Very long-term eradication of minimal residual disease in patients with hairy cell leukemia following a single course of cladribine

Short Title: Absence of MRD in HCL after cladribine

Darren S. Sigal, 1 Robert Sharpe, 2 Carol Burian, 3 Alan Saven1

1Division of Hematology/Oncology, Scripps Clinic Medical Group, La Jolla, California; 2Division of Hematopathology, Scripps Clinic Medical Group, La Jolla, California; 3Scripps Blood & Marrow Transplantation Program, Scripps Green Hospital, La Jolla, California

Corresponding author: Alan Saven, M.D.

Head, Division of Hematology/Oncology
Scripps Clinic Medical Group
10666 N. Torrey Pines Road, MS 217
La Jolla, CA 92037
USA
Email: saven.alan@scrippshealth.org
Phone: (858) 554-8388 / FAX: (858) 554-6941

Special Section Designation: Clinical Trials and Observations
Abstract

Cladribine induces protracted remissions in patients with hairy cell leukemia (HCL). However, many long-term responders ultimately relapse. We sought to determine if long-term complete responders subsequent to a single seven-day course of cladribine were without minimal residual disease (MRD), and potentially cured of HCL. From the 358-person Scripps Clinic cladribine database, we identified 19 patients in continuous and complete hematologic response: median age, 75 years; median time from diagnosis, 18 years; and median time from cladribine, 16 years. Nine of 19 (47%) patient samples had no evidence of residual disease; seven of 19 (37%) samples had MRD; and three of 19 (16%) had morphologic evidence of HCL in H&E stained bone marrow sections. These results indicate that HCL is potentially curable after cladribine treatment. Also, patients with MRD and even gross morphologic disease can live many years without manifesting hematologic relapses.
Introduction

Hairy cell leukemia (HCL) is a rare, chronic lymphoproliferative disorder characterized by splenomegaly, pancytopenia, and the “hairy cell,” a small- to medium-sized B-lymphocyte with a typical serrated border.1,2 At diagnosis, many patients require therapy for symptoms or cytopenias. The purine nucleoside analogues, pentostatin and cladribine, were major therapeutic advances over the less effective therapies of splenectomy and interferon.3-6 Overall response (OR) and complete response (CR) rates for pentostatin were 96% and 81%, and for cladribine were 98% and 91%, respectively.5,6 However, because of its single, seven-day treatment regimen and favorable toxicity profile, cladribine has generally been accepted as the preferred first-line treatment of HCL.

In 1990, Piro and investigators from Scripps Clinic, under the leadership of Dr. Ernest Beutler, reported a 100% OR (11CRs and 1 PR) for the first 12 HCL patients treated with a single seven-day course of cladribine.7 Saven and colleagues confirmed this dramatic response in an expanded cohort of 358 patients.6 Long-term follow-up documented a median response duration of 98 months (range, 8 to 172 months), but without evidence of a plateau in the rate of relapse.8 Other long-term follow-up studies have reported similar results.5,9 Twenty to 50% of HCL patients who received cladribine and achieved a CR by historical morphologic criteria were subsequently shown to have minimal residual disease (MRD) by immunohistochemical methods.10,11 MRD in HCL has been associated with disease relapse.12 With now over 20-years of follow-up available in some patients, we
sought to determine if any patients were without MRD, and potentially cured of HCL, after a single seven-day course of cladribine.

Patients and methods

We searched the Scripps Clinic cladribine HCL computer database to identify patients who were alive and in continuous complete hematologic remission following a single seven-day course of cladribine. This database includes all patients who were enrolled in phase II cladribine studies at Scripps Clinic between April, 1986 and September, 1996. Inclusion criteria have been previously reported.6 Patients received cladribine as a seven-day continuous intravenous infusion at a dose of 0.085 to 0.1 mg/kg per day.13 Of 358 HCL patients in the database, 143 met these criteria. Of these 143 patients, 21 were deemed eligible, willing to provide tissue samples, and enrolled; 19 were evaluable. The remainder of these patients declined (38), could not be contacted (69), relapsed (13), or received chemotherapy for a secondary malignancy (2). The Scripps Human Subjects Committee approved this study. All patients signed an informed consent prior to enrollment in accordance with the Declaration of Helsinki.

All patients underwent a bone marrow aspiration and biopsy. CD20 immunostaining (L26 antibody) was performed on all samples to identify cells characteristic of HCL and quantify residual HCL disease as a percentage (<5%, 5-19%, or >20%) of marrow cellularity. DBA.44, TRAP, and annexin immunostains were performed in selected cases. Immunophenotypic analysis for markers typical of HCL (CD103, CD11c, and CD25) using multiparameter flow cytometry was performed on the bone marrow
aspirates of 17 patients. Analysis for clonal immunoglobulin heavy chain gene rearrangements by consensus-primer polymerase chain reaction (IGH-PCR) was performed on two specimens that lacked immunophenotypic analysis of HCL.

Patients were classified as having morphologic evidence of disease, minimal residual disease (MRD), or no evidence of disease. Morphologic disease was defined as lymphoid infiltrates identifiable in H&E stained sections. MRD required the absence of lymphoid infiltrates in H&E stained sections, but either B-cells characteristic of HCL on flow cytometry or a lymphoid infiltrate typical of HCL only on immunohistochemical staining (CD20, DBA.44, TRAP, and annexin positive). Specimens were deemed to have no evidence of residual HCL if there was: 1) no lymphoid infiltrates on H&E stained sections 2) less than 5% CD20 positive B-lymphocytes 3) either no flow cytometric evidence of monoclonal B-cells or no evidence of a clonal IGH-PCR.

Results & Discussion

Nineteen patients had evaluable bone marrow tissue specimens, 17 with corresponding flow cytometry and two with IGH-PCR. Sixteen patients were male and 3 were female. The median age was 75 years (range, 56 to 86). The median age at diagnosis was 54 years (range, 39 to 74). The median interval from diagnosis was 18 years (range, 12 to 28). The median time elapsed from receiving one seven-day course of cladribine was 16 years (range, 11 to 21). All patients had normal peripheral complete blood counts and were without any other clinical manifestations of HCL, as required for study enrollment (Table 1).
The small number of patients in this study speaks to the difficulty in conducting very long-term follow-up studies in rare diseases. Also, we purposely limited patient selection to patients most likely to be cured, including only those in continuous and complete hematologic remissions. Our use of immunohistochemical stains for the determination of MRD was consistent with prior studies. Flow cytometry and IGH-PCR added increased stringency in identifying patients without any residual disease, with flow cytometry being able to detect hairy cells constituting <1% of lymphocytes in a specimen.

Of 19 patient samples, nine (47%) had no evidence of residual disease. Seven of these patients had a negative flow cytometry study and two patients had no evidence of residual hairy cells by IGH-PCR (Table 1). While not as sensitive as clone-specific PCR, the negative assays of two tests that are still highly sensitive coupled with very extended follow-up (median, 16 years) of these patients raises the possibility that a single course of cladribine can potentially cure HCL. However, declaring cures in low-grade lymphoproliferative disorders must always be done cautiously as very late relapses are known to occur.

Residual disease was identified in 10 patients (53%), seven (37%) with MRD and three (16%) with morphologic disease. Median follow-up was 16 and 17 years for patients with MRD and morphologic disease, respectively, a duration equivalent to patients without residual disease. A clear difference in clonal B-cell bone marrow involvement
existed between patients with MRD and those with morphologic disease. All patients with MRD had less than a 5% clonal B-cell population, while the three patients with morphologic disease had clonal B-cell populations of 20, 35, and 50%. It is important to emphasize that patients with MRD and morphologic disease were in a continuous and complete hematologic remission and had peripheral blood counts indistinguishable from patients without any residual disease (Table 1; Figure 1).

Two key conclusions can now be made about the long-term activity of cladribine in HCL. First, HCL is a potentially curable disease after a single seven-day course of cladribine. Second, patients with MRD or even gross morphologic disease can live many years without manifesting a hematologic relapse. This is not to conclude that MRD is irrelevant in the natural history of HCL. Our study only included patients who were in a continuous and complete hematologic remission. However, other studies have reported a statistically significant association between MRD and HCL relapse. This has led some to combine cladribine and rituximab as first-line therapies for HCL, eliminating MRD in over 90% of patients. Long-term follow-up of these strategies is necessary to determine if eliminating MRD affects relapse rates. Our results demonstrate that some patients can experience a very protracted interval of hematologic complete remissions with variable degrees of residual disease.
Contributions

Contribution: D.S.S. and A.S. conceived of research, analyzed and interpreted data, and wrote manuscript; D.S.S. and C.B. collected data; R.S. prepared hematopathology sections; R.S. and C.B. reviewed manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Alan Saven, Head, Division of Hematology/Oncology, Scripps Clinic Medical Group, 10666 North Torrey Pines Rd, MS217, La Jolla, CA 92037
References

Table Legend:

Table 1:

NA: not available
I: interferon
S: splenectomy
C: chlorambucil
O: other
Tx: treatments
MRD-: minimal residual disease negative
MRD+: minimal residual disease positive
GM+: hairy cell morphology positive by H&E stain
IHC: anti-CD20 antibody
FC: flow cytometry
ND/PCR-: FC not done, but consensus-primer PCR negative
Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (y)</th>
<th>Gender</th>
<th>Time since diagnosis (y)</th>
<th>Time since cladribine (y)</th>
<th>Tx prior to cladribine</th>
<th>CBC prior to cladribine</th>
<th>Current CBC</th>
<th>Bone marrow studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>77</td>
<td>m</td>
<td>22</td>
<td>17</td>
<td>S</td>
<td>5.9 0.7 8.9 112</td>
<td>9.2 3.3 15.3 238</td>
<td>MRD- Neg ND/PCR-</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>f</td>
<td>16</td>
<td>16</td>
<td>none</td>
<td>1.6 0.8 7.8 126</td>
<td>7.5 5.8 13.7 244</td>
<td>MRD- Neg ND/PCR-</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>m</td>
<td>20</td>
<td>15</td>
<td>I</td>
<td>1.9 1.2 14.5 56</td>
<td>10.8 8.2 14 323</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>m</td>
<td>25</td>
<td>16</td>
<td>none</td>
<td>2.5 1.4 11.6 87</td>
<td>4.6 2.8 12.4 162</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>m</td>
<td>16</td>
<td>16</td>
<td>none</td>
<td>2 0.4 12.6 60</td>
<td>4.2 2.6 13.1 150</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
<td>m</td>
<td>23</td>
<td>17</td>
<td>S</td>
<td>2.5 0.4 10.1 112</td>
<td>6 3.2 15 293</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>f</td>
<td>16</td>
<td>16</td>
<td>none</td>
<td>2.1 0.7 10.8 92</td>
<td>6 3.8 13.8 339</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>f</td>
<td>19</td>
<td>16</td>
<td>none</td>
<td>8 0.2 10.2 80</td>
<td>8.6 7.3 11.3 125</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>m</td>
<td>17</td>
<td>17</td>
<td>none</td>
<td>4.1 2.5 13.7 67</td>
<td>14.9 13.3 12.1 176</td>
<td>MRD- Neg Neg</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>f</td>
<td>16</td>
<td>15</td>
<td>I</td>
<td>1.8 0.8 12.3 80</td>
<td>5.9 2.7 14.2 246</td>
<td>MRD+ 2-3% 0.30%</td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>m</td>
<td>18</td>
<td>16</td>
<td>I</td>
<td>1.7 0.6 14.4 105</td>
<td>5.5 3.9 17.3 158</td>
<td>MRD+ 3-5% 0.60%</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>m</td>
<td>20</td>
<td>17</td>
<td>none</td>
<td>1.4 0.6 15 68</td>
<td>3.6 2.3 14.9 136</td>
<td>MRD+ 3-5% 3%</td>
</tr>
<tr>
<td>13</td>
<td>61</td>
<td>m</td>
<td>18</td>
<td>16</td>
<td>none</td>
<td>11.7 1.6 11.1 81</td>
<td>6.5 5.3 13.6 230</td>
<td>MRD+ 1% 0.50%</td>
</tr>
<tr>
<td>14</td>
<td>86</td>
<td>m</td>
<td>12</td>
<td>11</td>
<td>none</td>
<td>2.9 1.1 13.8 90</td>
<td>6 3.9 14.2 281</td>
<td>MRD+ 3% 0.50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>81</td>
<td>m</td>
<td>20</td>
<td>17</td>
<td>S</td>
<td>25.4</td>
<td>2</td>
<td>10.3</td>
</tr>
<tr>
<td>16</td>
<td>79</td>
<td>m</td>
<td>16</td>
<td>16</td>
<td>none</td>
<td>1.7</td>
<td>0.3</td>
<td>10.8</td>
</tr>
<tr>
<td>17</td>
<td>57</td>
<td>m</td>
<td>17</td>
<td>17</td>
<td>none</td>
<td>1.7</td>
<td>0.2</td>
<td>12.2</td>
</tr>
<tr>
<td>18</td>
<td>67</td>
<td>m</td>
<td>28</td>
<td>21</td>
<td>S</td>
<td>7.1</td>
<td>1</td>
<td>10.3</td>
</tr>
<tr>
<td>19</td>
<td>67</td>
<td>m</td>
<td>18</td>
<td>16</td>
<td>I, O</td>
<td>1.9</td>
<td>0.7</td>
<td>13</td>
</tr>
<tr>
<td>Median</td>
<td>75</td>
<td>18</td>
<td>16</td>
<td>2.1</td>
<td>0.7</td>
<td>11.6</td>
<td>87</td>
<td>6</td>
</tr>
</tbody>
</table>

For personal use only.
Figure legend

Figure 1. (A) Bone marrow biopsy from Patient 10 with MRD showing normocellular hematopoiesis with no morphologic evidence of an abnormal lymphoid infiltrate (PAS, 400x). (B) CD20 immunostain of the bone marrow biopsy from Patient 10 with MRD showing scattered abnormal B-cells. The illustrated cell has a bilobed nucleus, abundant cytoplasm, and bright coarse CD20 positivity, all characteristic features of HCL (CD20 immunostain/Hematoxylin, 1000x). (C) Bone marrow biopsy from Patient 19 with gross morphologic disease showed multiple areas of lymphoid infiltrate. The infiltrate was loosely cellular with monotonous small lymphocytes with nuclear features and abundant cytoplasmic domains imparting a “fried-egg” appearance characteristic of HCL (PAS, 400x). (D) CD20 immunostain of the bone marrow biopsy from Patient 19 with gross morphologic disease shows extensive involvement by a B-cell infiltrate with features of HCL. Both patients had their diagnosis confirmed by flow cytometry that showed a CD11c, CD25, and CD103 positive population of monoclonal B-cells.
Very long-term eradication of minimal residual disease in patients with hairy cell leukemia following a single course of cladribine

Darren S. Sigal, Robert Sharpe, Carol Burian and Alan Saven