Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins.

Marie N. O’Connor1*, Isabelle I. Salles2*, Ana Cvejic1, Nicholas A. Watkins1,3, Adam Walker4, Stephen F. Garner1,3, Chris I. Jones5, Iain C. Macaulay1, Michael Steward4, Jaap-Jan Zwaginga6, Sarah L. Bray7, Frank Dudbridge7, Bernard de Bono8, Alison H. Goodall5, Hans Deckmyn2, Derek L. Stemple9 and Willem H. Ouwehand1,3,9 on behalf of the Bloodomics Consortium#

1Department of Haematology, University of Cambridge, United Kingdom; 2Laboratory for Thrombosis Research, Katholieke Universiteit Leuven, Campus Kortrijk, Belgium; 3National Health Service Blood and Transplant, Cambridge, United Kingdom; 4Domantis Limited, Cambridge, United Kingdom; 5Department of Cardiovascular Sciences, University of Leicester, United Kingdom; 6Department of Experimental Immunohaematology, Sanquin Research, Amsterdam, and the Department of Immunohaematology and Blood Transfusion of the Leiden University Medical Center, The Netherlands; 7Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom; 8European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; 9Wellcome Trust Sanger Institute, Hinxton, United Kingdom.

*M.N.O. and I.I.S. contributed equally to this study.

Type of article: Regular Manuscript

Running Title: Functional analysis of novel platelet receptors

Scientific Heading: Hemostasis, Thrombosis, and Vascular Biology
Correspondence:

Hans Deckmyn,
Laboratory for Thrombosis Research,
Interdisciplinary Research Centre (IRC),
KU Leuven Campus Kortrijk,
E. Sabbelaan 53, B-8500 Kortrijk,
Belgium.

e-mail: hans.deckmyn@kuleuven-kortrijk.be

*For a complete list of participating Bloodomics Consortium members, see the online Supplemental Appendix.
ABSTRACT

In this study we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell the megakaryocyte, together with nucleated blood cell elements, endothelial cells and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of five of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet Glycoprotein (GP) IIb and the coagulation protein Factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of four of the five novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for Bambi and Lrrc32 in promotion and Dcbld2 and Esam in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.
Introduction

Platelets play a central role in hemostasis, adhering to damaged or activated endothelium and aggregating to form a thrombus. Receptor-ligand interactions on the platelet surface regulate these processes. Recent transcriptome and proteome studies of platelets or their precursor cell, the megakaryocyte (MK), have increased our understanding of the complement of proteins present in the human platelet membrane1-3. About 10000 genes are transcribed in MKs1,2,4 and less than one percent of these are lineage restricted when compared to nucleated blood cell elements and erythroblasts4. Some of the functionally best-characterized platelet membrane proteins are represented in this small set of transcripts (e.g. Glycoprotein (GP) IIb), whereas others encode transmembrane proteins whose roles in hemostasis and thrombosis are unknown. Unfortunately, most of the approaches that can be applied to characterize novel genes are of limited use when studying human platelets or investigating large sets of candidate genes. For example, large-scale RNAi screens, commonly used in other cell types, cannot be replicated for platelets due to a combination of factors, including the inability to culture human platelets *in vitro*, or the low efficiency of viral transformation of human hematopoietic stem cells and their progeny.

In this study, we investigated the suitability of zebrafish for functional analysis of novel platelet genes. The zebrafish has recently emerged as an attractive model organism for studying vertebrate hemostasis, as it uniquely combines the advantages of genetic tractability with biological relevance5. The coagulation pathways and genetic programmes regulating hematopoiesis and vasculogenesis are conserved6-9, which support the use of zebrafish in the study of human blood diseases. Moreover,
zebrafish have nucleated thrombocytes that function in a similar manner to human platelets10-12. Adhesion and aggregation in response to platelet agonists is comparable11, and antisera against the human forms of GPIb\textalpha and GPIIb are reactive with zebrafish thrombocytes11.

Zebrafish offer a number of practical advantages over mice for this type of study. Firstly, external fertilization and transparency of zebrafish embryos allow better visualization of early blood-related phenotypes than mice, where development occurs \textit{in utero}. Secondly, zebrafish can survive without blood for the first seven days of life, allowing the function of genes that give lethal phenotypes when knocked-out in mammals to be investigated. Finally, knock-down of gene function by antisense morpholino oligonucleotides (MOs) in zebrafish is more suitable to the screening of a large number of genes than classic gene knock-out in mice13, and gives an immediate phenotype.

Using a laser-induced thrombosis model to characterize thrombus formation in arteries of zebrafish where known and novel platelet genes were knocked-down by MOs, we show that key proteins involved in platelet aggregation and in coagulation in humans, namely GPIIb and coagulation Factor (F) VIII, are also required for normal hemostasis in the zebrafish. We previously identified a series of genes encoding platelet transmembrane proteins that may represent novel regulators of human platelet function2 and have now used the zebrafish model to conduct the first reverse genetics screen in zebrafish of candidate genes identified in systems biology studies of human blood cell elements.
Materials and methods

Microarray studies and bioinformatics

Comparative whole-genome expression analysis of the major blood cell elements and
in vitro differentiated MKs and erythroblasts (EBs) was described previously\(^4\). In
summary, natural killer cells, monocytes, granulocytes, B cells, cytotoxic T and
helper T cells were isolated by positive selection using magnetic bead technology
from peripheral blood from consenting volunteer blood donors of the Cambridge
BioResource. In vitro differentiated MKs and EBs were derived from CD34\(^+\)
hematopoietic stem cells obtained from 5 different anonymized cord bloods collected
after informed consent according to the Declaration of Helsinki and the guidelines of
Eurocord Netherlands\(^2\). The transcriptomes of these and human umbilical vein
endothelial cells were profiled by microarray and differentially expressed genes were
identified by pair-wise comparisons\(^4\). Approval for these studies was obtained from
the NHS Research Ethics Committee, Huntingdon REC. Functional protein domains
were predicted using the Eukaryotic Linear Motif (ELM) ressource\(^14\).

Confirmation of transcript expression in human platelets

The expression of candidate genes was validated by quantitative TaqMan\(^\circledR\) RT-PCR.
Total RNA (100 ng) was reverse transcribed using the reverse transcription system
(Promega, Madison, WI) and an oligo (dT) primer. Following a one hour incubation
at 42°C, 2 ng of cDNA was amplified with template specific primers using the Mini
Opticon real-time PCR system with SYBR green master mix (Bio-Rad, Hercules,
Reactions were incubated for 94°C for 10 min and real-time PCR reactions performed over 40 cycles (94°C for 30 seconds, 52°C for 30 seconds, 72°C for 30 seconds). Data was normalized to GAPDH using a standard curve generated with a dilution series of GAPDH plasmid from which copy number per ng RNA was determined. CD16^+ cells had the lowest level of GAPDH and therefore the ratio of GAPDH copies per ng (CD16^+) to GAPDH copies per ng (other cell type) was used to normalize the remaining data.

Antibody staining of human platelets

Polyclonal antisera were generated against *Escherichia coli* produced human recombinant proteins in mice as described previously^2^. cDNAs corresponding to the extracellular domains of human *ANTXR2* (residues 33-318), *BAMBI* (residues 27-153), *DCBLD2* (residues 66-163), *ESAM* (residues 30-247) and *LRRC32* (residues 29-296) were used to produce the immunizing protein. Each antiserum was characterized by immunoblot as described previously^2^. For flow cytometry experiments, human blood was collected into trisodium citrate and platelet rich plasma (PRP) obtained by centrifugation. For intracellular staining, platelets in PRP were fixed, washed and then permeabilized using an IntraStain kit (Dako, Ely, UK) according to manufacturer’s instructions. Samples were incubated with individual mouse sera (1/100), washed, and bound antibody detected by flow cytometry (Beckman Coulter EPICS MCL-XL, High Wycombe, UK) using a PE conjugated goat-anti-mouse reagent. Platelets were identified by their light scatter properties and PE fluorescence measured on a log scale. Preimmune sera from the same mouse were used as negative control.
MO sequences and injections

Zebrafish orthologs were predicted by reciprocal BLAST analysis using the Ensembl utilities at http://www.ensembl.org. The criteria for a likely ortholog was $\geq 35\%$ amino acid identity over the entire length of the protein, or $\geq 50\%$ if the zebrafish protein sequence was only partial. Antisense MOs (Gene Tools, LLC, Philomath, OR) were designed complementary to the 5' sequence near the start of translation (atg), or at splice junctions (sp)13 (Table 1). Up to 12 ng of MO in Danieau's solution was microinjected into the yolk of one- to four-cell-stage embryos as described previously13. Dose-response experiments were carried out for all MOs to determine the highest non-toxic dose for use in further experiments. RT-PCR was carried out on the splice MO-injected larvae and their controls as described in Supplemental Materials, with primers listed in Table S1.

Zebralish embryo collection

General maintenance, collection and staging of the zebrafish were carried out according to the Zebrafish Book15. Embryos were maintained in Egg Water (60 mg/l Red Sea Salts, 2 mg/l Methylene Blue) until the appropriate stage. The approximate stages are given in days post-fertilization (dpf) at 28°C according to morphological criteria16. These studies were approved by the Huntingdon Research Ethics Committee.
Phenotypic analyses

Morphology. Gross morphology was analyzed by intravital light-field microscopy. Inspection for spontaneous bleeding was carried out on un-manipulated larvae 2-4 dpf.

Laser-induced thrombosis model. Zebrafish larvae that showed normal blood circulation at 3 or 4 dpf were anesthetized in Tricaine solution (300 µM, Sigma, St-Louis, MO) for 20 minutes and placed under the microscope (Leica DMRXA microscope, Wezlar, Germany; 40X water-immersion objective). Injury of the caudal artery endothelium was by a nitrogen-pulse ablating laser (VSL-337, LSI Laser Science Inc., Newton, MA) and was delivered for 1-5 sec at 3 pulses/sec at the maximum intensity setting. Each larva was injured only once. Images of wild-type and CD41-GFP transgenic zebrafish were acquired with a CCD camera (Princeton Instruments, Princeton, NJ) using Metamorph software (Version 6.0, Universal Imaging Corporation). Time to attachment (TTA) corresponded to the first cell adhering to the injured vessel after injury (t=0). Thrombus size was calculated at 1 minute intervals post-injury by measuring thrombus surface area (TSA) using ImageJ software. Briefly, for each image an outline was drawn around the thrombus (see Figure 3B for examples) and the surface area within calculated automatically. For each experiment, typically 10-20 MO-injected larvae were screened per MO with a similar number of matched sibling controls tested before and afterwards, the total
experiment lasting less than 4 hours. Each experiment was repeated at least once using offspring of different parentage.

Statistical analysis of the thrombosis model

For individual experiments, statistical analyses of TTA and TSA were performed using an unpaired student’s t test. For the combined analyses, TTA was modeled using Cox regression stratifying by experimental day. The severity of the injury did not significantly affect the model, and so was not adjusted for. Whilst TSA is highly skewed, $\log_{10}(TSA)$ is approximately normally distributed, therefore $\log_{10}(TSA)$ was fitted with a linear mixed model with (i), fixed effects for larva type (control or MO-injected fish) and time after injury (1, 2, 3 or 4 min) and (ii), random effects for experimental day and larva within experimental day. The estimated coefficients were anti-logged to transform back to the original scale (square pixels). Using contrasts, we tested whether the effect of the two MOs tested differed. In most cases (see further), there was no significant difference ($p<0.05$) and so the MOs were combined.
Results

ANTXR2, BAMBI, DCBLD2, ESAM and LRRC32 are present in human platelets and are expressed at higher levels in MKs than in other blood cell lineages.

In a previous study, comparative whole-genome expression analysis of helper and cytotoxic T cells, monocytes, B cells, NK cells, granulocytes, EBs and MKs allowed the identification of genes with upregulated expression in MKs compared to all other cell lineages. Since platelets are derived from MKs, we hypothesized that this subset of genes would provide good candidates for proteins playing a role in thrombus formation. Analysis of the expression data indicated that 10314 genes are present in MKs, of which 1035 are upregulated in MKs relative to EBs and 279 are uniquely expressed in MKs relative to all other blood cells (Figure 1A).

To narrow down this selection, we used Ensembl and InterPro interrogation of the 279 MK-specific transcripts to identify those encoding putative transmembrane domains, since proteins which span the plasma membrane often play crucial roles in modifying cell function and are attractive targets for drug design. Seventy-five genes were identified and are listed in supplemental Table S2 (available on the Blood website; see the Supplemental Materials link at the top of the online article), and these included genes for well-known MK/platelet-specific receptors (e.g. GP6 and GP9), recently reported and confirmed MK/platelet-specific genes (e.g. LRRC32, SUCNR1 and C21orf21) and novel genes. Finally, we compared this list to the transcriptome of resting HUVECs to determine which of these genes are expressed in both cell lineages, since a significant number of known MK/platelet-specific membrane proteins are also expressed in endothelial cells (Figure 1A). Thirty five genes were identified (supplemental Figure S1) and from these we selected four for study in the
zebrafish thrombosis model, based on (i) their unknown function in thrombosis at time of selection, (ii) clear MK and endothelial cell specific transcript expression (Figure 1B), (iii) interesting protein domains (Figure 1C) and (iv) reliable zebrafish ortholog identification (Table 2). The integrin gene *ITGA2B* (encoding GPIIb) and the gene encoding one of the two known anthrax receptors, *ANTXR2*, which are more widely expressed were also included, as controls.

The MK-specific nature of the first four transcripts and the relative over-expression of the latter two in granulocytes and MKs is shown via a heatmap (Figure 1B). Functional domain prediction identified a single BMP and activin membrane-bound inhibitor homolog in BAMBI, a discoidin, CUB and LCCL domain in DCBLD2, two immunoglobulin folds in ESAM (endothelial cell-selective adhesion molecule) and 15 leucine-rich repeats in LRRC32 (Figure 1C). The restricted expression of *LRRC32* has been reported in earlier studies from our laboratory and was confirmed by Q-PCR for *BAMBI*, *DCBLD2* and *ESAM* (data not shown).

To verify that these genes are expressed in human platelets at the protein level, we used a combination of flow cytometry and western-blot with purpose generated polyclonal antibodies (Figure 2). Expression of the LRRC32 protein in human platelets was already demonstrated. ANTXR2, BAMBI, DCBLD2 and ESAM were detected either on the native platelet surface, and/or intracellularly after permeabilization of the platelets. In western-blots with platelet lysates, a band of expected size (27 kDa) was detected for BAMBI, whereas the others were of higher molecular weight, most likely due to glycosylation. ANTXR2 was ~67 kDa, DCBLD2 was ~85 kDa, and ESAM ran as two bands of 40 and 43 kDa (Figure 2, right panels).
Replication of a Glanzmann thrombasthenia (GT) phenotype validates zebrafish as a suitable model organism for platelet functional studies

To establish whether zebrafish would be suitable for studying platelet receptor function we knocked down the gene encoding GPIIb, aiming to replicate the well-characterized GT phenotype. In patients with GT, platelet aggregation, but not adhesion, is severely impaired due to loss of function of integrin GPIIbIIIa. As expected, the GPIIb MO-injected fish did not display any gross morphological malformation, nor was spontaneous bleeding observed (Figure 3Aii). We hypothesized that any possible defect in thrombocyte aggregation in the fish might be accentuated by impairment of the coagulation pathway, and tested this by concurrent knockdown of the gene encoding the pro-coagulant protein FVIII. A subset of these double MO-injected fish bled spontaneously, most commonly in the tail but intracranial bleeds were also observed (20% and 5% of larvae, respectively; Figure 3Aiv). Knockdown of the FVIII gene on its own did not produce a spontaneous bleeding phenotype (Figure 3Aiii).

To analyze the phenotype of the GPIIb MO-injected fish in more detail a thrombosis model was developed. This method is similar to those described in earlier studies using laser-injury to initiate thrombus formation in zebrafish and mice and allows qualitative and quantitative differences in thrombus formation between MO-injected fish and controls to be measured. The transparency of zebrafish larvae at this stage allows blood cell attachment to the site of injury and subsequent thrombus formation to be visualized by intravital light microscopy, without intervention. In addition, we used a well-characterized transgenic zebrafish line with fluorescently labeled thrombocytes, where GFP expression is under the control of the CD41
promotor17, to examine the specific contribution of thrombocytes to thrombus formation in control and MO-injected fish.

An ablating laser was used to injure the endothelial cell wall of the caudal artery of 3-4 dpf larvae and the time to attachment (TTA) and thrombus surface area (TSA) was measured in each case. These endpoints were chosen as they allow distinction between two stages of primary hemostasis: thrombus initiation (including endothelial cell activation, thrombocyte tethering and activation) and thrombus growth (including aggregation and firm adhesion). In control larvae, thrombi could be reproducibly induced (Figure 3Bi), with the first blood cell attaching within 5-20 seconds (Figure 3D). Thrombi were occlusive in \textasciitilde10\% of cases and partial but incomplete lysis was observed after 2-10 min (data not shown). As expected, TTA was not significantly delayed in GPIIb MO-injected fish but a significant reduction (>50\%) in TSA compared to controls was observed (P=0.0004) (Figure 3D-E, left panels). Similarly, loss of FVIII should have little effect on TTA whilst decreasing thrombus size23 and as anticipated, the TSA in FVIII MO-injected fish was only 33\% that of controls (p=0.0157) accompanied by a normal TTA (Figure 3D-E, right panels). Expression of \textit{itga2b} and \textit{f8} genes in 3-4 dpf control embryos and their successful knock-down in GPIIb and FVIII MO-injected larvae was confirmed by RT-PCR (Figure S2).

Finally, analysis of thrombus formation in the CD41-GFP transgenic zebrafish (Figure 3C and Movie S1) showed that thrombi were initiated by thrombocytes, although in a few cases (<10\%) the first cell to attach was not fluorescent (data not shown). The phenotype of GPIIb and FVIII MO-injected transgenic fish was the same as in MO-injected wild-types, and in all cases the thrombi were composed primarily of thrombocytes (Figure 3C).
Screening by reverse genetics in zebrafish identifies putative roles for BAMBI, DCBLD2, ESAM and LRRC32 in thrombus formation.

To investigate the potential roles of the four candidate genes in thrombus formation, we identified the zebrafish ortholog for each gene (Table 2) and designed two MOs per gene to act as mutual controls for assessment of the knockdown phenotype in the thrombosis model. The zebrafish ortholog of the control gene, ANTXR2, was similarly assessed. As shown above for itga2b and f8 genes, antxr2, bambi, dcbld2, esam and lrrc32 genes are expressed in 3-4 dpf embryos (Figure S2). No transcript was detected in embryos injected with the splice blocking MOs, confirming successful knockdown of each gene in the zebrafish (Figure S2). Representative results for TTA and TSA, obtained in MO-injected larvae compared to siblings, from a single experiment are presented in Figure 4A-B. Overall, 42-70 larvae were tested for each gene and the effect of MOs directed at two different sites was similar (Table 3). The one exception was ESAM, where just one of the two MOs (esam sp1) resulted in degradation of the esam transcript (Figure S2), thus we lack a corroborating result for this protein. However, the concordance of the ESAM phenotype with mouse knockout data, discussed later, suggests that the result with esam sp1 is specific.

Combined analysis of data from both MOs for each gene revealed significant alterations in cell attachment and/or thrombus growth for all four candidate genes, but not for the ANTXR2 MO-injected fish (Figure 4C). BAMBI MO-injected fish had a longer TTA with an average increase of 58% (p=0.001) and impaired thrombus development where TSA was reduced by 39% (p=0.006). The effect of the DCBLD2
knockdown on TTA was ambiguous, but resulted in a clear 51% increase in TSA compared to the controls (p=0.013). The ESAM MO-injected fish showed normal TTA but increased thrombus size (p=0.001). In the LRRC32 MO-injected fish, there was a marginally significant increase in TTA (30% increase, p=0.051), while TSA was reduced by 29% compared to controls (p=0.034). The p values for individual MOs and combined values are summarized in Table 3.
Discussion

The zebrafish has been proposed as a relevant model for hemostasis and thrombosis5,24,25 and presents several attractive features over the standard mouse model, the most practical being the transparency of zebrafish embryos, amenability to gene knockdown and the short time needed to generate and study the MO-injected fish. In the present study, we report on the use of zebrafish for the initial rapid functional analysis of genes derived from post-genomic studies, with a hitherto unknown role in thrombosis.

We chose to validate this approach by knockdown of the zebrafish gene encoding the integrin subunit \(\alpha_{\text{IIb}}\) (GPIIb), a well-characterized platelet receptor in humans that is deficient in GT patients. The GPIIb MO-injected fish were morphologically identical to controls, concordant with GT patients where only a small proportion of patients display severe spontaneous bleeding19. Moreover, when we accentuated the GT phenotype by concurrent knock-down of the gene encoding FVIII7, the coagulation factor perturbed in Hemophilia A patients, we observed spontaneous tail and intracranial bleeds which correlate with increased severity of bleeding observed in rare cases of co-existence of GT and other inherited bleeding diseases19 or in Hemophilia patients who have inadvertently used aspirin26.

We next used a laser-induced thrombosis model for more detailed analysis of the GT phenotype. This method allows the kinetics of thrombus formation to be measured \textit{in vivo}, by observing thrombus initiation and development in real time. We observed that thrombus formation was severely impaired in GPIIb MO-injected fish compared to controls, though there was no difference in initial cell recruitment to the site of vascular injury, in accordance with observations made using GT mouse
models27-29 and the well characterized role of GPIIbIIIa in the later aggregation, but not initial adhesion, stages of thrombus formation30. These observations highlighted the utility of the system to separate the processes of thrombus initiation from growth, not possible by analysis of gross morphology. Moreover, since knockdown of a critical receptor such a GPIIb did not produce a spontaneous bleeding phenotype it is clear that the laser-induced thrombosis model is a more sensitive and informative tool to test for loss- and gain-of-function.

A potential drawback with zebrafish knockdown experiments is that all cells and tissues are affected; MOs injected at the 1-4 cell stage will be present in every cell in the developing fish. Since we, therefore, cannot assume that the induced phenotype is purely due to a defect in the function of thrombocytes alone, we selected genes encoding transmembrane proteins which in humans have upregulated expression in platelets or MKs compared to other blood cell types, to optimize our chances of identifying novel genes involved in thrombus formation. The zebrafish orthologs of \textit{BAMBI}, \textit{DCBLD2}, \textit{ESAM}, \textit{LRRC32} and the control \textit{ANTXR2} were knocked-down and morphological and hemostatic phenotypes assessed 3 dpf. In total, over 900 larvae were tested and power was gained by combining between four and six sets of experiments of each gene, using two non-overlapping MOs. Observation in most of the cases (90\%) of the same phenotype with both MOs provided strong evidence that the phenotype is specific to the gene of interest. In addition, for splice blocking morpholinos, we performed RT-PCR and showed that splicing was altered for all genes.

The \textit{BAMBI} gene, which encodes a protein related to type I receptors of the TGF-\(\beta\)31, was the most highly expressed in human MKs. A recent study of BAMBI-deficient mice showed no developmental defects, consistent with our observations in
the zebrafish32. However, here we found that BAMBI is required for both cell attachment to injured endothelium and for thrombus growth, suggesting that it plays a fundamental role in both processes. Analysis of thrombus formation in tissue specific \textit{Bambi} -/- mice would be a good next course of action and may unpick whether our observed phenotype is due to a defect in thrombocyte or endothelial cell function, or both.

The gene \textit{DCBLD2} is transcribed in human MKs and, to a lesser degree, in endothelial cells and erythroblasts, but not in any other of the blood cell types tested. \textit{DCBLD2} MO-injected zebrafish show normal TTA but form larger thrombi than controls, suggesting that the receptor negatively regulates thrombus formation. The structure of the \textit{DCBLD2} protein is similar to the semaphorin-binding neuropilins33, thus the receptor may play a role in signaling. We previously showed at least seven semaphorin transcripts present in MKs4, though only two have been characterized in platelets34,35, hence this may be an interesting avenue of research.

We previously showed that the expression of LRRC32 is restricted to platelets and megakaryocytes2. As a structural homolog of GPIb\textalpha and GPV, we predicted that the protein may operate as part of a multiprotein complex, perhaps playing a role in adhesion2. Here, our combined analysis of \textit{LRRC32} MO-injected fish shows that the TTA is normal, although when the effects of each MO were examined individually, the TTA was increased in both cases. For one of the MOs this increase reached significance, therefore we do not wish to exclude the possibility of LRRC32 playing a role in thrombus initiation. The TSA result was more straightforward; both MOs produced a defect in thrombus growth. We suggest that LRRC32 could play a role in platelet-platelet and platelet-endothelial cell interactions, which would tie in with the propensity of LRR-rich receptors to form homotypic interactions36. Alternatively,
LRRC32 might have an as yet unidentified ligand in plasma, endothelial cells or both, in line with what is known for von Willebrand Factor and its interaction with the platelet-specific receptor GPIbα.

For all of these proteins, our work represents the first study on their putative role in thrombus formation. A recent study however has shown that Esam -/- mice form larger thrombi in an in vivo thrombosis model\(^{37}\). The ESAM protein is expressed on platelet alpha granules\(^{38}\) and plays a role in increasing vascular permeability at endothelial cell tight junctions\(^{39}\). Thus, it is quite possible that in platelets ESAM functions to destabilize platelet-platelet cell contacts. In agreement with this hypothesis, we found that fish injected with esam sp1 had normal thrombus initiation but dramatically increased thrombus growth and size. Replication of the phenotype observed in mice lends further support to the validity of this zebrafish model.

Knockdown of the zebrafish ANTXR2 ortholog did not significantly alter TTA, nor did it affect thrombus formation in MO-injected fish compared to controls. Since this gene is ubiquitously expressed compared to the other four, these results show that, as predicted, MK/endothelial-specific gene expression is a strong indicator of a putative function in thrombosis.

The identification of four new genes that play a role in thrombus formation, together with the evidence that the proteins are expressed in human platelets, provide enough arguments for these genes to be studied further. On the basis of the functional data gained from this MO-based screen in the zebrafish we are increasing screening throughput by combining Targeted Induced Local Lesions IN Genomes (TILLING) with automated image capture coupled with computer-based pattern recognition of the processes leading to thrombus formation. This will allow many more genes to be
characterized and put us one step closer to understanding the complex networks of interactions that take place within and between platelets and endothelial cells after vessel wall damage. In addition, the generation of genetically modified platelets and endothelial cells, for example by Cre/Lox based tissue-specific gene knock-out in mice, will allow a more detailed study of the function of these genes in either tissue.

In summary, we have demonstrated the suitability of the zebrafish thrombosis model for the functional characterization of novel platelet proteins. This model will facilitate our understanding of the role of novel genes being identified in transcriptional studies of MKs and platelets and also in genome-wide association studies in patients with myocardial infarction40,41 and has the potential to contribute significantly to systems biology studies of platelets in health and disease.
Acknowledgements

This work was supported by grants from the European Union 6th Framework Program (LSHM-CT-2004-503485), the Wellcome Trust (M.N.O. and A.C. [grant number WT082597/Z/07/Z] and D.L.S. [grant number WT077037/Z/05/Z]) and the National Institute for Health Research in England (NIHR) to NHS Blood and Transplant (N.A.W and S.F.G). Funding for the Cambridge BioResource was from the NIHR Biomedical Research grant for Cambridge University Hospitals NHS Foundation Trust. We thank Dr HF Lin and Dr RI Handin (Boston, MA) for their generous gift of the CD41-GFP transgenic zebrafish line.

Authorship

Contribution: M.N.O. and I.I.S. designed and performed research, analyzed data and wrote the paper; N.A.W. designed research, analyzed data and wrote the paper; A.W., S.F.G., C.I.J. and A.C. designed and performed research; I.C.M. designed and performed research and analyzed data; J.Z. performed research and analyzed data; S.L.B. and F.D. performed statistical analysis of data; M.S. analyzed data and provided critical reagents; B.d.B provided bioinformatical support; A.H.G. designed research; D.L.S. designed research and provided laboratory space and reagents; H.D. designed research and wrote the paper; W.H.O. designed research, analyzed data and wrote the paper.

Conflict-of-Interest disclosure: The authors declare no competing financial interests.
REFERENCES

40. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661-678.
Figure legends

Figure 1. Candidate gene selection and validation. Candidate genes were selected from a list of 75 MK-specific genes encoding transmembrane proteins. (A) Overlap analysis of MK-specific, present in HUVECs and transmembrane protein encoding genes. Of the 279 MK-specific genes, 143 are also present in HUVECs and 35 of these encode transmembrane proteins. (B) Heatmap of log2 transformed, normalized intensity values for the six MK genes used in this study showing increased expression of four in MKs and HUVECs. (C) Domain architecture of BAMBI, DCBLD2, ESAM and LRRC32 as predicted using the ELM resource. The length of the black line represents the number of amino acids with domain positions to scale. Domain acronyms: CUB (complement C1r/C1s, Uegf, Bmp1); F5_F8 (coagulation factor 5/8 type); IgSF (immunoglobulin fold); LCCL (Limulus factor C, Coch-5b2 and Lg11); LRR_1 (leucine rich repeats); LRRNT (leucine rich repeat N-terminal domain); SigP (signal peptide); TM (transmembrane domain).

Figure 2. Expression of novel transmembrane proteins in human platelets. (A-D) Flow cytometric detection of the novel transmembrane proteins was carried out in platelet rich plasma (i) or in permeabilized platelets (ii). Binding of individual antibodies to human platelets measured as fluorescence intensity is indicated by solid lines and matched pre-immune serum by dotted lines. Expression of each protein in human platelet lysates was analyzed by western-blot. Molecular weight markers are indicated on each blot in kDa. Bands of 67, 27, 85, and 40/43 kDa were detected, corresponding to ANTXR2, BAMBI, DCBLD2 and ESAM proteins, respectively.
The presence of LRRC32 in platelets using similar detection procedures has already been reported.2

Figure 3. Thrombus formation in GPIIb and FVIII MO-injected fish in a laser-induced arterial injury model. (A) Representative phenotypes of 3 dpf control siblings (i) and fish injected with 2 ng of GPIIb MO (ithg2a atg1, ii), 4 ng of FVIII MO (f8 sp2, iii) or co-injected with both MOs at 2 ng and 8 ng, respectively (iv). An intracranial hemorrhage, as observed in 5% of larvae, is indicated by arrowhead (iv). (B) Representative images of thrombus formation (arrows) two minutes post-injury in 3 dpf wild type larvae (i) or larvae injected with 2 ng of GPIIb (ii) or 4 ng of FVIII MOs (iii). CA: caudal artery, CV: caudal vein. White lines delineating each thrombus as carried out in Image J for determining thrombus surface area (TSA) are shown. (C) Representative images of thrombus formation in 4 dpf CD41-GFP fish controls (i), and siblings injected with 2 ng of GPIIb (ii) or 4 ng of FVIII (iii) MOs showing thrombocyte-rich thrombi. (D) Time to attachment (TTA) and (E) TSA (2 minutes post-injury) were measured and compared with un-injected sibling controls. Statistical analyses were performed using an unpaired student t test (**p<0.001; *p<0.05).

Figure 4. Effects of antisense knockdown of ANTXR2, BAMBI, DCBLD2, ESAM and LRRC32 zebrafish orthologs on thrombus formation. TTA (A) and TSA (B) in the MO-injected fish were compared to that of their matched sibling controls. Each experiment is representative of more than four experiments including similar numbers for both groups, using two non-overlapping MOs. Zebrafish larvae were injected with the following MOs: 2 ng ANTXR2 atg1, 2 ng ANTXR2 sp1, 2 ng BAMBI atg1, 1 ng
BAMBI sp1, 4 ng DCBLD2 atg1, 0.5 ng DCBLD2 sp1, 1 ng ESAM sp1, 12 ng ESAM sp2, 4 ng LRRC32 atg1 or 2 ng LRRC32 sp1. Statistical analyses were performed using an unpaired student t-test (**p<0.005; *p<0.05). (C) Results from all experiments and for each of the 2 MOs tested per gene were combined for TTA (white bars) and TSA (grey bars) using Cox regression and linear mixed modeling, respectively, as described in Materials and Methods (***p<0.001; **p<0.005; *p<0.05). † TTA data for each DCBLD2 MO were significantly different and therefore were not combined; †† Results for TSA are applicable for esam sp1 only. Detailed p values for the combined and individual MO analysis are presented in Table 3.
Tables

Table 1. MO sequences

<table>
<thead>
<tr>
<th>HUGO ID</th>
<th>Zebrafish transcript*</th>
<th>MO</th>
<th>Sequence 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTXR2</td>
<td>ENSDART00000085367</td>
<td>antxr2 atg1</td>
<td>CGCTCCAGAGATTTTCCTTTTGTCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>antxr2 sp1</td>
<td>CGCAGATTTGGACTGGAATGAAAAA</td>
</tr>
<tr>
<td>BAMBI</td>
<td>ENSDART00000077732</td>
<td>bambi atg1</td>
<td>ACCACAGAGAAACCAGGCGATCCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bambi sp1</td>
<td>GATCTCTCCTGAAACAGAAAGC</td>
</tr>
<tr>
<td>DCBLD2</td>
<td>ENSDART00000089582</td>
<td>dcbl2 atg1</td>
<td>TGCATAATGCTAAAGTGTCCGATC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dcbl2 sp1</td>
<td>AGCCGTCCCCTGAAAAACACCCAGA</td>
</tr>
<tr>
<td>ESAM</td>
<td>ENSDART00000031181</td>
<td>esam sp1</td>
<td>GGAGGTACTGAAAGAGACAGAATGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esam sp2</td>
<td>GTTTCAATCTGAAACCCGGCAGC</td>
</tr>
<tr>
<td>F8</td>
<td>ENSDART00000014159</td>
<td>f8 sp1</td>
<td>CCTCATAATCCGGCCTGAAAAGCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f8 sp2</td>
<td>TGAAGTCTACTGAAACCCGGCAGC</td>
</tr>
<tr>
<td>ITGA2B</td>
<td>ENSDART00000016562</td>
<td>itga2b atg1</td>
<td>AATTCCAGTTTTGTCATTTCTCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>itga2b sp1</td>
<td>AACCACACACTAGCTGCAAGGG</td>
</tr>
<tr>
<td>LRRC32</td>
<td>ENSDART00000059478</td>
<td>lrrc32 atg1</td>
<td>TCAGTAATCCAGACAGTCCCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lrrc32 sp1</td>
<td>GCAGCAGGTTTCTGGACAGATCCAG</td>
</tr>
</tbody>
</table>

*Ensembl Identifier
Table 2. Percent identity of human and zebrafish orthologs

<table>
<thead>
<tr>
<th>HUGO ID</th>
<th>Human Ensembl Gene ID</th>
<th>Zebrafish Ensembl Gene ID</th>
<th>% identity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTXR2</td>
<td>ENSG00000163297</td>
<td>ENSDARG00000060520</td>
<td>57</td>
</tr>
<tr>
<td>BAMBI</td>
<td>ENSG00000095739</td>
<td>ENSDARG0000055381</td>
<td>74</td>
</tr>
<tr>
<td>DCBLD2</td>
<td>ENSG0000057019</td>
<td>ENSDARG0000062177</td>
<td>51 (ps)</td>
</tr>
<tr>
<td>ESAM</td>
<td>ENSG0000149564</td>
<td>ENSDARP000062563</td>
<td>39</td>
</tr>
<tr>
<td>ITGA2B</td>
<td>ENSG000005961</td>
<td>ENSDARG000018687</td>
<td>42</td>
</tr>
<tr>
<td>F8</td>
<td>ENSG0000185010</td>
<td>ENSDARG000015247</td>
<td>42</td>
</tr>
<tr>
<td>LRRC32</td>
<td>ENSG0000137507</td>
<td>ENSDARG000040621</td>
<td>38</td>
</tr>
</tbody>
</table>

*% identity of human to zebrafish translated amino acid sequence was calculated using ClustlW

ps, partial sequence
Table 3. Percentage change in TTA and TSA for each MO

<table>
<thead>
<tr>
<th>Protein</th>
<th>MO</th>
<th>TTA</th>
<th></th>
<th></th>
<th></th>
<th>TSA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean estimate</td>
<td>CI*</td>
<td>CI Low</td>
<td>CI High</td>
<td>P Value</td>
<td>Mean estimate</td>
<td>CI Low</td>
<td>CI High</td>
</tr>
<tr>
<td>ANTXR2</td>
<td>atg1</td>
<td>+2.6</td>
<td>-59.0</td>
<td>+40.3</td>
<td>0.9100</td>
<td>+15.3</td>
<td>-25.5</td>
<td>+78.3</td>
<td>0.5198</td>
</tr>
<tr>
<td></td>
<td>sp1</td>
<td>+45.9</td>
<td>-3.0</td>
<td>+71.6</td>
<td>0.0610</td>
<td>-33.1</td>
<td>-60.7</td>
<td>+13.8</td>
<td>0.1368</td>
</tr>
<tr>
<td></td>
<td>Comb†</td>
<td>+21.6</td>
<td>-16.0</td>
<td>+47.0</td>
<td>0.2200</td>
<td>-6.7</td>
<td>-35.1</td>
<td>+34.3</td>
<td>0.7083</td>
</tr>
<tr>
<td>BAMBI</td>
<td>atg1</td>
<td>+81.3</td>
<td>+39.3</td>
<td>+94.3</td>
<td>0.0053</td>
<td>-56.9</td>
<td>-77.9</td>
<td>-16.0</td>
<td>0.0141</td>
</tr>
<tr>
<td></td>
<td>sp1</td>
<td>+49.0</td>
<td>+12.6</td>
<td>+70.2</td>
<td>0.0140</td>
<td>-33.3</td>
<td>-54.3</td>
<td>-2.6</td>
<td>0.0364</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>+57.5</td>
<td>+30.3</td>
<td>+74.1</td>
<td>0.0007</td>
<td>-39.2</td>
<td>-57.0</td>
<td>-14.0</td>
<td>0.0055</td>
</tr>
<tr>
<td>DCBLD2</td>
<td>atg1</td>
<td>+46.1</td>
<td>+6.3</td>
<td>+69.0</td>
<td>0.0280</td>
<td>+65.8</td>
<td>+10.4</td>
<td>+149.1</td>
<td>0.0154</td>
</tr>
<tr>
<td></td>
<td>sp1</td>
<td>-41.6</td>
<td>-162.8</td>
<td>+23.7</td>
<td>0.2700</td>
<td>+33.1</td>
<td>-18.8</td>
<td>+118.2</td>
<td>0.2535</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+51.1</td>
<td>+9.5</td>
<td>+108.6</td>
<td>0.0126</td>
</tr>
<tr>
<td>ESAM</td>
<td>sp1</td>
<td>-6.0</td>
<td>-98.0</td>
<td>+43.3</td>
<td>0.8600</td>
<td>+129.5</td>
<td>+46.9</td>
<td>+259.8</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>sp2</td>
<td>-8.0</td>
<td>-68.0</td>
<td>+30.8</td>
<td>0.7400</td>
<td>+1.5</td>
<td>-30.1</td>
<td>+47.3</td>
<td>0.9388</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-7.0</td>
<td>-54.0</td>
<td>+25.3</td>
<td>0.7000</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>LRRC32</td>
<td>atg1</td>
<td>+14.5</td>
<td>-31.4</td>
<td>+44.3</td>
<td>0.4800</td>
<td>-31.2</td>
<td>-52.3</td>
<td>-0.8</td>
<td>0.0452</td>
</tr>
<tr>
<td></td>
<td>sp1</td>
<td>+53.5</td>
<td>+12.5</td>
<td>+75.3</td>
<td>0.018</td>
<td>-25.0</td>
<td>-54.7</td>
<td>24.3</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>+29.8</td>
<td>0.0</td>
<td>+50.8</td>
<td>0.0510</td>
<td>-29.3</td>
<td>-48.6</td>
<td>-2.7</td>
<td>0.0335</td>
</tr>
</tbody>
</table>

* Confidence Interval
† Combined analysis using appropriate statistical models for TTA and TSA (see Materials and Methods).
Figure 2

(A) ANTXR2

(B) BAMBI

(C) DCBLD2

(D) ESAM
Figure 4

A

TTA [seconds]

Control ANTXR2 Control BAMBI Control DCBLD2 Control ESAM Control LRRC32

B

TSA x 10^3 [pixels^2]

Control ANTXR2 Control BAMBI Control DCBLD2 Control ESAM Control LRRC32

C

% change

ANTXR2 BAMBI DCBLD2 ESAM LRRC32
Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins

Marie N O'Connor, Isabelle I Salles, Ana Cvejic, Nicholas A Watkins, Adam Walker, Stephen F Garner, Chris I Jones, Iain C Macaulay, Michael Steward, Jaap-Jan Zwaginga, Sarah L Bray, Frank Dudbridge, Bernard de Bono, Alison H Goodall, Hans Deckmyn, Derek L Stemple and Willem H Ouwehand