Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease

Felix Meissner1, Reinhard A. Seger2, Despina Moshous3, Alain Fischer3, Janine Reichenbach2+, Arturo Zychlinsky1+

+ These authors contributed equally to the work.

1 Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
2 Division of Immunology/Haematology/BMT, University Children’s Hospital Zurich, Switzerland
3 Division of Paediatric Haematology and Rheumatology, Assistance publique hopitaux de Paris, Hôpital Necker-Enfants Malades, University Paris Descartes, Paris, France

Corresponding Authors:

Arturo Zychlinsky
Department of Cellular Microbiology
Max Planck Institute for Infection Biology
Charitéplatz 1, Berlin 10117, Germany.
Phone: +49 30 28460 300, Fax: +49 30 28460 301
e-mail: zychlinsky@mpiib-berlin.mpg.de

Janine Reichenbach
Division of Immunology/Haematology/BMT
University Children’s Hospital Zurich
Steinwiesstrasse 75, 8032 Zurich, Switzerland
Phone: +41 44 266 7311, Fax: +41 44 266 7914
e-mail: janine.reichenbach@kispi.uzh.ch
Abstract

Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent infections and deregulated inflammatory responses. CGD is caused by mutations in subunits of the NADPH oxidase; an enzyme that generates reactive oxygen species in phagocytes. To elucidate the contribution of the pro-inflammatory protease caspase-1 to aberrant inflammatory reactions in CGD, we analysed cells isolated from patients with defects in the phagocyte oxidase subunits p22phox, p47phox or gp91phox. We report that mononuclear phagocytes from CGD patients activated caspase-1 and produced biologically active interleukin (IL)-1β in response to danger signals. Notably, caspase-1 activation and IL-1β secretion from CGD monocytes was elevated in asymptomatic patients and strongly increased in patients with non-infectious inflammatory conditions. Treatment with IL-1 receptor antagonist reduced IL-1 production in monocytes ex vivo and during medical therapy. Our results identify phagocyte oxidase defective monocytes as a source of elevated IL-1 and provide a potential therapeutic option to ameliorate inflammatory conditions associated with CGD.
Introduction

Chronic granulomatous disease (CGD) is a genetically heterogeneous primary immunodeficiency caused by defects in phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits1. This phagocyte oxidase generates superoxide by transferring electrons from NADPH to molecular oxygen and consists of the catalytic subunit gp91phox, structurally stabilized by p22phox, and of the regulatory subunits p47phox, p40phox, p67, and RAC2. Loss of function mutations in any of these components abrogate oxidase activity and compromise host immunity against certain bacteria and fungi. However, there is now increasing evidence for excessive inflammation in CGD even in the absence of infectious agents with increased frequency and severity of granulomatous inflammatory reactions, notably colitis3-5.

Inflammasomes are implicated in host protection and a variety of inflammatory diseases by regulating the maturation of the caspase-1 dependent cytokines IL-1\textbeta and IL-18 in response to a broad range of danger signals6. However, the function of the phagocyte oxidase during caspase-1 mediated pro-inflammatory responses is controversial, and the implications of such responses for CGD pathology are poorly understood7.

Here we evaluated the contribution of the phagocyte oxidase to the exuberant inflammatory responses associated with CGD, by analysing inflammasome activation in cells from CGD patients. We show that mononuclear phagocytes from CGD patients activate caspase-1 and produce biologically active IL-1\textbeta in response to danger signals. Notably, IL-1 release from monocytes was elevated in CGD patients and could be controlled by IL-1 receptor antagonist (IL-1Ra) \textit{ex vivo} and during treatment with anakinra. Our results implicate caspase-1 mediated inflammation in CGD pathogenesis and may help designing therapies to ameliorate inflammatory conditions in these patients.

Methods

Human monocytes and macrophages. All experiments with human samples were done after informed consent of the patients and parents in accordance with the Declaration of Helsinki, as part of a protocol approved by the institutional review board of the University Children’s Hospital Zurich. Blood from CGD patients, heterozygous carriers and healthy donors (Supplementary Table 1 and 2) was drawn on EDTA and diluted in PBS supplemented with 2 mM EDTA, pH 7.2 (PBS/EDTA). Up to 30 ml of blood were layered on 15 ml of Histopaque
(density = 1.077 g/mL) and centrifuged at 400 x g and 21°C for 30 min. The resulting interphase containing peripheral blood mononuclear cells (PBMCs) was isolated and washed with PBS/EDTA at 400 x g and 21°C for 10 min. Platelets were removed by repeated centrifugation at 200 x g for 15 min. Monocytes were isolated from PBMCs by depletion of non-monocytes (negative selection) using the Monocyte Isolation Kit II (Miltenyi, 130-091-153) according to the manufacturer’s instructions. Monocytes were then cultivated in RPMI containing Penicillin/Streptomycin and 5% human serum (Sigma). Monocytes were used for experiments the next day. For experiments with monocyte derived macrophages, monocytes were differentiated into macrophages in RPMI containing Penicillin/Streptomycin and 5% human serum with 5 ng/ml macrophage colony stimulating factor (M-CSF, Miltenyi) for 6 days. Purity of monocytes and macrophages was more than 96% as determined by FACS using anti-CD14 antibody (Miltenyi, 130-080-701).

Caspase-1 activation assays. Monocytes were stimulated with 500 ng/mL LPS (from *Salmonella typhimurium*, Alexis) or 100 µg/mL MSU. Monocyte derived macrophages were primed with 500 ng/mL LPS for 3 h before addition of the indicated inflammasome activators: ATP (2 mM) was from Roche; nigericin (2 µM) and silica (100 µg/mL) from Sigma; MSU (100 µg/mL) was prepared as described. Caspase-1 activity was assessed by FACS using caspase-1 FLICA (Immunochemistry Technologies) according to the manufacturers’ instructions. Human mature IL-1β, IL-1α, TNF and IL-6 were determined in cell supernatants and IL-1β precursor in cell lysates by ELISA (BD and R&D respectively). To interfere with IL-1 ex vivo, 1-10 µM YVAD-cmk (Alexis) or 1-10 ng/mL anakinra (Amgen/Biovitrum) was used.

Medical treatment with IL-1Ra. Treatment of a patient with IL-1Ra was performed after informed consent of the patients and parents by daily subcutaneous injection of 15 mg anakinra for 8 days, before conditioning for bone marrow transplantation.

Results and Discussion

To analyse the impact of the phagocyte oxidase on caspase-1 mediated inflammation we tested human mononuclear phagocytes from asymptomatic CGD patients, heterozygous carriers and healthy controls for their responses to inflammasome activation (Supplementary Table 1 and 2). Interestingly, macrophages with a defect in any of the phagocyte oxidase subunits p22phox, p47phox or gp91phox responded to danger signals such as extracellular adenosine triphosphate (ATP), the pore-forming toxin nigericin, crystals of uric acid...
CGD macrophages also secreted biologically active IL-1β in response to these activators at levels comparable to healthy controls, indicating that a functional phagocyte oxidase is dispensable for caspase-1 mediated inflammatory responses in human macrophages (Figure 1C-E).

Since monocytes have a specific function in innate immunity and activate caspase-1 by a unique mechanism such as a single Toll-like receptor (TLR)4 stimulation, we next analysed IL-1 production in CGD monocytes. Notably, caspase-1 activation and IL-1 secretion were elevated in unstimulated CGD monocytes and in response to lipopolysaccharide (LPS) or MSU (Figure 2A-D, Supplementary Figure 1 and 2). Consistently, IL-1 levels were substantially reduced ex vivo by inhibiting caspase-1 with a specific inhibitor or by blocking IL-1 signalling with the naturally occurring IL-1Ra (Supplementary Figure 1 and 3). Based on these findings, we wondered whether the hyperinflammatory condition in symptomatic CGD patients involves a deregulation of IL-1 and analysed monocytes from patients with granulomatous colitis, a common gastrointestinal manifestation in CGD which involves inflammation in the absence of infectious agents. Intriguingly, both, unstimulated and LPS stimulated monocytes from symptomatic CGD patients showed strongly increased caspase-1 and IL-1 levels indicating that caspase-1 is active during severe colitis in CGD despite the loss of phagocyte oxidase function (Figure 2E, Supplementary Figure 4). Symptomatic CGD patients with clinical symptoms distinct from colitis also show increased IL-1 production and could be counteracted by inhibition of caspase-1 or IL-1 signalling ex vivo (Supplementary Figure 4). In agreement with previous studies, further analysis confirmed a differential preactivation of CGD monocytes as characterized by increased levels of TNF, IL-6 and IL-1β precursor which may reflect the clinical situation of the individual patient (Supplementary Fig. 5).

Our observations prompted us to test IL-1Ra (anakinra/Kinert®) for the treatment of non-infectious colitis in CGD. Interestingly, within 1 week of daily administration of anakinra, IL-1 production in monocytes dropped substantially, suggesting that deregulated IL-1 production is associated with the aberrant inflammatory manifestation associated with CGD (Figure 2F and G). However, clinical improvement only consisted of reduced frequency of abdominal pain crises and not of a reduced frequency of stools/day, possibly due to slow resolution of the chronic inflammatory lesions during the short time of treatment with anakinra.

The impact of the phagocyte oxidase during inflammasome activation is controversial due to use of different model systems. Since phagocytosis activates the phagocyte oxidase it was
suggested that a functional phagocyte oxidase is particularly important for caspase-1 activation induced by particles. Our data indicate that both, inflammasome stimuli that require phagocytosis, such as MSU or silica, as well as those that do not require phagocytosis, like ATP or nigericin, activate caspase-1 independently of the phagocyte oxidase. Our study thus confirms that macrophages from CGD patients respond to inflammasome activation similarly to macrophages from gp91phox deficient mice, which also activate caspase-1 robustly. Notably, the results presented here contrast with those of previous studies based on pharmacological inhibition of the phagocyte oxidase or p22phox knock-down in THP-1 cells. In fact, pharmacological inhibition and enzymatic degradation of reactive oxygen species can act oppositional on inflammasome activation, warranting a careful consideration for the use of these inhibitors. Accordingly, enzymes that maintain the redox homeostasis rather potentiate IL-1β processing and inflammation. The discrepancy of results obtained by individual experimental designs underscores the importance of studying human pathology using unmanipulated primary cells from healthy donors and diseased patients.

More importantly, our study together with a recent report by van de Veerdonk et al. identify CGD monocytes as a source of increased IL-1 and are consistent with the observation that inflammatory markers are elevated in CGD. Along with other recent findings, our results extend the initial conception of the phagocyte oxidase primarily as a source of harmful mediators by suggesting an anti-inflammatory function via inflammasome regulation in monocytes. Since IL-1 is a pleiotropic cytokine involved in the induction of other inflammatory molecules and the regulation of lymphocyte function, our data open up new potential strategies for therapeutic intervention by targeting IL-1 for inflammatory non-infectious complications in CGD.

Acknowledgements

We are grateful to all CGD patients, relatives and blood donors for their participation in this study. We further thank the members of the Zychlinsky lab for discussion and Matteo Bianchi for technical assistance. This work was supported by a grant of the Chronic Granulomatous Disorder Research Trust, United Kingdom (J.R.) and a grant from the Stiftung für wissenschaftliche Forschung an der Universität Zürich/Baugarten Stiftung (R.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Authorship

Contribution: F.M. conducted all experiments, wrote the manuscript and conceived the research with A.Z. J.R. designed the clinical anakinra treatment, contributed to the writing of the manuscript and attended the patients together with R.S., D.M. and A.F.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Arturo Zychlinsky, Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Chariteplatz 1, Berlin 10117, Germany; e-mail: zychlinsky@mpiib-berlin.mpg.de; or Janine Reichenbach, Division of Immunology/Haematology/BMT, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; e-mail: janine.reichenbach@kispi.uzh.ch

References

Figure Legends

Figure 1

Macrophages from CGD patients activate caspase-1 and secrete mature IL-1β.

(A,B) Caspase-1 activation in monocyte derived macrophages determined by a fluorescent inhibitor of active caspase-1 (FLICA). (A) LPS primed (-) macrophages from a CGD patient (p22) and a healthy control (C1) stimulated for 1 h with ATP or 6 h with silica crystals (SiO₂) or monosodium urea crystals (MSU). Numbers above bracketed lines indicate percent cells with active caspase-1. (B) Active caspase-1 in macrophages from 3 CGD patients with the indicated mutations and 3 healthy controls (C1-C3) quantified by caspase-1 FLICA. (C-E) Macrophages from the indicated CGD patients and healthy donors stimulated with LPS plus ATP, nigericin (NI), SiO₂ or MSU. The production of mature IL-1β at the indicated time points was determined by ELISA. Data are representative of 6 experiments with cells from at least 5 different CGD patients (error bars: s.e.m. of triplicate wells).

Figure 2

Elevated IL-1 secretion from CGD monocytes can be counteracted with IL-1Ra.

(A,B) Caspase-1 activation in monocytes determined by caspase-1 FLICA. (A) Unstimulated (-) and LPS (6 h) treated monocytes from an asymptomatic CGD patient (p47) and a healthy control (C1). (B) Active caspase-1 in monocytes from 2 asymptomatic CGD patients with the indicated mutation and 2 healthy controls (C1, C2) quantified by caspase-1 FLICA. (C,D) IL-1β (C) and IL-1α (D) release from monocytes of two asymptomatic CGD patients and a healthy control (C1) treated with LPS for the indicated time points determined by ELISA. (E) Caspase-1 activation in unstimulated and LPS treated (6 h) monocytes from a symptomatic CGD patient with colitis determined by caspase-1 FLICA. (F,G) IL-1β (F) and IL-1α (G) release from monocytes of the indicated symptomatic CGD patient before (pre anakinra) and after (post anakinra) treatment with anakinra compared to a healthy control (C1). Data are representative of 4 (A-D) or 3 (E) experiments with cells from at least 2 different CGD patients (error bars: s.e.m. of triplicate wells).
Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease

Felix Meissner, Reinhard A. Seger, Despina Moshous, Alain Fischer, Janine Reichenbach and Arturo Zychlinsky