Anticoagulant and antithrombotic properties of platelet protease nexin-1

Running title: Platelet protease nexin-1 is antithrombotic

Yacine Boulaftali,1 Frédéric Adam,2 Laurence Venisse,1 Véronique Ollivier,1 Benjamin Richard,1 Sabrina Taieb,3 Denis Monard,3 Rémi Favier,4 Marie-Christine Alessi,5 Marijke Bryckaert,2 Véronique Arocas,1 Martine Jandrot-Perrus,1 and Marie-Christine Bouton1.

1INSERM, U698, Paris, F-75877 France; Université Paris 7, Paris, F-75877 France; 2INSERM, U770, Le Kremlin Bicêtre, F-94270 France; 3Friedrich Miescher Institute, Basel, CH-4058 Switzerland; 4CRPP, Hôpital Trousseau, Paris, F-75012 France; INSERM, U790, Villejuif, F-94805 France; 5INSERM, UMR 626, Marseille, F-13385 France; Laboratoire d’Hématologie, Faculté de Médecine, Université de la Méditerranée, Marseille, F-13385 France.

Correspondence: Marie-Christine Bouton, Unité INSERM U698, CHU Xavier Bichat, 46 rue Henri Huchard 75877 Paris Cedex 18, France; e-mail: marie-christine.bouton@inserm.fr

Scientific category: Thrombosis and Hemostasis

Presented in abstract form during the Special Session on the Basic Science of Hemostasis & Thrombosis at the 50th annual meeting of the American Society of Hematology, San Francisco, CA, December 9th, 2008. This abstract received the Mary Rodes Gibson Memorial Award.
Abstract

Protease nexin-1 (PN-1) is a serpin which inhibits plasminogen activators, plasmin and thrombin. PN-1 is barely detectable in plasma, but is expressed by platelets. Here, we studied platelet PN-1 in resting and activated conditions and its function in thrombosis. Studies on human platelets from healthy donors and from patients with a Gray platelet syndrome demonstrate that PN-1 is present both at the platelet surface and in alpha-granules. The role of PN-1 was investigated in vitro using human platelets incubated with a blocking antibody, and using platelets from PN-1-deficient mice. Both approaches indicate that platelet PN-1 is active on thrombin and urokinase-type plasminogen activator (uPA). Blockade and deficiency of platelet PN-1 result in accelerated and increased tissue factor-induced thrombin generation as indicated by calibrated automated thrombography. Moreover, platelets from PN-1-deficient mice respond to sub-threshold doses of thrombin, as assessed by P-selectin expression and platelet aggregation. Thrombus formation, induced ex vivo by collagen in blood flow conditions and in vivo by FeCl₃-induced injury, is significantly increased in PN-1-deficient mice, demonstrating the antithrombotic properties of platelet PN-1. Platelet PN-1 is thus a key player in the thrombotic process, whose negative regulatory role has been, up to now, markedly underestimated.
Introduction

Platelets play an essential role in the normal haemostatic process by adhering and aggregating at sites of vascular injury. Platelets also participate in the generation and regulation of thrombin by providing a suitable membrane surface that localizes, amplifies, and modulates procoagulant enzymatic reactions. In response to vascular damage, a clot made of fibrin and platelets creates a plug that prevents bleeding.

Platelets contain granules, α-granules, dense granules, and lysosomes, the contents of which are released upon platelet activation, triggered by many agonists such as thrombin. Many of the compounds released by platelets play a role in thrombus formation or stabilization. Antithrombin and antifibrinolytic activities of platelets have been reported. Indeed plasminogen activator inhibitor-1 (PAI-1), a serpin which inhibits plasmin formation and thrombin activity, is contained in α-granules and secreted during activation. Platelets may inhibit fibrinolysis by both PAI-1-dependent and PAI-1-independent mechanisms.

Prior studies have suggested that platelets contain another serpin, protease nexin-1 (PN-1), secreted during activation. PN-1, also known as SERPINE2, is a powerful inhibitor of thrombin and also inhibits urokinase-type plasminogen activator (uPA), tissue plasminogen activator (tPA), and plasmin. Its action is potentiated by glycosaminoglycans (GAGs) such as heparan sulfates. In contrast to antithrombin and PAI-1, PN-1 is barely detectable in plasma but is produced by various cell types. Interestingly, PN-1 inhibits thrombin more rapidly than does either antithrombin or PAI-1.

In the present study, we addressed the question of the behaviour of platelet PN-1 in resting and activated conditions and of its function in thrombosis. Studies conducted on platelets from healthy human donors and from patients exhibiting a Gray platelet syndrome (GPS) allowed us to identify the storing organelles of PN-1 as α-granules. Our data provide direct evidence that platelets release active PN-1. Indeed, we demonstrate here for the first
time, by *in vitro* studies on platelet activation and thrombin generation, *ex vivo* studies on thrombus formation in blood flow conditions, and *in vivo* studies using a model of arteriolar and venular thrombosis in mice, that platelet PN-1 has relevant anticoagulant and antithrombotic properties. Platelet PN-1 is thus a key player in the thrombotic process whose negative regulatory role has been, up to now, markedly underestimated.
Materials and methods

Patients

The three patients are from unrelated families and present hemorrhagic manifestations related to a well characterized GPS. One case has already been reported in the literature and two are new sporadic cases. All patients gave informed consent in accordance with the Declaration of Helsinki.

Animals

Mice homozygous for null mutations in the PN-1 or PAI-1 gene were generated, as previously described. Experimental animals were 8-16 weeks of age. PN-1-deficient mice (PN-1/-) were back-crossed for 12 generations into the C57BL/6 line. Heterozygous mating generated PN-1/- and wild-type mice (WT). Mice were bred and maintained in our own laboratory (Paris, France). PAI-1-deficient mice (PAI-1/-) come from HR Lijnen Laboratory (Leuven, Belgium). All animals were genotyped by PCR. All experiments were performed in accordance with European legislation on the protection of animals and were approved by the ethics committee of INSERM.

Preparation of washed platelets

Human platelets

Human blood from healthy adult volunteers was collected into 1/10 vol. ACD-A (38 mM citric acid, 60 mM sodium citrate, 136 mM glucose). Washed platelets were isolated as previously described.

Mouse platelets
Blood was collected from anesthetized mice by cardiac puncture into syringes containing 1/10 vol. ACD-C (130 mM citric acid, 124 mM sodium citrate, 110 mM dextrose) as anticoagulant. Washing procedure is described in supplemental methods.

Western Blot Analysis

Washed human or mouse platelets were lysed using 100 mM Tris, 150 mM NaCl, 3 mM EDTA and 2% SDS-NEM. Proteins were separated by electrophoresis in SDS-polyacrylamide gels under reducing conditions and transferred to polyvinylidene difluoride (PVDF) membranes. After saturation with 5% low fat milk in PBS/0.1% Tween-20 for 1h, the membranes were incubated overnight at 4°C with the following antibodies: a polyclonal rabbit anti-PN-1 (gift from D. Hantai, INSERM U582, Paris, France)\(^1\) (1.2 µg/mL), a monoclonal anti-GAPDH (Biovalley, France) (1.6 µg/mL), and a monoclonal anti-GPIb (SZ2; Immunotech, France) (2 µg/mL) in PBS/0.1% Tween-20. The secondary antibody was a goat anti-mouse IgG or a goat anti-rabbit IgG conjugated with peroxidase (Beckman Coulter, France) revealed by chemiluminescence (ECL, Pierce, USA). Recombinant PN-1, used as a positive control, was a generous gift from Dr D.Hantai.\(^2\)

Flow cytometry with human and mouse platelets.

The monoclonal human anti-PN-1 antibody was purified and coupled to FITC as previously described.\(^2\) Flow cytometry analysis of human and mouse platelets was performed on a Beckman Coulter Epics XL-MCL. Human platelets (2×10\(^7\)cells/mL) were incubated with an irrelevant IgG or different primary antibodies coupled to FITC according to experimental conditions, for 30 min in the dark at room temperature. Mouse platelets (3×10\(^8\) /mL) were activated by increasing doses of thrombin for 15 min at 37°C or by a low dose of thrombin (0.1 nM) for different times (0 to 3 min). Samples were stained with a FITC-
coupled rat anti-mouse P-selectin IgG (Emfret Analytics, Germany) or with a FITC-coupled annexin V (Beckman Coulter, France) for 15 min at room temperature. For each sample 50,000 events were analyzed.

Platelet aggregation

Platelet aggregation was measured on washed platelets. Platelets were resuspended in Tyrode-Hepes buffer and adjusted to a concentration of 3×10^8/mL. Platelets from WT or PN-1$^{-/-}$ mice were stimulated by increasing doses of thrombin, purified as previously described, at 37°C with stirring, and changes in light transmission were monitored with an aggregometer (Chronolog Inc, Netherlands).

Thrombin activity assay

Platelets (5×10^8/mL in reaction buffer) were activated by PAR1-AP (PAR1-activating peptide, SFLLRN, Neo MPS, France) (50 µM) for human platelets or by PAR4-AP (PAR4-activating peptide, AYPGKF, Neo MPS) (250 µM) for mouse platelets, for 30 min at 37°C. Control samples were obtained by incubating platelets for the same time with buffer. At the end of the incubation, samples were centrifuged and the supernatants (secreted fraction) were removed for analysis. The secreted fractions were incubated with 0.25 nM thrombin for 30 min at 37°C with or without polybrene (Hexadimethrine bromide, Sigma, France), or in the presence or absence of the blocking anti-PN-1 or anti-PAI-1 IgGs. The polyclonal anti-PN-1 IgG efficiently blocks the inhibitory activity of recombinant PN-1 on thrombin catalytic activity. The monoclonal anti-PAI-1 IgG is an inhibitory IgG to human and murine PAI-1 (MA-33B8-307, Molecular Innovations, Belgium). At the end of the incubation, the thrombin-specific chromogenic substrate S2238 (Chromogenix, France) was added at a final concentration of 0.2 mM and changes in the absorbance were recorded at 405 nm. Residual
thrombin activity is expressed as the ratio of the activity measured in the presence of the
fraction secreted by activated platelets to the activity measured in the presence of the
supernatant of resting platelets × 100.

Urokinase (uPA) activity assay

Secreted fractions were obtained human and mouse platelets as described above and
incubated with 1 nM uPA (American Diagnostica, France) for 30 min at 37°C in the presence
or absence of the blocking anti-PN-1 or anti-PAI-1 IgGs. At the end of the incubation, the
urokinase-specific chromogenic substrate S2444 (Chromogenix, France) was added at a final
concentration of 1 mM and changes in the absorbance recorded at 405 nm. Residual uPA
activity is expressed as the ratio of the activity measured in the presence of the fraction
secreted by activated platelets to the activity measured in the presence of the supernatant of
resting platelets × 100.

Thrombin generation in human and mouse PRP

Thrombin generation was continuously measured in PRP using the thrombogram
method as previously described. Human PRP (1.5×10^8 platelets/mL) was pre-incubated with
the blocking anti-PN-1 or anti-PAI-1 IgGs (150 µg/mL) for 15 min at 37°C. Then PRP was
transferred to microtitration plates containing 0.5 pM tissue factor (TF) (Diagnostica Stago,
France). For measurements on mouse PRP, platelets were adjusted to 1×10^8 /mL and thrombin
generation was initiated by 1 pM TF as previously described.

Collagen-induced thrombus formation under flow conditions.
Citrate-anticoagulated murine blood was labelled by Rhodamine 6G (Sigma, France) and perfused at a shear rate of 1000 s$^{-1}$ over a collagen surface, as described elsewhere 28 (a detailed protocol is given in supplemental methods).

In vivo thrombosis

Ferric chloride injury was induced in four to five week-old mice as previously described 29 (a detailed protocol is given in supplemental methods).

Statistics

Results are shown as means plus or minus SD. Statistical analysis of differences between groups was performed using a Student’s t-test. A value of $P \leq 0.05$ was considered as significant.
Results

PN-1 is expressed by human platelets and is secreted during activation

To investigate whether platelet PN-1 is an endogenous protein or results from the uptake of extracellular PN-1 by platelets, platelet mRNAs were analyzed by RT-PCR. The PN-1 amplification product detected (Figure 1A) and the fact that PN-1 is not present in the plasma, strongly suggested an endogenous origin. PN-1 expression by platelets was analyzed by immunoblot on human washed platelets (Figure 1B). PN-1 was detected as a 50 kDa band in extracts of resting platelets, migrating slightly faster than recombinant PN-1 (rPN-1) due to differences in glycosylation, as previously reported. Platelet activation was induced by different agonists. After centrifugation, immunoblots were performed on platelet extracts obtained from pellets and on secretion products obtained from the supernatants. PN-1 was no longer detected in the platelet extracts following activation by 5 nM thrombin, 50 µM PAR1-AP, 5 µg/mL collagen or 1 nM convulxin (Figure 1B). In contrast, a 50 kDa band corresponding to intact PN-1 was detected in the secretion products of activated platelets (Figure 1B), indicating that PN-1 was secreted during platelet activation by strong agonists. After activation by 10 µM ADP, a weak agonist, or when platelets were incubated with PGE1, a cAMP-increasing agent which inhibits platelet activation, before activation by thrombin, PN-1 was still detected in platelet extracts and barely detectable in the secretion products (Figure 1B-C). These data indicate that platelet PN-1 is secreted by an activation-dependent mechanism.

PN-1 is bound to glycosaminoglycans at the platelet surface

To determine whether PN-1 was present on the platelet surface, flow cytometry analysis was performed using a FITC-coupled anti-PN-1 monoclonal antibody. A single population of labelled platelets was observed, indicating the presence of PN-1 at the surface
of platelets (Figure 1D). Platelets analyzed were resting platelets as indicated by the absence of significant labelling with the anti-P-selectin IgG (<1% positive platelets). After activation by PAR1-AP, fluorescence peak shifted to the left indicating a decrease in the expression of PN-1 at the surface of activated platelets. (Figure 1D).

Plasma membrane and cytosol fractions of resting platelets were analyzed by immunoblot. PN-1 was detected in the cytosol and the membrane fractions of resting platelets. However, the intensity of the band in the membrane fraction was considerably less intense than the one in the cytosol fraction, indicating that membrane-bound PN-1 represents a minor part of platelet PN-1 (Figure 1E).

PN-1 is known to bind to cell surface GAGs from which it is detached by heparin. Flow cytometry analysis of resting platelets showed that heparin induced a significant shift to the left of the platelet-associated fluorescence, indicating a decrease in PN-1 at the platelet surface (Figure 1F). In addition, an increased amount of PN-1 was detected by immunoblot analysis in the incubation medium (Figure 1F, insert). These results indicate that the fraction of platelet PN-1 present at the platelet surface is mainly associated with membrane-bound GAGs.

PN-1 is stored in platelet α-granules

The results reported above suggested that the major part of platelet PN-1 was stored in secretory granules. Platelets from three patients with a GPS, a rare platelet disorder characterized by thrombocytopenia with an absence of α-granules, were investigated. Washed platelets from healthy donors or GPS patients (5×10⁹/mL) were activated by PAR1-AP (50 µM) and analyzed by immunoblot. Contrasting with the observation obtained with platelets from healthy donors, PN-1 was detected neither in lysates of resting-GPS platelets nor in the secretion products obtained after activation of these GPS platelets (Figure 2A).
Moreover, flow cytometry analysis showed that, in contrast to the observation made with control platelets, PN-1 was not detected at the surface of GPS platelets (Figure 2B).

The data obtained with control and GPS platelets indicated that PN-1 contained in α-granules is released during activation.

Platelet PN-1 inhibits thrombin

Washed platelets obtained from healthy human donors or GPS patients, were activated by PAR1-AP. The efficacy of secreted PN-1 in inhibiting the amidolytic activity of purified thrombin was investigated. No inhibition of thrombin activity was observed in the presence of the supernatant of resting human platelets (Figure 3A). On the other hand, incubation of thrombin with the secretion products of activated platelets resulted in an almost complete thrombin inhibition; thrombin residual activity dropped to $5.9 \pm 5.4\%$ of its initial activity (Figure 3A), indicating that activated platelets secreted a thrombin inhibitor. To determine the role of PN-1 in thrombin inhibition, experiments were performed in the presence of a PN-1-blocking antibody. This antibody abolished the inhibition of thrombin activity by the secreted products of activated platelets. Such an effect was not observed in the presence of irrelevant mouse immunoglobulins. Furthermore, the PAI-1-blocking antibody did not prevent the inhibition of thrombin activity by the platelet secretion products. Moreover, the simultaneous addition of the anti-PN-1 and anti-PAI-1 antibodies to the platelet secretion products did not result in a greater effect than the anti-PN-1 alone (Figure 3A). These results suggested that PN-1 was the major inhibitor of thrombin activity released by activated platelets, and that platelet-derived PAI-1 was inefficient on thrombin activity. The effect of the secretion products obtained after activation of GPS-platelets was thus analyzed on thrombin activity. In these conditions, no inhibition of thrombin activity was observed (Figure 3B). Taken together,
these data strongly suggest, on one hand, that PN-1 is stored in α-granules and, on the other hand, that PN-1 is the main thrombin inhibitor released by activated platelets.

In order to confirm these findings, the same type of experiment was performed with platelets from PN-1−/− or PAI-1−/− and their littermate controls. As observed above with human platelets, incubation of purified thrombin with the secretion products of activated platelets from WT mice resulted in a very significant inhibition of thrombin activity (Figure 3C). A similar result was obtained with activated platelets from PAI-1−/− mice. On the contrary, the products secreted by platelets from PN-1−/− mice did not inhibit thrombin activity (Figure 3C). These results are in good agreement with those obtained with the anti-PN-1 antibody in human platelets. Together, they indicate that PN-1 secreted by activated platelets has an efficient inhibitory effect toward thrombin whereas PAI-1 is devoid of such an effect.

Because thrombin inhibition by PN-1 is known to be potentiated by GAGs, we investigated whether PN-1, secreted by activated platelets, was associated to GAGs. Secretion products of human platelets activated by PAR1-AP were incubated with or without polybrene, a polycation that neutralizes GAG-dependent interactions. Residual thrombin activity observed after activation (11%) was partially restored in the presence of polybrene (64%) (Figure 3D). This result indicated that PN-1 released from platelet α-granules was associated with GAGs. On the other hand, thrombin inhibition with the secretion products of activated platelets was accelerated in the presence of heparin (not shown), indicating that a fraction of PN-1 released by platelets is free.

Platelet PN-1 inhibits urokinase

We then tested whether PN-1 secreted by activated platelets inhibits uPA activity. No inhibition of uPA was observed in the presence of supernatant from resting human platelets (Figure 4A). In contrast, the products secreted by activated platelets significantly inhibited
uPA, the residual activity dropping to 25.0 ± 7.9 % of the initial activity (Figure 4A), indicating that platelets secrete uPA inhibitor(s). To determine the respective role of PN-1 and PAI-1 in uPA inhibition, experiments were performed in the presence of anti-PN-1 or/and anti-PAI-1 antibodies. Both antibodies antagonized the inhibitory activity by 35.0 ± 6.5 % or 40.0 ± 8.5 % respectively (Figure 4A). Their combination almost completely prevented inhibition of uPA by the platelet secreted products, with uPA residual activity returning to 84.0 ± 7.4 % of the control value (Figure 4A). Products secreted by activated GPS-platelets did not inhibit uPA activity (Figure 4B), in agreement with the localization of PN-1 and PAI-1 in platelet α-granules.

To substantiate these results, experiments were performed using mouse platelets. The activity of uPA was inhibited in the presence of the products secreted by activated WT platelets (Figure 4C), in agreement with the data obtained with human platelets. In contrast, the secretion products from activated PN-1-deficient platelets did not inhibit uPA, the residual activity remaining at 91.0 ± 6.5 %. The products secreted by activated PAI-1-deficient platelets partially inhibited uPA (Figure 4C).

Taken together, our findings indicate that both PN-1 and PAI-1 released by activated platelets contribute to inhibit uPA.

Platelet PN-1 delays time to peak and reduces the peak of thrombin generated by tissue factor (TF) in platelet-rich-plasma (PRP)

The respective role of PN-1 and PAI-1 in the production of thrombin induced by TF in human and mouse PRP were investigated using the thrombogram method. The thrombin generation curve (thrombogram) is characterized by several parameters: 1) the lag phase related to the clotting time, 2) the peak height which represents the maximal net thrombin production and reflects the maximum prothrombinase activity reached, 3) the time to peak
which reflects the velocity, and 4) the endogenous thrombin potential (ETP), namely the area under the curve representing the total amount of active thrombin generated during the assay. The effects of the anti-PN-1 and anti-PAI-1 antibodies on thrombin generation in human PRP are shown in Figures 5A-B and quantitative parameters are reported in Table 1. The anti-PN-1 antibody significantly shortened the thrombin burst as indicated by the reduced time to peak and significantly increased the peak height, but did not modify the ETP (Figure 5A and Table 1). The anti-PAI-1 antibody and the irrelevant antibody had no significant effect on the thrombin generation parameters (Figure 5B and Table 1). Neither the anti-PN-1 nor the anti-PAI-1 antibodies affected TF-induced thrombin generation in platelet-poor-plasma (PPP) (not shown), confirming that PN-1 originated from platelets.

Thrombinography was also performed on mouse PRP. TF-triggered thrombin generation was accelerated (shorter lag time and time to peak) and the peak height was significantly increased in the PRP from PN-1−/− mice (Figure 5C and Table 2). No significant differences were observed in the thrombogram parameters obtained with PRP from PAI-1−/− and WT mice (Figure 5D and Table 2). As observed with human PPP, no significant differences in the thrombogram parameters were observed between WT, PN-1- and PAI-1-deficient PPP (data not shown). Taken together, these results show for the first time that platelet PN-1, but not PAI-1, regulates TF-induced thrombin generation in PRP.

Platelet PN-1 decreases mouse platelet activation and aggregation and reduces collagen-induced thrombus formation under blood flow conditions

We investigated whether platelet PN-1 could regulate thrombin-induced platelet activation and aggregation. For this purpose, platelets from WT and PN-1−/− mice, activated by increasing concentrations of thrombin, were monitored for surface exposure of P-selectin using flow cytometry. The dose response curve was displaced to the left for PN-1-deficient
platelets as compared to WT platelets (Figure 6A). Half maximal P-selectin exposure was obtained with 0.08 ± 0.02 nM in WT versus 0.04 ± 0.02 nM thrombin in PN-1-deficient platelets (*P<0.05, n = 5 mice), indicating that PN-1-deficient platelets were twice as responsive to thrombin as WT platelets. However, activation of WT and PN-1-deficient platelets reached the same extent for concentrations of thrombin ≥0.4 nM (Figure 6A).

Platelet activation from PN-1−/− and WT mice was analyzed during the first minutes following thrombin addition by measuring P-selectin exposure, and annexin V binding (Figure 6B-C). In the absence of PN-1, the rates of P-selectin and phosphatidyl-serine (PS) exposure were increased, indicating that PN-1 delays the initial phase of platelet activation.

To confirm the negative effect of PN-1 on the activation of platelets by thrombin, platelet aggregation assays were performed with WT and PN-1-deficient platelets. The rate and extent of aggregation were higher when PN-1-deficient platelets were stimulated with 0.2 or 0.3 nM thrombin as compared to WT platelets (Figure 6D). At higher thrombin concentrations (≥0.4 nM) the aggregation profiles of WT and PN-1-deficient platelets became similar (Figure 6D). No difference in aggregation profiles between WT and PN-1-deficient platelets were observed in response to sub-optimal concentrations of other agonists (collagen, convulxin, ADP and PAR4-AP (data not shown). Thus, PN-1-deficiency specifically facilitates platelet aggregation induced by low doses of thrombin.

Because platelet-PN-1 was shown to modulate thrombin generation and platelet aggregation, we investigated the role of PN-1 in thrombus formation. Fluorescently labelled WT or PN-1−/− platelets, were perfused at a shear rate of 1000s−1 over immobilized type-I fibrillar collagen. After 2 min of perfusion, thrombi formed in procoagulant conditions (TF and Ca2+) were smaller with WT than PN-1−/− platelets, the covered surface reaching 26 ± 11% and 51 ± 3% respectively (Figure 6E). In the presence of the thrombin inhibitor PPACK no differences were observed between both types of platelets (Figure 6E). These results
demonstrate that the effect of PN-1 on thrombus formation under blood flow conditions is dependent on its effect on thrombin.

Platelet PN-1 modulates the thrombus formation in response to a vascular injury

The role of PN-1 on *in vivo* thrombus formation was investigated in a murine model of thrombosis. Vessel occlusions were monitored in a real-time under microscope. At 20 min, the mesenteric venules from PN-1−/− mice were completely occluded, while WT mice venules show small thrombi with persistent blood flow (Figure 7A). The complete occlusion of the mesenteric veins was twice as rapid in PN-1−/− mice, with the post-injury occlusion times being 22.1 ± 6 min compared to 42.4 ± 6.5 min in WT mice (Figure 7B). Mesenteric arterioles of PN-1−/− mice were also occluded more rapidly than arterioles of WT mice (Figure 7B). The time to occlusion after injury was 20.0 ± 6.5 min for PN-1−/− mice versus 35.0 ± 3.3 min for WT mice. Altogether, these data show for the first time that platelet PN-1 may have an antithrombotic role in both venules and arterioles.
Discussion

Experimental evidence have previously suggested that platelets store and secrete PN-1. Moreover, high amounts of PN-1 have been observed in platelet-rich areas of human atherosclerotic plaques. Here, we directly demonstrated that PN-1 is stored in the α-granules from where it is released during platelet activation. The absence of PN-1 in the plasma and the presence of its messenger in platelets strongly suggest the endogenous origin of PN-1 and its targeting to α-granules during megakaryocyte maturation. This packaging is further indicated by the absence of the serpin in grey platelets lacking appropriate assembling of α-granules. In contrast to Gronke et al. who detected PN-1 at the platelet surface only after activation, we provide direct evidence that PN-1 is present at the surface of resting platelets but it represents a minor fraction of total PN-1 compared to the cytosol fraction. The apparent discrepancy between these results can be explained by the improvement of the methods which allow to detect low levels of PN-1. We have previously reported that PN-1 is associated with membrane GAGs and proteoglycans on vascular cells from where it can be displaced by heparin. PN-1 bound to the platelet surface is also displaced by heparin. Since membrane-bound PN-1 is undetectable on Gray platelets, PN-1 is probably translocated to the membrane during platelet production. Surface exposure of PN-1 is unlikely the consequence of platelet activation since platelets were P-selectin negative and activating platelets in vitro did not result in an increased, but in contrast, in a decreased binding of the FITC-coupled anti-PN-1 antibody, indicating a shedding of membrane PN-1 upon platelet activation.

Storage of PN-1 in α-granules allows its secretion in significant amounts. Our data show undoubtedly that platelet PN-1 is secreted in an active form during platelet activation since it very efficiently inhibits thrombin. As indicated by the experiments with polybrene, platelet PN-1 is secreted, at least in part, in association with heparin-like GAGs, which have been shown to enhance its interaction with thrombin.
The inhibitory activity of PN-1, secreted during platelet activation, on both thrombin and uPA was evidenced on both human and mouse platelets using respectively a specific PN-1-blocking antibody and platelets from PN-1-deficient animals. These data suggest that platelet PN-1 is a potential player in the control of fibrinolysis. PAI-1 is also stored in α-granules\(^3\) and de novo synthesis of PAI-1 has been reported to occur in human platelets.\(^{35}\) In humans, platelet PAI-1 released locally after activation is assumed to be a major contributor to the stabilization of the thrombus by inhibiting endogenous fibrinolysis,\(^2,\,36\) but PAI-1-independent mechanisms have also been proposed to contribute to platelet-dependent inhibition of fibrinolysis.\(^5\) In the present study no role for secreted PAI-1 in inhibiting uPA was observed with mouse platelets. This is in agreement with a previous report demonstrating significant differences between human and mice fibrinolytic systems.\(^{37}\) Our data are in good agreement with the proposal of the existence of another fibrinolysis inhibitor in human and mouse platelets. The capacity of platelets to secrete active PN-1 provides a new explanation for how platelets regulate fibrinolysis. Further experiments are needed to clarify the respective implications of platelet PN-1 and PAI-1 in t-PA-mediated fibrinolysis. However, since the second-order rate constant for the interaction of PN-1 with tPA is three orders of magnitude lower than that of PAI-1 with tPA,\(^{38}\) PN-1 appears much less efficient than PAI-1 to block fibrinolysis.

Studies with PN-1\(^{-/-}\) and PAI-1\(^{-/-}\) mice also point out the supremacy of platelet PN-1 compared to platelet PAI-1 in the regulation of thrombin activity. Indeed, the effect of platelet PN-1 is directed towards low concentrations of thrombin but it is significant enough to regulate platelet response to thrombin. The deficiency in PN-1 significantly increased the rate and extent of platelet aggregation, as well as surface exposure of P-selectin in response to low doses of thrombin. Interestingly, the deficiency in PN-1 also leads to a faster exposure of negatively charged phospholipids on platelets. As previously suggested\(^7\) and as demonstrated
now by our data, it can be assumed that PN-1 imposes a threshold concentration of thrombin below which platelet activation cannot proceed.

Platelet activation by trace amounts of thrombin amplifies thrombin generation, by providing a catalytic surface suitable for the assembly of the enzymatic complexes tenase and prothrombinase which lead to prothrombin activation.39 Thrombograms indicate that platelet PN-1 is an as yet unrecognized negative regulator of thrombin generation. Indeed, thrombin formation was accelerated and facilitated when PN-1 was blocked or absent. Nevertheless, the total amount of thrombin formed, which depends on the plasma concentration of clotting factors and inhibitors, was not changed. This is in agreement with previous observations showing that blocking platelet activation affects primarily the kinetics of the reaction rather than the total amount of thrombin produced.40

Vascular injury creates a thrombogenic surface on which platelets are activated and thrombin is generated. To address the question of the role of PN-1 in thrombosis, we have analyzed thrombus formation \textit{ex vivo} and \textit{in vivo} in PN-1-/- mice. Our data demonstrate for the first time that PN-1 modulates thrombus formation in response to vascular injury. PN-1-/- mice were indistinguishable from their WT littermates in weight and survival,16 and they did not exhibit spontaneous bleeding or thrombotic disorders. In contrast to the apparent normal phenotype of unchallenged PN-1-/- mice, the time required for the formation of platelet aggregates was significantly shorter in arterioles and venules when a vascular lesion was induced in these mice. Indeed, thrombus formation induced \textit{ex vivo} by collagen in flow conditions and \textit{in vivo} by FeCl\textsubscript{3} injury indicates that the lack of PN-1 results in a loss of protection against thrombosis. Platelet adhesion and activation, and thrombin generation contribute to thrombus formation on collagen. PN-1 does not alter the initial phase of platelet adhesion to collagen but since it inhibits trace amounts of thrombin initially formed, it should alter the propagation phase of thrombus. The absence of difference in thrombi formed in the
presence of PPACK between WT and PN-1-/- mice confirms that PN-1 is inhibitory when coagulation takes place.

In conclusion, our results indicate that PN-1 is a critical protective actor against thrombosis, whose role has been underestimated until now. It would be interesting to determine whether a modification in PN-1 expression or function could constitute a risk factor in vessel thrombosis.
Acknowledgments

We gratefully acknowledge Liliane Louedec for animal experimentations. We thank Dr Mary Osborne-Pellegrin for editing this paper.

This work was supported by INSERM, Université Paris VII, and grant no 2006005672 from Fondation de France, Leducq Foundation and the Bettencourt-Schueller foundation. Y.B. is supported by a grant from Région Ile de France.

Authorship

Contribution: YB, LV performed experiments. FA, MB performed the in vivo thrombosis experiments. FA, MB, VO performed the in vitro flow experiments. RF allowed the platelet studies of 3 GPS patients. MCA provided the PAI-deficient mice. ST and DM provided the PN-1-deficient mice. VA and BR participated to the discussion. MJP and MCB designed the study, analyzed data, and wrote the manuscript.

Conflict of interest disclosure: The authors declare no conflicting financial interests.
References

Table 1: Parameters of thrombin generation in human PRP.

<table>
<thead>
<tr>
<th></th>
<th>PRP alone</th>
<th>PRP + anti-PN-1</th>
<th>PRP + anti-PAI-1</th>
<th>PRP + Irrelevant IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>human PRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag time, min</td>
<td>5.3 ± 0.3</td>
<td>5.4 ± 0.5</td>
<td>5.5 ± 0.2</td>
<td>5.2 ± 0.5</td>
</tr>
<tr>
<td>Time to peak, min</td>
<td>15.3 ± 1.8</td>
<td>11.3 ± 1.5*</td>
<td>12.3 ± 1.6</td>
<td>13.9 ± 3.2</td>
</tr>
<tr>
<td>Peak height, nM</td>
<td>124.4 ± 32.6</td>
<td>187.9 ± 11.5*</td>
<td>132.2 ± 33</td>
<td>124.5 ± 17.6</td>
</tr>
<tr>
<td>ETP, nM Thrombin x min</td>
<td>1640.1 ± 244</td>
<td>1540.3 ± 233</td>
<td>1701.2 ± 415</td>
<td>1509.5 ± 81</td>
</tr>
</tbody>
</table>

Values are the means plus or minus SD of 5 experiments performed in triplicate. *P<0.05

Table 2: Parameters of thrombin generation in mouse PRP

<table>
<thead>
<tr>
<th></th>
<th>PN-1 +/+</th>
<th>PN-1 -/-</th>
<th>PAI-1 +/+</th>
<th>PAI-1 -/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>mouse PRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag time, min</td>
<td>4.6 ± 0.5</td>
<td>3.2 ± 0.5*</td>
<td>4.1 ± 0.4</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td>Time to peak, min</td>
<td>9.4 ± 0.4</td>
<td>6.9 ± 0.7*</td>
<td>8.4 ± 0.3</td>
<td>8.7 ± 1.2</td>
</tr>
<tr>
<td>Peak height, nM</td>
<td>36.8 ± 4.3</td>
<td>51.5 ± 4.7*</td>
<td>49.2 ± 2.2</td>
<td>40.4 ± 2.1*</td>
</tr>
<tr>
<td>ETP, nM Thrombin x min</td>
<td>499.8 ± 44</td>
<td>527.4 ± 17</td>
<td>541 ± 81</td>
<td>470 ± 10.6</td>
</tr>
</tbody>
</table>

Values are the means plus or minus SD of 3 experiments performed in triplicate. *P<0.05
Figure legends

Figure 1: Characterization of platelet PN-1. (A) RT-PCR analysis of PN-1 mRNA expression in platelets. (B) Washed platelets were activated by different agonists: 5 nM thrombin, 50 μM PAR1-AP, 5 μg/mL collagen, 1 nM convulxin, 10 μM ADP, for 30 min at 37°C, and centrifuged to isolate platelet pellets from supernatants. Platelet pellets (cell extracts) and supernatants (secretion products) were analyzed by western blot for PN-1 and GAPDH. (C) Washed platelets were pretreated or not with 1 μg/mL PGE1 before activation by thrombin. Cell extracts were analyzed by western blot for PN-1 and GPIb. (D) Washed platelets activated by 50μM PAR1-AP were analyzed by flow cytometry with a FITC-coupled anti-PN-1 IgG. (E) Membrane and cytosol fractions of resting platelets analyzed by western Blot for PN-1 and GPIb. (F) Washed platelets treated with 150 μg/mL heparin were analyzed by flow cytometry. The supernatants of heparin treated-platelet were analyzed by western blot for PN-1 (insert). Data are representative of 3 separate experiments from different donors.

Figure 2: PN-1 is stored in platelet α-granules. (A) Washed platelets from control donors or patients with a Gray platelet syndrome (GPS) were activated by 50 μM PAR1-AP for 30 min at 37°C, and centrifuged to separate platelet pellets from supernatants. Platelet pellets (cell extracts) and supernatants (secretion products) were analyzed by western blot for PN-1, GAPDH and GPIb. (B) Washed platelets from control donor or GPS patients were analyzed by flow cytometry with a FITC-coupled anti-PN-1 IgG. Data are representative of 3 separate experiments from different donors.

Figure 3: Inhibition of thrombin catalytic activity by released platelet PN-1. Thrombin catalytic activity was measured after incubation with the supernatants from resting platelets (black bars), or activated platelets (grey bars) as described in Methods. Products of human
platelet secretion from (A) control donors or (B) GPS patients were incubated with thrombin in the presence or absence of an anti-PN-1 IgG (150 µg/mL) and/or an anti-PAI-1 IgG (150 µg/mL). (C) Secretion products of platelets from mice deficient for PN-1 or PAI-1 and their WT littermate. (D) Secretion products of human platelets were pre-treated with polybrene (50 µg/mL) prior the incubation with thrombin. Data are presented as means plus or minus SD of 3 independent experiments each performed in triplicate. *P < 0.05, significantly different from products of resting platelet supernatant. †P < 0.05, significantly different from products of activated platelet supernatant.

Figure 4: Inhibition of urokinase (uPA) catalytic activity by released platelet PN-1. uPA catalytic activity was measured after incubation with the supernatants from resting platelets (black bars), or activated platelets (grey bars) as described in Methods. Products of human platelet secretion from (A) control donors or (B) GPS patients were incubated with uPA in the presence or absence of an anti-PN-1 IgG and/or an anti-PAI-1 IgG. (C) Secretion products of platelets from mice deficient for PN-1 or PAI-1 or their WT littermates. Data are presented as means plus or minus SD of 3 independent experiments each performed in triplicate. *P < 0.05, significantly different from resting platelet supernatant. †P < 0.05 significantly different from activated platelet supernatant in the presence of an anti-PN-1 IgG or an anti-PAI-1 IgG.

Figure 5: Thrombin generation in human and mouse PRP. TF-triggered thrombin generation was measured in PRP. Human PRP was preincubated with (A) a PN-1-blocking IgG (150 µg/mL) or (B) a PAI-1-blocking IgG (150 µg/mL). Mouse PRP was from (C) PN-1-deficient mice or (D) PAI-1-deficient mice on thrombin. Results are from one experiment performed in triplicate, representative of at least 3 independent experiments.
Figure 6: Platelet activation and aggregation, and thrombus formation on collagen under blood flow. (A) Washed platelets from WT (black line) or PN-1-deficient mice (grey line) were activated by increasing doses of thrombin and P-selectin was measured by flow cytometry. (B and C) Washed platelets from WT mice (black line) or PN-1-deficient mice (grey line) were activated by 0.1nM thrombin. Time courses of (B) P-selectin and (C) phosphatidylserine exposure on platelets were measured by flow cytometry using FITC-labelled rat anti-mouse P-selectin IgG and FITC-Annexin V. (D) Washed platelets from WT mice (black line) or PN-1-deficient mice (grey line) were activated by different doses of thrombin and platelet aggregation was monitored. Data are from one experiment representative of at least 3 separate experiments. (E) Rhodamine 6G labelled mouse platelets in whole blood were perfused in procoagulant conditions (2 pM FT and 5 mM Ca\(^{2+}\)) or in anticoagulant conditions (80 µM PPACK), at 1000s\(^{-1}\) over a collagen surface. After 2 min of perfusion, the formation of thrombi was observed at 20x magnification under an epifluorescent microscope (Nikon Eclipse TE2000-U; Champigny sur Marne, France), coupled to Metamorph 7.0r1 software (Universal Imaging Corporation). The mean percentage of the area covered by platelets ± S.D. of three independent experiments was calculated and expressed as the mean percentage of the total area covered by thrombi. Data are presented as means plus or minus SD. *Significant difference (P< 0.05) versus WT. Bars indicate 100µm.

Figure 7: In vivo thrombus formation. (A) Representative images of FeCl\(_3\)-injured mesenteric venules in WT and PN-1-deficient mice. (B) Time to occlusion of mesenteric venules (black histograms) and arterioles (gray histograms) was measured after application of FeCl\(_3\) in WT mice and PN-1\(^{-}\) mice. Data are the mean plus or minus SD for the number of mice indicated in parentheses. *** Significant difference (P< 0.001) versus WT.
Figure 1 Boulaffali et al.

A

B

Cell extracts
resting
thrombin
PAR1-AP
collagen
convulxin
ADP
PN-1
PN-1
GAPDH

C

Cell extracts
resting
thrombin
resting
thrombin
+PGE1
PN-1
PN-1
GPIb

D

E

F

FITC-Anti-PN-1

resting
PAR1-AP
Control IgG

resting

WB

WB

resting
heparin
Control IgG

Events

Events

Events

10^0 10^1 10^2

10^0 10^1 10^2
Figure 4 Bouaftali et al.

A

% of residual activity

0 50 100

control anti-PN-1 anti-PAI-1 anti-PN-1 + anti-PAI-1 Irrelevant IgG

B

% of residual activity

0 50 100

control anti-PN-1 anti-PAI-1 Irrelevant IgG

C

% of residual activity

0 50 100

PN-1 WT PN-1 -/- PAI-1 WT PAI-1 -/-
Figure 5 Boulafati et al.

A

- PRP + Irrelevant IgG
- PRP + anti-PN-1

B

- PRP+ Irrelevant IgG
- PRP + anti-PAI-1

C

- PRP PN-1 ^+/^-
- PRP PN-1 ^-/-

D

- PRP PAI-1 ^+/^-
- PRP PAI-1 ^-/-
Figure 6 Boulaftali et al.

A) % of P-selectin-positive platelets

WT: EC50 = 0.08 ± 0.02 nM
PN-1⁻/⁻: EC50 = 0.04 ± 0.02 nM

B) % of P-selectin-positive platelets over time

C) % of annexin V-positive platelets over time

D) Platelet adhesion to collagen (% covered area)

WT: EC50 = 0.08 ± 0.02 nM
PN-1⁻/⁻: EC50 = 0.04 ± 0.02 nM

E) Platelet adhesion to collagen (% covered area)

WT (TF)
PN-1⁻/⁻ (TF)
WT (PPACK)
PN-1⁻/⁻ (PPACK)
Figure 7 Boulaftali et al.

A

WT

PN-1 -/-

0 min 10 min 20 min

Occluded

40 min

B

Time to occlusion (min)

(7)

(6)

(7)

(6)

+/+ -/- +/+ -/-

venules arterioles
Anticoagulant and antithrombotic properties of platelet protease nexin-1

Yacine Boulafatli, Frederic Adam, Laurence Venisse, Veronique Ollivier, Benjamin Richard, Sabrina Taieb, Denis Monard, Remi Favier, Marie-Christine Alessi, Marijke Bryckaert, Veronique Arocas, Martine Jandrot-Perrus and Marie-Christine Bouton