Immune reconstitution post allogeneic transplantation and expanding options for immunomodulation: an update

Ruth Seggewiss*, MD & Hermann Einsele**, MD

*Department of Internal Medicine II, Julius-Maximilians-University, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany

**Address correspondence to: Prof. Dr. Hermann Einsele, Department of Internal Medicine II, Julius-Maximilians-University, Oberdürrbacher Strasse 6, Building A4, Room A3.-1.918, 97080 Würzburg, Germany, Ph.: +49-931-201-40001, Fax: +49-931-201-640001; E-mail: Einsele_H@klinik.uni-wuerzburg.de

Running head: Immunomodulation to enhance immune reconstitution
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has advanced to a common procedure for treating patients of increasing age with malignancies and immunodeficiency disorders by redirecting the immune system. Unfortunately, cure is often hampered by relapse of the underlying disease, graft versus host disease or severe opportunistic infections, which account for the majority of deaths after HSCT. Enhancing immune reconstitution is therefore an area of intensive research. An increasing variety of approaches has been explored preclinically and clinically: the application of cytokines, keratinocyte growth factor, growth hormone, cytotoxic lymphocytes and mesenchymal stem cells or blockade of sex hormones. New developments of allogeneic HSCT, e.g. umbilical cord blood or haploidentical graft preparations leading to prolonged immunodeficiency have further increased the need to improve immune reconstitution. While a slow T cell reconstitution is regarded as primarily responsible for deleterious infections with viruses and fungi, graft versus host disease (GVHD) and relapse, the importance of innate immune cells for disease and infection control is currently re-evaluated. The ground gets prepared for an individualized therapy partially based on genetic features of the underlying disease. We provide an update on selected issues of development in this fast evolving field without claiming completeness.

Index words
cytokines, KGF, sex hormone blockade, growth hormone, cord blood, haploidentical transplantation, MSC, Notch-based culture system, thymus
1. Introduction
Allogeneic hematopoietic stem cell transplantation (HSCT) has developed to a common procedure for the therapy of hematological malignancies and immune disorders. Donor bone marrow and mobilized peripheral blood stem cells (PBSC) are routinely employed for the reconstitution of immune function in leukemia and lymphoma patients following radiation and/or chemotherapy. Recently, there are also increasing attempts to treat solid tumors by immunotherapeutic approaches to induce a graft-versus tumor effect reviewed by Demirer and colleagues.¹

1.1. Tempo of immune reconstitution
The reconstitution of different immune cell subsets after an allogeneic HSCT occurs at different tempos. Following the conditioning regimen there is the “aplastic phase” (neutropenia) until neutrophils recover after about 14 days post PBSCT, about 21 days post bone marrow transplantation and about 30 days after umbilical cord blood transplantation (UCBT). The infections encountered during the aplastic phase do not differ from those found in other neutropenic patients and consist primarily of bacterial infections. The first 100 days post HSCT are characterized by cellular immune deficiencies with a reduced number of cytotoxic lymphocytes, natural killer (NK) cells of the innate and T cells of the specific immune system. This renders the patient especially susceptible to viral and fungal infections. Rapid recovery of NK cells after HSCT is based on an expansion of the cytokine producing CD56bright NK cell subset. This early expansion of CD56bright NK cells gradually declines but may persist for one year. Initial recovery of the T cell compartment relies on peripheral expansion of memory T cells, driven by cytokines and the presence of allo-reactive antigens, before the production of naïve T cells in the thymus starts. This is especially true for CD4⁺ T cells which reconstitute later than CD8⁺ T cells and rely more on thymic production of naïve T cells after HSCT, leading to an inversion of the CD4/CD8 ratio. T cell receptor rearrangement excision DNA circles (TREC) are used as markers for naïve T cell reconstitution occurring in the thymus. TREC levels remain low until 3-6 months after allogeneic HSCT. Increasing patient age is associated with thymic atrophy leading to decreased thymic output of naïve T cells resulting in low TREC levels. The lack of naïve T cells with a broad TCR repertoire leads to an increased risk for opportunistic infections and leukemia relapse and is aggravated by graft versus host disease (GVHD).
The reconstitution of the B cell compartment representing the humoral immunity may take up to 2 years after HSCT. First, transitional CD19+ CD24++ CD38++ B cells occur in the peripheral blood before their percentage progressively decreases, while the mature B cell proportion rises. The lack of memory B cells, decreased levels of circulating immunoglobulins, impaired immunoglobulin class switching and a loss of complexity in immunoglobulin gene rearrangement patterns leave allogeneic HSCT patients vulnerable to encapsulated bacteria like S. pneumoniae and H. influencae. The patients may obtain protective titers of pathogen-specific antibodies through vaccination. The optimal timing of immunization depends on the time elapsed since HSCT, type of the graft, and the presence or absence of GVHD as recently reviewed in extensio elsewhere.

1.2. Aspergillosis and CMV reactivation as major obstacles after HSCT
Exemplary for recent developments to improve T cell immune reconstitution we review invasive aspergillosis and cytomegalovirus (CMV) reactivation, as these pose major obstacles after HSCT despite promising new approaches: A retrospective EBMT study has determined the following risk factors for invasive aspergillosis: length of neutropenia, the status of the underlying disease, myeloablative conditioning, CMV disease, GVHD grade II-IV and bone marrow or cord blood as a source of stem cells compared to PBSCs. A risk model (low, intermediate, high) for progression of aspergillosis was developed based on this retrospective EBMT survey which needs to be validated in future trials on invasive aspergillosis. As the transfer of naïve T cells is associated with delayed immune reconstitution, adoptive transfer of functionally active Aspergillus (A.) fumigatus specific T cells might be a therapeutic option to restore immune effector mechanisms. Recently, a method for the rapid clinical scale generation of functionally active A. fumigatus specific T cells has been developed. Validation in clinical trials is pending. CMV reactivation may cause different diseases affecting lung, liver, gut or central nervous system after allogeneic HSCT. CMV seropositivity remains a major risk factor for transplant related mortality (TRM). Seropositive recipients obtaining a graft from a seropositive donor have improved survival and reduced TRM compared to those transplanted from a seronegative donor due to lack of transfer of CMV-specific T cells in the graft. Lack of CMV specific T cells after the first episode of CMV reactivation is associated with multiple subsequent reactivations. This topic has recently been reviewed in depth. T cell depleted (TCD) grafts have been introduced into allogeneic HSCT to
reduce the risk of T cell driven GVHD\(^7\) to the expense of a higher incidence of fungal or viral infections post HSCT as described above. However, a recent study demonstrated that TCD HSCT may be as successful as regular HSCT if antithymocyte globulin (ATG) is excluded from the conditioning regimen leading to durable engraftment with a low incidence of GVHD.\(^8\) TCD grafts supplemented with committed progenitor cells may enhance immune reconstitution of different immune cell subsets in the absence of GVHD.\(^9\) Additionally, in TCD allogeneic HSCT NK cells seem to play a major role in the control of viral reactivation. Chen and colleagues\(^10\) have determined in a retrospective single center study of 131 HLA-identical sibling donor/recipient pairs that additional activating KIR genes in the donor compared to the recipient were associated with lower TRM, increased survival and a lower incidence of CMV reactivation. Validation in a larger prospective clinical trial is warranted.

1.3. Reduced intensity conditioning (RIC) regimens and increasing age of allogeneic HSCT recipients

With the development of reduced-intensity conditioning (RIC) regimens in allogeneic transplantation, it has become possible to include disabled and older patients.\(^11\) The age limits are steadily rising and some transplant physicians even question whether age limits apply at all nowadays. The damage done to the thymus as production site for T cells is less severe, acute GVHD less frequently in RIC with a huge variety of regimens compared to conventional conditioning leading to significant quantitative and qualitative differences in T cell reconstitution after RIC.\(^11\) However, HSCT of older patients introduces new problems as also the lymphoid structures of the immune system age.\(^12\) The immune system takes longer to rebuild and is more likely to be insufficient post transplantation. The older the patient, the more the T cell recovery stems from expansion of memory T cells in the graft. The \emph{de novo} production of naïve T cells in the thymus with a broad T cell receptor repertoire necessary for a powerful control of pathogens and of malignancies is limited. Therefore, the susceptibility to viral and fungal infections is elevated. The prediction of immune reconstitution in older patients is difficult as the speed of immune system ageing is very variable. Further, not only the age of the \emph{recipient}, but also of the \emph{donor} is decisive as the graft of an older donor has decreased immune reconstituting ability in the recipient.\(^13\) Re-juvenating the ageing immune system is an area of rising importance considering the predicted increased percentage of aged patients in the population of developed countries.
Immune reconstitution post transplantation is also influenced by the occurrence of acute or chronic GVHD and by the immunosuppressive treatment selected. In general, potentially life-threatening GVHD leads to delays in immune reconstitution. Even so the risk of GVHD is reduced if a TCD graft has been infused and/or ATG conditioning chosen, both approaches create on the other hand a deficit in T cell immunity leaving the recipient more susceptible to infections and/or leukemia relapse.14

2. The source of hematopoietic stem cells matters

There is consensus that the ideal donor for an allogeneic HSCT is a matched related donor (MRD). Unfortunately, only in about 25% of all cases a MRD, and as alternative, only in 30% (10-60% depending on the ethnic background), a matched unrelated donor (MUD) is found. Luckily, the options of HSCT grafting have broadened. The numbers of haploidentical transplantation from a sibling donor15 or the application of one or more UCB units for adult patients are steadily increasing. A family donor (haploidentical or others) and to an even greater extent a cord blood have the advantage of being in general immediately available, which is essential in high risk leukemia with no time to search for a MUD. In addition, a second graft of the original family donor or from another family member is easily obtainable in case of graft rejection, which is not true for an UCBT. However, this development poses new problems which have not yet been sufficiently solved: e.g. 40% of non-relapse causes for post transplant mortality in high risk leukemia patients after haploidentical transplantation are from CMV or aspergillus infections.16

2.1. Umbilical cord blood transplantation in adults

The number of adult patients treated with UCB is increasing as it is generally abundant and no serious ethical dilemmas exist in terms of donor collection. UCB has become a valuable alternative to other hematopoietic stem cell sources. However, UCB often bears the disadvantage of insufficient cell numbers for immune reconstitution in adult patients due to the recipient’s body weight, thymopoietic failure, or lack of antigen experienced T cells, which leads to an impaired response towards cognate antigens and deficits in T cell signal transduction mechanisms.17 In addition, UCB contains T regulatory (T_reg) cells with more potent suppressor function than adult T_reg cells. Many infections that afflict transplant patients are particularly frequent and more severe in the context of UCB
transplantation. Therefore, current research attempts focus on transplanting more than a single UCB unit or on expanding selected subpopulations from UCB in vitro. UCB transplantation and its immune reconstitution features applying an adult donor has been extensively reviewed.18

2.2. Haploidentical HSCT in adults

Due to HLA disparity the risk of fatal GVHD in haploidentical transplantation is high. Different approaches to minimize this risk have been developed. Either the graft is depleted of T cells by a positive CD34+ cell selection aiming for high numbers of hematopoietic progenitor cells including so-called “veto cells” to overcome major genetic barriers and enable rapid and durable engraftment (mega-dose concept)15 or by a positive CD3+/CD19+ cell depletion to ensure that engraftment facilitating cells like DCs or NK cells are transplanted.19,20 Attempts in haploidentical transplantation to infuse T replete grafts after an intensive myeloablative conditioning and myelosuppressive treatment have led to incidences of GVHD grade II-IV in 78%.21,22 In T cell depleted haploidentical transplantation, the graft versus leukemia (GVL) effect is provided primarily by NK cells if killer immunoglobulin ligand (KIR) incompatibility in the GVH direction is present. KIR ligand incompatibility led to improved outcomes in human haploidentical HSCT as shown by the Velardi group.23 Other groups could not show the beneficial effects of NK cells24, which are probably explained by the lack of T cell depletion in that setting as the potency of the NK cell effect seems to be diminished by the presence of T cells. KIRs are specific for allotypic determinants that are shared by different HLA-class I alleles (referred to as KIR ligands). They may be activating or inhibitory. NK cell infusion has the advantage of inducing no GVHD while maintaining GVL effects.23,25 Thus far, the features of NK cell allo-reactivity are not completely understood, so that still more research is necessary to ensure the selection of the optimal donor. Likewise, γδ T cells are thought to promote anti-leukemic effects and are capable of recognizing malignant cells through mechanisms that require no prior antigen exposure or priming.26 Current data on immune reconstitution of this T cell subset are limited and it remains unclear whether the observed anti-leukemic effects are related to graft processing or donor factors.
3. Immunomodulatory treatments - strengthening the endogenous immune system

The thymus involutes with age, leading to a gradual loss of newly produced naïve T cells resulting in a restricted T cell receptor repertoire skewed towards memory T cells. Thymic tissue has been considered a requirement for the generation of T cells with a broad antigen repertoire. The need for the thymus to repopulate the peripheral T cell pool in adults has been acknowledged only since the advent of myeloablative therapy in HSCT and the treatment of AIDS patients. Different attempts to strengthen the endogenous immune system have been made by protecting the thymus either with keratinocyte growth factor or through sex hormone blockade. In addition, growth hormone might have a positive effect on the immune system useful in HSCT.

3.1. Application of keratinocyte growth factor, androgen blockade or growth hormone

Keratinocyte growth factor (KGF, palifermin, Kepivance™, Biovitrum, formerly Amgen) is a member of the fibroblast growth factor family that mediates epithelial cell proliferation and differentiation in a variety of tissues, such as gut, skin and thymus. Due to its protective effects on mucosa, KGF has entered the clinic for the prophylaxis of severe mucositis. The administration of KGF peri conditioning and transplantation resulted in enhanced thymopoiesis and peripheral T cell numbers in different animal models. The KGF receptor is expressed on thymic epithelial cells (TEC) producing IL-7 suggesting preservation of IL-7 production is a possible mechanism. KGF’s function as a protective and tropic factor for TEC ensures thymocyte proliferation and maturation. KGF treated mice showed preservation of the thymic microenvironment allowing normal thymopoiesis during acute GVHD after allogeneic HSCT. These findings are important as TEC are targets of the GVHD reaction. Enhancement of T cell reconstitution after HSCT has also been demonstrated in an autologous non-human primate transplantation model for clinically relevant specific immune responses towards a T cell dependent neo-antigen. Unfortunately, in patients who received an allogeneic HSCT the incidence of acute GVHD was not reduced and engraftment and early survival remained unaffected. In a long term follow-up of these patients no significant differences between the KGF treated versus the untreated patients were observed regarding CMV or invasive fungal infection, chronic GVHD or long term survival.
The age related atrophy of the thymus is accompanied by decreased thymic output. This coincides with increased amounts of circulating sex steroids from puberty. Surgical or pharmacological sex hormone blockade has been demonstrated in murine models and in prostate cancer patients to induce a regeneration of the thymus leading to a restoration of peripheral naïve T cell phenotype. It also reversed a decline in B cell production by increasing bone marrow cellularity. The Boyd group32 reported enhanced immune system regeneration in humans following allogeneic or autologous transplantation. While the differences in TREC production, T cell repertoire regeneration and amount of naïve CD4+ and CD8+ T cells were minor in the early post-transplant period, the authors found a significant survival advantage in the patients treated with luteinizing hormone releasing hormone agonist (LHRH-A, goserelin, ZoladexTM, AstraZeneca) compared to the control group in the autologous but not in the allogeneic setting. In spite of enhanced T cell responses \textit{in vitro}, no increase in GVHD rates was observed in the LHRH-A treated group. Overall, the patient numbers per group were small, the diseases and conditioning regimens rather heterogenous, so that no final conclusions should be drawn. Larger clinical trials are necessary. However, the combined use of KGF with sex hormone blockade in patients receiving an allogeneic transplantation after myeloablative conditioning also led to a supra-normal thymopoiesis and thymic output, a broad Vbeta repertoire and decreased homeostatic T cell proliferation.33 The right approach may thus be the combination of both attempts.

Neuroendocrine hormones have been shown to affect numerous immunologic responses after \textit{in vivo} administration. The importance of endogenous growth hormone for the immune system has been demonstrated in growth hormone deficient mice with a defective cellular immunity and thymus atrophy reversible when growth hormone was substituted.34 Recombinant human growth hormone (rhGH) led to an overall increase in thymocytes in a murine allogeneic transplantation model, but had no effect on the proportion of thymocyte subsets or TREC levels.35 Its beneficial effect on thymopoiesis might be due to the promotion of pluripotent HSC or common lymphoid precursors homing to the thymus. This hypothesis is supported by observations in a murine fetal thymic organ culture model, in which an increase in thymocyte progenitors derived from bone marrow was reported.36 Meanwhile rhGH has been shown in HIV infected patients to enhance thymic function and peripheral immune responses in humans.37 RhGH (GenotropinTM, Pfizer) is being evaluated in patients receiving a UCBT to accelerate the
immune reconstitution in a phase I trial (ClinicalTrials.gov identifier NCT00737113: “RhGH for accelerating immune reconstitution post unrelated cord blood transplant”).
3.2. Tyrosine kinase inhibition to facilitate thymic engraftment

The Mackall group demonstrated in a murine transplant model that tyrosine kinase inhibition by sunitinib facilitated thymic engraftment by modulating thymic niche accessibility. Sunitinib inhibits the important thymocyte growth factors c-kit and FLT-3. This effect was much more distinct compared to treatment with a monoclonal anti-CD25 antibody to open the CD4\(^{-}\) CD8\(^{-}\) double negative (DN) 3 niche for thymocytes. Synergistic effects applying sunitinib and anti-CD25 antibody to open DN1-DN3 niches occurred. Currently, studies are on-going in murine models to determine the effects of the combination on stem cell engraftment, durability of engraftment and activity in minor mismatched models. The option to open up niches for naïve T cells might be of particular interest to older patients as an increasing proportion of niches in peripheral immune tissues become occupied by terminally differentiated cells. Thus, the few naïve T cells produced by the deteriorating thymus might not be able to take residence in the larger number of available niches.

3.3. Notch-based culture systems to promote T cell reconstitution

Notch signaling is required for cellular differentiation processes. Four different Notch receptors (Notch 1-4) and five ligands (Jagged 1, 2, Delta-like 1, 3 and 4) have been identified. The inhibition of Notch 1 results in a partial inhibition of thymocyte differentiation and accumulation of precursors in the thymus. T cell lineage committed precursor cells for adoptive cellular therapies can be obtained in large quantities applying Notch-based culture systems. They have been proven to be very effective in enhancing T cell reconstitution and anti-tumor activity after allogeneic TCD HSCT in murine models. Currently, there is an observational trial ongoing in the USA to evaluate Notch-induced NK cell activity in blood and bone marrow samples of cancer patients versus healthy controls (ClinicalTrials.gov identifier NCT00918658: “Study of NK cells in BM and blood samples from patients with hematologic cancer and from patients who do not have cancer”). Preliminary results of a phase I study evaluating the effect of applying Notch-based culture system for infusion of engraftment facilitating cells in human allogeneic HSCT have been presented at ASH 2008.
3.4. Improved reconstitution after transplantation with exogenous cytokines

A Application of IL-2

IL-2 (Proleukin™, Chiron Corporation) is a pleiotropic cytokine with a central role in immune responses. Its application has been evaluated as safe in small trials with a short follow-up. Lower doses of IL-2 seemed to enhance NK cell numbers without significant effects on T cells. Recombinant IL-2 administered as consolidating immunotherapeutic agent early after HSCT at a time of minimal residual disease might reduce the relapse rate and increase the immunocompetence of these patients. This could be due to a lymphoid orientation of primitive CD34+ CD105+ cells, which express high affinity IL-2 receptors. Exogenous IL-2 might thus lead to an enhancement of the autologous GVL effect. Best evidence for IL-2 enhancement of donor T cell functions after allogeneic HSCT comes from reports of patients who failed to respond to donor lymphocyte infusion (DLI) for relapsed disease but achieved complete remission after treatment with IL-2. The role of IL-2, when added to DLI, needs to be further elucidated. At present, there is no general agreement on the optimum dosage or route of administration, and clinical trials in HSCT have led to conflicting results. The determination of optimum dosage schedules and methods of administration should enable a better assessment of the role of IL-2 in the treatment of these patients. Currently, there are several clinical trials just completed or still ongoing in the allogeneic HSCT setting which will hopefully define the use of IL-2 (e.g. ClinicalTrials.gov identifier NCT00003962: “IL-2 following BMT in treating patients with hematologic cancer”, NCT00941928: “Haploidentical NK cells with epratuzumab (IL-2) for relapsed ALL”).

B Application of IL-7

IL-7 (CYT 99007, Cythris) plays a key role in the development of T cells and promotes thymic dependent and –independent pathways. It is the most potent cytokine identified so far promoting thymopoiesis by enhancing proliferation of immature thymic progenitors. Its impact on T cell immune reconstitution after murine HSCT is still a controversial issue, depending on the characteristics of the transplantation, the model used and the dose and length of IL-7 treatment. In some murine models the application of IL-7 for 1-2 weeks early after HSCT led to an enhanced proliferation of immature thymic progenitors but seemed to be transient. Alpdogan and colleagues demonstrated in an allogeneic murine model that IL-7 increased the homeostatic proliferation of non-alloreactive T cells, but had no effect on alloreactive T cells and the
development of GVHD. Others have found opposite results in mice confirmed by IL-7Rα blockade experiments. In an autologous non-human primate model treatment with IL-7 led to an increase of the CD4+ cell counts through peripheral expansion rather than de novo generation. In line with this observation were increased volumes of spleen and lymph nodes but not of the thymus in the IL-7 treated animals compared to the controls. Similarly, in a non-transplant trial in human cancer patients, IL-7 application led to an increase of naïve T cells with a broad TCR repertoire. Importantly, in the autologous non-human primate model with application of IL-7 for 6-10 weeks after transplantation, a GVHD-like gut infiltration by T cells was observed. Thus this agent needs to be applied with caution in patients to avoid deleterious effects. Currently a phase I trial in allogeneic HSCT is ongoing (ClinicalTrials.gov identifier NCT00684008: “Safety Study of IL-7 in Recipients of a Hemopoietic Stem Cell Transplant Peripheral Blood Stem Cell Transplant”).

C Application of IL-15
IL-15 as member of the IL-2 cytokine family stimulates proliferation of T cells, NK cells and B cells through a receptor consisting of IL-15Rα, IL-2Rβ and the common γ chain. It has been found to be less toxic than IL-2 in murine transplantation models and shows potential as adjuvant for immunotherapy and tumor vaccination strategies. It has also been observed to improve T cell engraftment in murine models. As the primary survival and growth factor for NK cells, it may promote GVL but not GVHD effects. IL-15 has been applied as adjuvants in vaccination, but thus far there have not been any trials with IL-15 in the HSCT setting.

4. Cellular therapy post HSCT
Adoptive transfer of ex vivo expanded immunomodulatory cells such as Treg cells, NK/Treg cells, donor-derived NK cells, mesenchymal stem cells (MSCs) and adoptive transfer of allogeneic T cells specific for viral or tumor antigens appear promising to improve immune reconstitution post transplantation. In our review we focus primarily on adoptive transfer of T cells and the co-transplantation of MSCs.
4.1. Adoptive transfer of viral and leukemic specific T cells and use of T regulatory T cells after HSCT

Increasing research activity is ongoing to enhance GVL promoting cytotoxic T cells while suppressing the unwanted GVHD effects based on differential requirements for functionality, e.g. TRAIL expression in murine models.69,70 Adoptive transfer of tumor specific cytotoxic T cells is associated with different hurdles as induction of unwanted GVHD renders DLI a potential toxic and insufficient controllable treatment regimen. To complicate issues further, the expansion of high avidity tumor or leukemia specific T cells \textit{in vitro} is difficult and leads to a low efficacy \textit{in vivo} based e.g. on exhaustion and loss of function \textit{in vitro}.64 One promising approach to decrease the risk of GVHD is the genetic manipulation of T cells with herpes simplex virus thymidine kinase suicide gene as developed in Milan/Italy.71,72 If GVHD develops, transduced cells can be eliminated by ganciclovir treatment. However, difficulties remain due to low and transient transgene expression, unpredictable pairing of the exogenous and endogenous TCR chains and poor survival and expansion potential of gene modified effector T cells. A novel approach to increase functionality of the suicide gene-modified T cells with a central memory phenotype is therefore \textit{in vitro} pretreatment with IL-7 and IL-15.73 Viral infection and reactivation contribute significantly to mortality and morbidity after allogeneic HSCT. There have been many attempts to improve selectively immune reconstitution of virus-specific T cells post HSCT. Recent approaches are the infusion of CMV, EBV or adenovirus-specific T cells selected from the donor and transfer to the recipient.74-78 In addition, CMV specific T cells can be activated and expanded \textit{in vitro} by stimulation with antigen presenting cells loaded with specific proteins or peptides79 as recently reviewed by our group.80 Essential for the impact of CMV reactivation on the HSCT outcome regarding triggering of GVHD and/or promoting GVL effects seems to be the quality of the T cell response. Further, there have been multiple approaches to selectively improve immune recovery by attenuating GVHD, e.g. by expansion of T regulatory T cells (T\textsubscript{reg} cells), T cell anergy induction or selective reduction of alloreactivity as reviewed elsewhere.81-84

4.2. GVL promotion by minor histocompatibility antigen specific T cells

Increasing evidence suggests that CD8+ T cells recognizing \textit{minor} histocompatibility antigens (mHags) on leukemic cells play also an essential role promoting GVL effects after allogeneic HSCT.85,86 These mHag specific T cells may be generated applying a
HLA/mHag multimer-guided approach e.g. coating autologous dendritic cells with HLA-A2/mHag complexes for in vitro generation of mHag specific T cells.

4.3. Adoptive transfer of NK cells

The adoptive transfer of NK cells which do not promote GVHD but GVL reactions is particularly used in haploidentical HSCT where the risk of fatal GVHD is increased. In case of a KIR mismatch NK cells kill allogeneic cells that lack a class I MHC ligand for clonally distributed KIR as outlined in the paragraph “Haploidentical HSCT in adults”.

4.4. Co-transplanting mesenchymal stem cells

The bone marrow microenvironment is increasingly being recognized as a potential target for immunotherapeutic attempts during or after an allogeneic HSCT. The results of applying mesenchymal stem cells (MSCs) is so far contradictory. While there is consensus that they are pluripotent, have immunomodulatory abilities, and are a tool for managing or preventing GVHD as well as promoting clinical transplantation tolerance, it is not yet clear under which circumstances they support hematopoietic progenitor cell engraftment and show immunosuppressive properties in vivo.

In small case series and phase I/II clinical trials hematopoietic engraftment has been accelerated when MSCs were co-transplanted in the haploidentical as well as in the UCB setting. Whether MSCs lead to a proliferation induction or inhibition of T cells in vitro seems to be dose dependent. When MSCs interact with NK cells, they inhibit IL-2 induced proliferation of resting NK cells, whereas they only partially affect the proliferation of activated NK cells in vitro. Several studies either as clinical case series or in animal models have advocated that MSCs may be transplanted across allogeneic barriers without eliciting an immune response. However, the Moretta group demonstrated in vitro that IL-2 activated NK cells (but not freshly isolated NK cells) efficiently lyse autologous and allogeneic MSCs. A recent evaluation in a murine model questioned the immune privilege of MSCs but rather supported the hypothesis that they induce rejection in the allogeneic setting which is followed by an immune memory potentially challenging long term survival of allogeneic MSCs. Larger clinical trials with sufficient statistical power and an adequate scientific program are needed to further clarify the role of MSCs in allogeneic HSCT.
5. Immune escape mechanisms
Unfortunately, many patients develop a relapse of their underlying disease after allogeneic HSCT. While the majority of relapses occur in the periphery isolated relapses at extramedullary sites as chloromas or plasmacytomas or at immunologically privileged sites including central nervous system and gonads are observed. Leukemia and other tumor cells escape from the immunological attack by changes in antigen presentation and production of inhibitory cytokines. Recently, Vago and colleagues demonstrated that the genomic loss of the mismatched HLA locus in leukemic cells is another major mechanism of in vivo escape from T cell immune surveillance following haploidentical HSCT. They demonstrated that in 5 out of 17 patients relapsing with AML, patient specific HLA-alleles could not be detected in bone marrow samples harvested at disease relapse. They showed that donor T cells were able to recognize the original HLA-heterozygous leukemia but not the mutant variant of the leukemia harvested at the time of relapse. The genomic rearrangement granted the disease an in vivo selective advantage in escaping from an established donor T cell response. These findings support the hypothesis that major HLA antigens are principally responsible for the GVL effect. T cell effector functions may be influenced by leukemic cells. Disappearance of high avidity T cells in patients with active CML disease has been described as well as the re-appearance of these cells in interferon-α responders.

6. Future developments
Recently, monoclonal antibodies like the anti-CD20 antibody rituximab (Mabthera™, Roche) have been shown to be useful in a number of clinical trials for the treatment of GVHD or EBV associated lymphoproliferative diseases and by that have a positive influence on immune reconstitution post HSCT. Further, proteasome inhibitors such as bortezomib (Velcade™, Ortho Biotech) and immunomodulatory drugs (so-called “IMIDs”) like lenalidomide (Revlimid™, Celgene) which are well established in cancer treatment due to their direct anti-tumor effects, also modulate the tumor microenvironment. They seem to suppress GVHD and potentially enhance GVL effects when used alone or in combination with DLI.

7. Summary and Outlook
HSCT offers the opportunity for successfully treating malignancies and immune disorders. New therapies and better supportive care continue to improve outcome after
HSCT. Nevertheless, delayed immune reconstitution and disease relapse remain major limitations to the widespread application of allogeneic transplantation. Understanding the causes of immune escape and hampered immune reconstitution provides the rationale to develop powerful immunotherapies. It is important to develop scores to identify those patients that would benefit most from immunomodulatory treatment during and post allogeneic transplantation.

Acknowledgments

The authors thank Torsten Steinbrunn for critical reading of the manuscript. The authors apologize to all authors whose work could not be cited due to length restrictions of this update on immune reconstitution after allogeneic HSCT.

Authorship and Conflict of Interest Statements

H.E. wrote the paper and R.S. wrote the paper. No relevant conflicts to disclose.

References

92. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. *Blood.* 2006;107(4):1484-1490.

Figure 1

Causes of immunodeficiency

Primary lymphoid organs

Bone marrow (BM)
- damaged by:
 - chemo
 - radiation
 - age
- disturbed micro-environment

Thymus
- Atrophy/Volition/Dysfunction
- damaged by:
 - chemo
 - radiation
 - GVHD
- Thymocyte Reduced egress of donor naive T-cells
- TEC - TCR repertoire skewed towards memory T-cells

Donor HSC
- graft with hematopoietic progenitor cells ("donor HSCs")
- Insufficient CD34+ cell numbers
- Disturbed homing to BM or thymus
- Older donor with aged hematopoietic progenitor cells

Delayed immune reconstitution

Blood vessel

Periphery
- Lack of antigen experienced T-cells
- Oligoclonal expansion of memory T-cells with diminished antigen specific responses
- Susceptibility to viral and fungal infections

"Immune Escape"
- Leukemia cells hide at immunoprivileged sites like CNS, gonads
- Genomic loss of mismatched HLA locus in leukemia cells leads to escape from T-cell immune surveillance

Immunosuppressive agents hamper expansion/production of immune cells in both lymphoid organs and periphery
Figure 2

Strategies to Enhance Immune Reconstitution

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIC</td>
<td></td>
</tr>
<tr>
<td>Transplanting > 1 UCB units or expanding selected subpopulations from UCB in vitro</td>
<td>↑ lymphoid progenitor numbers in BM, increased thymopoiesis, repair of thymus architecture, ↑ peripheral T-cell expansion / survival / function</td>
</tr>
<tr>
<td>Δ sex steroids e.g. LHRH-A</td>
<td>↑ number of progenitor cells to primary lymphoid organs</td>
</tr>
<tr>
<td>Δ KGF</td>
<td></td>
</tr>
<tr>
<td>Δ Cytokines (IL-2, IL-7, IL-15)</td>
<td>↑ thymopoiesis, enhanced peripheral T-cell expansion, survival, function</td>
</tr>
<tr>
<td>rhGH</td>
<td></td>
</tr>
<tr>
<td>sunatinib (TKI)</td>
<td>↑ thymus engraftment by modulation of thymus niche accessibility</td>
</tr>
<tr>
<td>ant-CD25 antibody</td>
<td>↑ thymus engraftment by modulation of thymus niche accessibility</td>
</tr>
<tr>
<td>notch-based culture system</td>
<td>↑ T-cell lineage committed precursor cells for adoptive cellular therapies, ↑ T-cell reconstitution, anti-tumor activity, ↑ NK-cell activity, speed of engraftment of CD34+ progenitor cells</td>
</tr>
<tr>
<td>adoptive transfer of ex vivo expanded Tregs, NK/Treg cells, NK cells</td>
<td>improved specific immunity due to infusion of virus or leukemia-specific T-cells or infusion of Tregs. NK cells promote GVH, but not GVHD</td>
</tr>
<tr>
<td>cotransplanting MSCs</td>
<td>may be transplanted across allogeneic barriers without eliciting an immune response? Support hematopoietic progenitor cell engraftment? Immunosuppressive effects in vivo?</td>
</tr>
<tr>
<td>anti-CD20 antibody</td>
<td>↓ GVHD; ↓ EBV- associated lymphoproliferation; ↓ immune reconstitution</td>
</tr>
<tr>
<td>bortezomib (proteasome inhibitor) lenalidomide (IMiD)</td>
<td>↓ GVHD; ↑ GV effects; modulation of tumor micro-environment</td>
</tr>
</tbody>
</table>

For personal use only. on November 16, 2017. by guest

www.bloodjournal.org From www.bloodjournal.org by guest on November 16, 2017. For personal use only.
Immune reconstitution post allogeneic transplantation and expanding options for immunomodulation: an update

Ruth Seggewiss and Hermann Einsele