images of CTCL lines treated with GSI I as in A (n=10 cells per group). *P<0.05 in comparison to the control, t-test. Bars show means with SD.

E: Phosphorylation of FoxO3a in CTCL cells treated with the vehicle or 5 μM GSI I for 4 h. The cellular content of the whole FoxO3a and FoxO3a phosphorylated at Ser318/321 was determined by Western blot. Compared to MyLa and HuT-78, SeAx had low basal levels of phosphorylated FoxO3a and band intensity quantification exhibited no decrease in phosphorylation following treatment.
Figure 3

A

<table>
<thead>
<tr>
<th>μM GSI-1</th>
<th>24 h</th>
<th>12 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notch1

Actin

B

C

GSI I (μM)

count (cpm)
caspase 3/7 (fold increase)
Figure 5

A

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>GSI 1μM</th>
<th>C</th>
<th>N</th>
<th>GSI 5μM</th>
<th>C</th>
<th>N</th>
<th>MG132</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>con</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- NF-κB
- PARP

B

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>GSI 1μM</th>
<th>C</th>
<th>N</th>
<th>GSI 5μM</th>
<th>C</th>
<th>N</th>
<th>MG132</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>con</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- FoxO3a
- PARP

D

nuclear FoxO3a fluorescence (fold increase)

<table>
<thead>
<tr>
<th></th>
<th>0 h</th>
<th>4 h</th>
<th>12 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyLa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeAx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HuT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>GSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyLa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeAx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HuT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FoxO3a
- Actin
- FoxO3a-P
- Actin
Notch 1 as a potential therapeutic target in cutaneous T-cell lymphoma

Maria R. Kamstrup, Lise Mette Rahbek Gjerdrum, Edyta Biskup, Britt Thyssing Lauenborg, Elisabeth Ralfkiaer, Anders Woetmann, Niels Ødum and Robert Gniadecki