INCREASED SERUM LEVELS OF THE CHEMOKINE CXCL13 AND UP-REGULATION OF ITS GENE EXPRESSION ARE DISTINCTIVE FEATURES OF HCV-RELATED CRYOGLOBULINEMIA AND CORRELATE WITH ACTIVE CUTANEOUS VASCULITIS

Short Title: CXCL13 in HCV-related cryoglobulinemic vasculitis

Domenico Sansonno, M.D., Felicia Anna Tucci, B.Sc., Laura Troiani, M.D., Gianfranco Lauletta, M.D., Michele Montrone, M.D., Vincenza Conteduca, M.D., Loredana Sansonno, M.D., Franco Dammacco, M.D.

Department of Biomedical Sciences and Human Oncology
Section of Internal Medicine and Clinical Oncology
University of Bari Medical School, Bari, Italy

Corresponding Author:
Domenico Sansonno, M.D.,
Department of Internal Medicine and Clinical Oncology,
University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, 70124 - Bari, Italy.
Phone: +39 (80) 547.81.44
Fax: +39 (80) 547.81.44
e-mail: d.sansonno@dimo.uniba.it

Scientific Category: Chemokines
ABSTRACT

Chemokine CXCL13, also known as BCA-1 (B-cell attracting chemokine-1) or BLC (B-lymphocyte chemoattractant), is a major regulator of B cell trafficking. Hepatitis C virus (HCV) infection may be associated with B cell dysfunction and lymphoproliferative disorders, including mixed cryoglobulinemia (MC).

This study evaluates circulating levels of CXCL13 protein and specific mRNA expression in chronically HCV-infected patients with and without MC. Compared with healthy controls and HCV-infected patients without MC, CXCL13 serum levels were significantly higher in MC patients. The highest CXCL13 levels strongly correlated with active cutaneous vasculitis. CXCL13 gene expression in portal tracts, isolated from liver biopsy tissues with laser capture microdissection, showed enhanced levels of specific mRNA in MC patients with active cutaneous vasculitis. Specific CXCL13 gene mRNA expression was also up-regulated in skin tissue of these patients. These findings paralleled specific deposits of CXCL13 protein both in the liver and in the skin.

Our results indicate that up-regulation of CXCL13 gene expression is a distinctive feature of HCV-infected patients. Higher levels of this chemokine in the liver as well as in the skin of patients with active MC vasculitis suggest a possible interrelation between these biologic compartments.
INTRODUCTION

Chronic active liver disease (CALD) is an inflammatory disorder recognizing several etiologies and different pathogenetic mechanisms (1). Within inflamed liver, there is an accumulation of lymphoid and myeloid cells, including T and B cells (2). Local activation of these cells is thought to be essential in perpetuating the chronic inflammatory process and accelerating liver damage (3). T and B cells in CALD frequently accumulate in the portal tracts and organize follicle-like structures, with features of germinal centers (GC) (4). In these sites, local differentiation of follicular dendritic cells, plasma cells and antibody production may occur (5).

In hepatitis C virus (HCV) infection, distinct B cell expansions contribute to the formation of intraportal follicle-like structures (6, 7). Circulating B-cell clonotypes have been suggested to be of hepatic origin, indicating that IgH VDJ mutational activity is up-regulated in the hepatic microenvironment (8). Sequence analyses of IgH CDR-3 gene segments of intraportal B cell clonalities have revealed a wide range of variations, possibly implying that they are the result of an antigen-driven response (9). The occurrence of B cell clonal expansions in the liver of HCV-infected patients has been found to deeply influence the clinical picture, which appears to be strictly related to mixed cryoglobulinemia (MC) and, in general, to lymphoproliferative stigmata including high serum levels of rheumatoid factor (RF) and monoclonal gammopathy of undetermined significance (8). The relationship between emergence and persistence of intrahepatic or circulating B-cell clonotypes and HCV infection is still unknown. Accumulating evidence indicates that certain chemokines play a critical role in providing the appropriate environment for activation and expansion of naïve lymphocytes in response to signals delivered by antigen-presenting cells (10).

CXC ligand13 (CXCL13), also known as B cell-attracting chemokine 1 or B-lymphocyte-chemoattractant, is a member of CXC subtype of chemokine superfamily (11). It is critical for secondary lymphoid tissue development and distribution of lymphocytes within microenvironments (12). The gene mapped to chromosome segment 4q21 encodes a putative protein of 109 amino acids (11, 12). The primary CXCL13 receptor is CXCR5, a 7-transmembrane G-protein expressed by B lymphocytes (13), follicular B helper T cells (14), osteoblasts (15), podocytes (16), and skin-derived dendritic cells (17). Interestingly, CXCL13 and CXCR5 knockout
mice exhibit similar abnormalities, including impaired development of peripheral lymphoid organs, reduced B cell translocation to the B/T cell boundary and a lower antibody response (18). CXCL13 is constitutively expressed in the B cell follicles of secondary lymphoid organs (11), pleural and peritoneal cavities (18), and in ectopic lymphoid follicles within the synovial membrane of patients with rheumatoid arthritis (19).

We sought to determine the plasma levels of CXCL13 in patients with chronic HCV infection, with or without MC, a chronic B-cell lymphoproliferative disorder characterized by systemic vasculitis, which can potentially progress to frank B-cell non-Hodgkin’s lymphoma (20). Our data indicate that the high serum levels of CXCL13 protein in MC patients parallel those of specific mRNA expression in the liver and in the skin, and suggest that this chemokine plays a major role in the pathogenesis of cryoglobulin-related damage, likely through B cell deregulation and local production.
MATERIAL AND METHODS

Patients and controls

During the years 2003 to 2007, 46 patients were selected at the Liver Unit of the Department of Internal Medicine and Clinical Oncology, University of Bari Medical School. Eligibility criteria were as follows: no previous administration of interferons, steroids or immunosuppressive therapy; serum positive tests for anti-HCV antibodies and HCV-RNA; liver biopsy showing chronic active hepatitis; negative tests for HBsAg, HIV and anti-nuclear and anti-smooth muscle autoantibodies. Seventy-five patients were excluded because of concomitant neoplastic and cardiovascular diseases, poorly controlled diabetes, alcohol intake greater than 40 g/day, use of hepatotoxic drugs in the last six months, pregnancy and absence of informed consent.

The study was approved by the University of Bari Medical School institutional ethical committee and written informed consent was obtained from all patients, in accordance with the Declaration of Helsinki.

Activity score and degree of fibrosis in liver biopsy were evaluated according to Ishak et al (21). Among the 46 selected patients, serum cryoglobulins, isolated as described elsewhere (22), were detected in 20 (16 of type II and 4 of type III) in whom skin biopsy was provided under local anesthesia. Control skin samples were derived from: a) 4 healthy patients undergoing cosmetic surgery; b) 5 HCV-infected patients without MC who were subjected to saphenectomy; c) 3 patients with HCV-negative hypersensitivity vasculitis; d) 2 HBV-positive patients with necrotizing vasculitis; e) 5 patients with Henoch-Schönlein purpura; f) 2 with HCV and HBV-negative cryoglobulinemia. As controls, 5 liver samples from patients with non-alcoholic steatosis and 5 with near-normal liver obtained during cholecystectomy were considered.

Liver and skin biopsy specimens were in part formalin-fixed and paraffin-embedded for routine histological examination, and in part embedded in optimal cutting temperature (OCT; Miles Scientific, Naperville, IL, USA), snap-frozen and stored at -80°C until sectioning for use in immunofluorescence studies. Part of the biopsy samples was prepared for molecular analyses; the specimens were put in a
RNase-free microtube, and immediately frozen in liquid nitrogen until RNA extraction. Results of liver histology, epidemiology, virology and laboratory parameters are reported in Table 1.

HCV-infected patients, with or without MC, were treated with pegylated interferons (PEG-IFNs) and ribavirin (RBV) (23). Those infected with genotypes 2 or 3 were treated for 6 months, whereas all other patients received 12 months of antiviral therapy. Patients were reassessed 6 months after discontinuation of therapy to determine whether they had achieved a sustained virological response (SVR) (serum HCV RNA undetectable 6 months after treatment cessation). In the MC group, therapeutic response was evaluated as previously established (24). Complete response was defined as reduction of the cryocrit level to less than 25% of the initial value, associated to the disappearance of at least two of the following signs and symptoms: purpura, arthralgias and weakness.

Patients unresponsive to PEG-IFN/RBV combination therapy underwent B-cell depletion with an anti-CD20 monoclonal antibody (Rituximab) (Hoffmann-La Roche AG, Grenzach-Wyhlen, Germany). They received 4 intravenous infusions of 375 mg/m² once a week over a period of a month (25). After Rituximab treatment, patients were evaluated monthly for a period of 6 months. Those who were shown to be refractory also to anti-CD20 antibody therapy were given corticosteroids (6-methylprednisolone, 16 mg/die).

RT-PCR for CXCL13 mRNA expression

RNA was extracted from skin biopsy samples using TRIzol (Invitrogen Life Technologies, Gaithersburg, MD, USA) and reverse transcribed with oligo(dT) (Invitrogen Life Technologies) and random hexamer primers (Invitrogen Life Technologies). PCR was carried out with Taq DNA polymerase (AmpliTaq Gold, Applied Biosystem, Foster City, CA, USA). Primer pair for CXCL13 was: CAG AAT CCT CTG GAA CTT GAG (5’) and CTT CCA GAC ATT CGG AGA CC (3’). As control, transcripts of the “housekeeping” gene β-actin were amplified (GTC CTC TCC CAA GTC CAC ACA (5’) and CTG GTC TCA AGT CAG TGT ACA GGT AA (3’). Annealing temperatures were 58°C for CXCL13 and 56°C for β-actin. PCR products resolved on 3% agarose gel were 368bp the CXCL13 cDNA size and 241bp that of β-actin. Negative controls lacking template RNA or RT were included in each
experiment. The identity of the PCR-amplified fragments was defined by direct sequencing on ABI PRISM 377 (Applied Biosystem).

Quantitative real-time RT-PCR on portal tracts isolated from liver biopsy sections by laser capture microdissection (LCM)

Quantitative real-time RT-PCR was performed in order to define CXCL13 gene expression in portal tract structures, isolated from liver biopsies by a LCM technique, as described elsewhere (26). Frozen liver tissue specimens were cut as a series of 5 µm sections and mounted on slides coated with thermoplastic membrane (PEN foil slides, Leica Microsystems, Wetzlar, Germany). Each section was used for tissue isolation by LCM with the Leica SVS LMD System (Leica Microsystems). Portal tracts were selectively dissected by focal melting of the membrane with an ultraviolet laser beam. Dissected microsamples were dropped into cap tubes under microscopy inspection. To minimize degradation of nucleic acids, slides were fixed in ethanol (70%) and washed in diethylpyrocarbonate-treated deionized water. Isolated portal tracts were lysed in 50 µl lysis buffer. After cooling at room temperature (r.t.), 20 µl of precipitation solution were assessed. Samples were then centrifuged and supernatants were transferred into tubes containing 60 µl 100% isopropanol and 1.0 µl glycogen (20 mg/ml). After centrifugation, pellets were washed with 70% ethanol and air dried. mRNA was isolated by means of QIAshredder columns and RNeasy kit from Qiagen (Hilden, Germany). As controls, portal tracts were recovered from 5 patients with non-alcoholic steatosis and 5 with near normal liver obtained during cholecistectomy.

One hundred ng of RNA primed with oligo (dt) and reverse transcribed were used for 20 µl reactions. Specific mRNA was quantified by real-time RT-PCR Light Cycler Systems (Roche Diagnostics GmbH, Roche Applied Science, Penzberg, Germany). The expression level of CXCL13 gene was relative to the β-actin gene used as internal control. The final expression was formulated by the amplification coefficient, calculated by determining the crossing point (number of cycles required to reach a set threshold) for a series of 2-fold dilutions of cDNA template. The calculated crossing point was used as a measure of gene specific RNA quantity, and fold expression was calculated by the following equation: $K_{gene}^{\Delta C_p}$, where K_{gene} is the amplification coefficient, and ΔC_p is (the crossing point for RT-PCR patients) –
(the crossing point for the RT-PCR from normal controls) for the gene. An increase of RNA levels lower than 2-fold was not considered significant.

Immunooassay for serum human CXCL13 protein

Quantitative determination of serum CXCL13 was performed with Quantikine kit (R&D Systems Inc, Minneapolis, MN, USA; cat No DCX130), a quantitative sandwich enzyme immunoassay which makes use of a mouse monoclonal antibody against human CXCL13 pre-coated onto a microplate (892424, cat.no.). Human recombinant CXCL13 protein (895840 cat.no.) at serial concentrations and two-fold diluted serum samples were pipetted into the wells in order to allow any CXCL13 to be bound by immobilized antibody. After washing away unbound substances, a mouse monoclonal antibody conjugated with horseradish peroxidase specifically directed against CXCL13 protein (892425 cat.no.) was added to the wells. Following further washings, stabilized tetramethylbenzidine was added to the wells and color developed in proportion to the amounts of bound CXCL13. Quantikine kit standards were used for construction of standard curves. The sensitivity threshold of the test was 2 pg/mL.

Immunofluorescence for CXCL13 protein

Indirect immunofluorescence to detect CXCL13 in liver and skin biopsy samples was performed with goat anti-human CXCL13 antibody (R&D Systems, Inc) at working concentration of 15 µg/ml. Tissues were cut into 6 µm sections, dried at r.t. for 1 hr, and fixed in acetone at -20°C. Human tonsil sections were treated in the same manner as positive control. Samples were incubated with primary antibody for 3 hr at r.t. Isotype–matched antibodies were used for control staining. Thereafter, FITC-conjugated rabbit anti-goat antibody, F(ab)’2 fragment (Dako, Glostrup, Denmark), was used as the secondary reagent. It was incubated for 2 hr at r.t.. Slides were then cover-slipped with aqueous medium and evaluated under fluorescence microscopy. To block positive reaction on selected samples, the primary antibody was pre-incubated with human recombinant CXCL13 protein (5 ng/ml) (R&D Systems Inc.). Omission of primary antibody and use of irrelevant antibody (anti- human chorionic gonadotropin: HCG) were also performed.
Statistical analysis

Significance of differences in the distribution of quantitative variables was assessed with one-way analysis of variance. All p values were 2-tailed and a level of 0.05 was considered statistically significant. The probability of response to therapy was assessed by the Kaplan-Meier method. Cox’s regression model was used for univariate analysis to measure degree of association between serum levels of CXCL13 and virologic and immunologic parameters.

RESULTS

Study population

Twenty patients with MC (16 of Type II and 4 of Type III) and 26 without extrahepatic disorders were considered in this study. As reported in Table 1, all were chronically infected with HCV. The number of females was significantly higher in MC patients (p<0.05). CALD was histologically defined in the patients of the two groups, in which cirrhosis was almost equally distributed. Except for a moderate prevalence of HCV genotype 2 in MC patients, no distinct profile of their distribution was detected.

Skin histology from the MC group showed leukocytoclastic vasculitis in 5 patients, and lymphocytic vasculitis in 4, whose clinical presentation was characterized by palpable purpura at lower extremities, leg ulcers, and blistering erythematous urticarial plaques. Pandermal vasculitis included thrombosis and severe endothelial cell alterations. Eleven patients belonging to the asymptomatic group showed pauci-inflammatory vasculopathy, focal perivascular infiltrates and sparse, hyalinizing vascular changes.

Serum CXCL13 protein

Compared with 30 healthy blood donors (19 men and 11 females with a mean age of 55±11 yr), serum CXCL13 levels showed progressively higher mean levels when patients without and with MC were considered (48.2 ± 11.0 vs 113.9 ± 40.2 pg/ml, mean ± SD: p<0.01; vs. 273.6±98 pg/ml, mean ± SD: p<0.005, respectively).
Cross-sectional analysis showed that CXCL13 serum levels in MC patients were significantly higher than those found in patients without MC (p<0.04).

The relationships between CXCL13 serum levels and virological, histological, and immunological parameters are depicted in Table 2. In each group, no correlation was observed between CXCL13 concentration and circulating viral load, liver histology activity index or grade of liver fibrosis and ALT levels. In addition, in MC patients no correlation was seen between CXCL13 levels and cryocrit percentages, serum IgM, RF activity, and C4 concentration.

Patients of the MC group were stratified according to the occurrence of active or non-active phase of cutaneous vasculitis. Laboratory findings and clinical features of the 2 subgroups are summarized in Table 3. Though not significant, the average cryocrit value was lower in patients with active vasculitis, whereas type III MC occurred more frequently in those with non-active vasculitis. Serum γ-globulin and IgM levels, RF activity and complement C4 concentration were almost similar in the 2 subgroups, and not dissimilar was the frequency of nephropathy and peripheral neuropathy. Conversely, a significantly higher value (p<0.001) of CXCL13 serum concentration was demonstrated in patients with active cryoglobulinemic vasculitis, whereas the mean serum concentration of CXCL13 in MC patients without active vasculitis was comparable to that found in non-MC patients.

In situ CXCL13 immunodetection and gene quantitation

CXCL13 protein, studied by indirect immunofluorescence on skin biopsy samples of cryoglobulinemic patients, was mostly expressed along interstitial array between collagen bundles and involved the superficial dermis with variable mild/deep dermal extension in patients with active vasculitis (Fig. 1B). No CXCL13-protein deposition was detected in skin biopsy tissues from controls that included healthy subjects and HCV-infected patients without MC (Fig. 1C).

Consistent with immunofluorescence results, we demonstrated a definite expression of CXCL13 mRNA, amplified with RT-PCR, extracted from frozen skin samples of patients with cryoglobulinemic vasculitis. No amplifiable product was shown in patients with non-active vasculitis (Fig. 1E) and in controls (data not shown). CXCL13 amplicons fulfilled criteria of specificity under electrophoresis and direct sequencing of both forward and reverse DNA strands.
CXCL13 protein and specific mRNA expression were also explored in 12 control HCV-negative patients. Both CXCL13 protein and specific RNA were demonstrated in skin biopsy samples in 1 out 3 HCV-negative patients with hypersensitivity vasculitis, in the 2 patients with HBV-associated necrotizing vasculitis, in 3 of 5 patients with Henoch-Schönlein purpura and in 1 of 2 HBV and HCV-negative cryoglobulinemic patients. In these patients, CXCL13 protein was expressed to a variable extent: while expression was detected in restricted areas of the sections, other sections displayed expression within or around focal inflammatory infiltrates (not shown). In any case, protein expression paralleled that of specific mRNA.

CXCL13 immunoreactive deposits were found in 18 of 20 (80%) and in 16 of 26 (61%) liver biopsy samples from patients with and without MC respectively. Details regarding immunodetection of CXCL13 protein are shown in Fig. 2. Hepatocytes and bile duct epithelium were not stained. On the contrary, intense expression of CXCL13 protein was evident in inflammatory cells within portal tracts and, less frequently, into the sinusoids. The following two main immunofluorescence patterns of CXCL13 protein expression were established: i) granular bead-like deposits mimicking follicle-like structures within portal tracts (Fig. 2B); ii) fine as well as coarse dot-like immunofluorescence diffusely extending to the entire region of portal tract or confined to some defined areas (Fig. 2C). Furthermore, CXCL13-containing cells were found into sinusoidal inflammatory cells (Fig. 2C and 3C). Indeed, CXCL13 follicle-like labeling pattern and intrasinusoidal positivity were features more frequently found in patients with MC (83%) than in those without (31%). Sometimes, the 2 features of CXCL13 immunodetection coexisted in the same section.

Assessment of CXCL13 specificity was carried out on both liver and skin positive samples before and after the absorption of the probe with recombinant CXCL13 protein. Pre-incubation with CXCL13 protein completely abolished the positive signal, whereas the signal was unchanged when an irrelevant protein (HCG: human chorionic gonadotropin) was used (data not shown).

Quantitative real-time RT-PCR assay for specific CXCL13 mRNA expression was performed on nucleic acids recovered from LCM-based microsamples. Several laser pulses were used to obtain microdissected portal tracts of comparable size (460,078 ± 65,780 µm², mean ± SD) from both groups of patients. After microscopic

11
control of tissue preservation and demonstration of RNA integrity, liver biopsy sections were used for LCM (Fig. 3A).

Quantitative differences in specific CXCL13 mRNA expression in the liver of MC patients were defined and compared with CXCL13 quantity normalized with β-actin levels in portal tracts (Fig. 3B). MC patients with active vasculitis were shown to express 4 to 15-fold more CXCL13 than MC patients with non-active vasculitis and 5 to 30-fold more than patients without MC.

Therapy-induced modifications of serum CXCL13 levels

Due to the potential key role of B cells in the pathophysiology of MC, changes in CXCL13 levels were investigated in patients who underwent different therapeutic protocols. The results showed that CXCL13 levels were not affected by the PEG-IFN-α/RBV combination or Rituximab, but were significantly reduced following corticosteroid therapy. Indeed, in 12 MC patients treatment with IFN-α/RBV resulted in a dramatic improvement of cryoglobulin-related signs and symptoms, a remarkable decrement of the cryocrit and a drastic lowering in the viral load, but CXCL13 levels remained largely unchanged. Similar features were detected in 5 patients treated with Rituximab, in whom the reduction of the cryoprecipitate occurred in step with a progressive increase of HCV viremia. Conversely, in 3 patients treated with corticosteroids a significant decrease of the serum concentration of CXCL13 was noticed, while levels of cryoprecipitates and circulating viral load remained mostly unchanged.
DISCUSSION

Many viruses, including HCV, play a critical role in a wide variety of inflammatory processes by regulating the expression of transcriptional factors and pro-inflammatory genes, including TNF and members of its superfamily, interleukins, and chemokines (27). Chemokines have been shown to orchestrate migration to and preferential sequestration of B and T cells in HCV-infected compartments (28). Indeed, an increased number of circulating B cells has been demonstrated in these patients, likely reflecting deregulation of B–cell traffic (29, 30). The homeostatic trafficking of B cells is mainly regulated by the chemokine CXCL13 through interaction with CXCR5, its only known receptor, expressed on all mature circulating B cells and on a subset of memory CD4 T cells in healthy people (13, 14).

In the present study, serum CXCL13 levels were found to be elevated in chronic HCV infection as compared with healthy controls. The highest levels occurred in HCV-infected cryoglobulinemic patients. Usually, chemokines associate with endothelial cells and the extracellular matrix near the site of their production, but elevated levels of specific chemokines have been reported in the serum of HCV-infected patients, including CXCR3-binding chemokines (CXCL9, CXCL10, CXCL11) (31). It can be inferred that the high serum levels of these chemokines may be a consequence of high local production. In particular, CXCL13 expression may be induced by the ongoing hepatic inflammation, which maintains the pathological process in the tissue by attracting additional lymphocytes and leading to chronic damage. We have been unable to demonstrate any direct relation between serum concentrations of CXCL13 and either fibrosis score or inflammatory index of liver histology. This strongly emphasizes the major role of the nature and composition of inflammatory cells in the portal tracts, which seem to be essential in the production of large amounts of CXCL13 chemokine.

The mechanism(s) underlying the different production between HCV-infected patients with cryoglobulins and those without remains to be elucidated. In this context, the formation of follicle-like structures in portal tracts of the liver of patients with chronic HCV infection may be considered the morphological counterpart of ectopic lymphoid tissue which includes naïve B cells in the central zone surrounded
by mature B and T cells (32). A more frequent formation of intraportal lymphoid follicles in MC patients compared to patients without MC has been reported (33). It is assumed that these structures contribute to antigen presentation in situ, to clonal expansion of antigen-specific B and T cells, and to switching of an acute inflammation into a chronic one (34).

In this study, CXCL13 expression was recognized in the liver of MC patients with morphological pictures of follicle-like structures, suggesting its major role in the organization and maintenance of ectopic lymphoid tissue. CXCL13 chemokine may attract B cells and initiate the formation of germinal centers, thus contributing to the development of chronic inflammation (35, 36).

A genetic polymorphism of CXCL13 could explain the different levels of CXCL13 in MC patients compared to those without MC. Although there are no data describing such polymorphism, several high-producer alleles of proinflammatory cytokines have been associated with HCV infection (37, 38). Whether a CXCL13 high-producer allele is associated with MC patients, remains to be explored. Another possibility is that T-regulatory CD4⁺ CD25⁺ cells that are defective in MC patients (39) could influence the production of chemokine by stromal cells. This hypothesis also deserves further investigation.

Of note, no direct correlation between CXCL13 serum levels and circulating viral load was noticed. Though these findings may indicate the lack of a direct effect of the virus on the sources of CXCL13 production, they do not highlight the in situ relation between HCV and CXCL13 producer cells.

HCV minus strand RNA, the viral replicative intermediary, was frequently found in lymph nodes of HCV-infected patients (40). Recently, evidence of productive HCV infection was unequivocally achieved in lymphomonocytes of MC patients, but not in those without MC, implying lymphoid compartmentalization of active viral replication (41). Thus, it can be speculated that lymphoid productive infection of HCV particles in MC patients can be effective on CXCL13-producing cells.

The demonstration of CXCL13 in the skin of cryoglobulinemic patients with active cutaneous vasculitis indicates its involvement in the pathogenesis of tissue damage. No previous informations are available concerning the expression of this molecule in the skin of these patients. At variance from cutaneous lymphoproliferative B-cell disorders, in which CXCL13 was detected as a cell-
associated molecule constantly expressed by neoplastic B cells and follicular
dendritic cells within lymphoid infiltrates (42), we established a staining pattern
consisting of a diffuse expression of CXCL13 protein in the dermis along collagen
bundles. This feature, with variable expression in the different areas of the dermis,
paralleled the expression of specific mRNA signal, suggesting that CXCL13 is
dependent on up-regulation of CXCL13-producing cells. Lack of CXCL13-positive
cells in the skin may be the result of interference of reacting CXCL13 molecules on
the cells through steric hindrance or else, as recently suggested, skin-derived
dendritic cells, under favourable pressure of chemokines and chemokine receptors,
may rapidly migrate to lymph nodes (43). A similar feature of CXCL13
immunoreactant deposits was recently described in normal and aberrant gut-
associated lymphoid tissue (44).

CXCL13 was mainly associated with extracellular fibrils and to a much lower
extent with cells displaying a follicular dendritic cell phenotype. Notably,
monocytes/macrophages are potent inducible producers of CXCL13 (45) in
inflammatory sites. It has been suggested that extravasated monocytes in
inflammatory lesions may give rise to cells capable of producing this chemokine (45),
as it likely occurs in the skin of cryoglobulinemic patients with active vasculitis.
Although monocytes/macrophages do not constitutively express CXCL13, they need
a certain level of activation to secrete it.

To establish whether CXCL13 changes contributed to the success of therapy,
serum levels of this chemokine were monitored throughout the administration of
different treatments including IFN-α/RBV combination, Rituximab and corticosteroids.
Chemokine levels did not change after both a successful response to antiviral
therapy and B-cell depletion induced by Rituximab. On the contrary, CXCL13
significantly declined during and after corticosteroid treatment. Though additional
studies on a larger number of patients are needed to strengthen these findings, our
results indicate that neither the cryoglobulin concentration nor the viral load play an
effective role in determining vascular damage in HCV-associated cryoglobulinemic
vasculitis. It has been assumed that lymphoid cells in inflammatory sites
predominantly interact with antigen-presenting cells, including
monocytes/macrophages and dendritic cells (46). Chronic inflamed liver contains
lymphoid aggregates sharing many of the structural and functional features of
secondary lymphoid tissue (4, 5). Stromal cells within inflamed tissue overproduce
chemokines that have been shown to play an important role in lymphoid organogenesis (47). Accumulation of lymphocytes in germinal center-like structures is associated with ectopic expression of CXCL13 chemokine (48). In this context, unchanged levels of CXCL13 in cryoglobulinemic patients responsive to PEG-IFN-α/RBV and to Rituximab may be the result of inappropriate spatial and temporal expression of CXCL13 by stromal cells. Conversely, effective control of CXCL13 levels by corticosteroids may be largely mediated by inhibition of the transcriptional activity of several genes encoding pro-inflammatory cytokines and chemokines (49).

In summary, in this study we have observed that patients with HCV infection have increased plasma levels of CXCL13, possibly as the result of overproduction in the liver and the skin. In patients with cryoglobulinemia, CXCL13 contributes to lymphoid homing in the liver by creating a local microenvironment supportive of focal B-cell aggregation with structural features remarkably similar to ectopic lymphoid follicles. In these patients, CXCL13 production seems to be involved in the exacerbation of cryoglobulinemic vasculitis, likely through aberrant dissemination of ‘antigen-priming’ information from the liver to extrahepatic sites. Thus, HCV-related vasculitic damage is the result of multifaceted pathogenetic mechanisms, in which immune reactants are differently regulated, and explains why tailored therapeutic manipulations may be required to treat cryoglobulinemic vasculitis.
Acknowledgements
This study was supported in part by grants from: Italian Ministry of University and Research (MUR), Associazione Italiana per la Ricerca sul Cancro (AIRC), and University of Bari.

All Authors have no conflicts of interest to disclose.

Author’s contribution statement
D. Sansonno: designed research, analyzed data, wrote the paper
F.A. Tucci: performed research
L. Troiani: performed research
G. Lauletta: performed research, analyzed data, wrote the paper
M. Montrone: performed research
V. Conteduca: performed research
L. Sansonno: performed research
F. Dammacco: designed research, analyzed data, wrote the paper
REFERENCES

FIGURE LEGENDS

FIGURE 1. Demonstration of CXCL13 protein and CXCL13 mRNA in skin biopsy samples. (A): H&E staining of skin sample from a patient with cryoglobulinemic active vasculitis. (B): CXCL13 protein immunofluorescence staining in skin biopsy showing feature of active vasculitis. CXCL13 specific signal appears as linear green deposits along collagen bundles. (C): complete absence of CXCL13 immunoreactant in skin tissue of a MC patient without active phase of vasculitis. (D): positive control staining in human tonsil. (E): RT-PCR analysis of CXCL13 mRNA extracted from MC patients with and without active cryoglobulinemic vasculitis.

FIGURE 2. CXCL13 immune deposits in the liver of HCV-infected patients. (A): H&E staining of liver biopsy from a MC patient. Note enlarged portal tract containing infiltrating inflammatory cells with follicle-like structure (inset 1). Phenotypic characterization of inflammatory cells is depicted in insets 2 to 4. B cells, T cells and monocytes/macrophages were studied by indirect immunohistochemistry using mouse anti-CD3, anti-CD20 and anti-CD68 antibodies and revealed with anti-mouse immunoglobulins conjugated with alkaline phosphatase in sections adjacent to inset 1. All 3 cell populations are abundantly present within inflamed portal tract. (B): follicle-like appearance of CXCL13 protein restricted to a portal tract structure on a section adjacent to panel (A). (C): CXCL13 deposits are homogeneously distributed in portal tract and in hepatic sinusoids. (D): Higher magnification demonstrates that CXCL13 is present on intrasinusoidal inflammatory cells and along sinusoidal walls.

FIGURE 3. CXCL13 mRNA expression in LCM-based portal tracts. Example of LCM is reported in (A). Enlarged portal tract with heavy inflammatory infiltrate and lymphoid aggregate with appearance of lymphoid follicle was dissected by laser
beam along yellow dotted line from cryostat section of liver biopsy. (B) Quantitative real-time RT-PCR performed on nucleic acids extracted from microdissected portal tracts of HCV-infected patients without and with MC and controls. Mean ± SD for each group is indicated.
Table 1: Epidemiological, virological and histological data of 46 chronically HCV-infected patients

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>WITHOUT</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF PATIENTS</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>AGE (yrs, mean ± SD)</td>
<td>56 ± 15</td>
<td>60 ± 14</td>
</tr>
<tr>
<td>SEX (M/F)</td>
<td>18/8</td>
<td>6/14*</td>
</tr>
<tr>
<td>HCV RNA POSITIVES (%)</td>
<td>26 (100)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>HCV GENOTYPES (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13 (50)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>2</td>
<td>11 (42)</td>
<td>10 (50)</td>
</tr>
<tr>
<td>3</td>
<td>2 (8)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>LIVER HISTOLOGY (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRONIC ACTIVE HEPATITIS</td>
<td>24 (92)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>CIRRHOSIS</td>
<td>2 (8)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>SOURCE OF INFECTION (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOOD/BLOOD PRODUCTS</td>
<td>3 (12)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>TRANSFUSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>23 (88)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>DURATION OF INFECTION (yrs)</td>
<td>28 ± 17</td>
<td>26 ± 12</td>
</tr>
</tbody>
</table>

*p < 0.05
Table 2: Mean virological, histological and immunological parameters, and pairwise correlation with serum CXCL13 concentrations in HCV infected patients without and with mixed cryoglobulinemia

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>WITHOUT Mean ± SD</th>
<th>r</th>
<th>p</th>
<th>WITH Mean ± SD</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULATING HCV-RNA (IU/mL)</td>
<td>1,100,238 ± 1,203,834</td>
<td>0.06</td>
<td>0.87</td>
<td>491,248 ± 655,695</td>
<td>0.17</td>
<td>0.54</td>
</tr>
<tr>
<td>SEVERITY OF LIVER DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ACTIVITY INDEX</td>
<td>5.7 ± 1.8</td>
<td>0.07</td>
<td>0.84</td>
<td>4.2 ± 2.2</td>
<td>0.08</td>
<td>0.83</td>
</tr>
<tr>
<td>• STAGE</td>
<td>2.9 ± 0.8</td>
<td>0.14</td>
<td>0.69</td>
<td>2.1 ± 0.78</td>
<td>0.39</td>
<td>0.29</td>
</tr>
<tr>
<td>• ALT (n.v.: 30-65 IU/L)</td>
<td>93 ± 50</td>
<td>0.54</td>
<td>0.09</td>
<td>75 ± 34</td>
<td>0.24</td>
<td>0.39</td>
</tr>
<tr>
<td>IMMUNOLOGICAL FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CRYOCRIT (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>7.0 ± 7.8</td>
<td>0.11</td>
<td>0.68</td>
</tr>
<tr>
<td>• SERUM IgM (n.v. 40-230 mg/dL)</td>
<td>120 ± 56</td>
<td>0.49</td>
<td>0.71</td>
<td>545 ± 818</td>
<td>0.37</td>
<td>0.16</td>
</tr>
<tr>
<td>• RHEUMATOID FACTOR (RF) ACTIVITY (n.v.: ≤ 20 IU/mL)</td>
<td>16 ± 9</td>
<td>0.7</td>
<td>0.88</td>
<td>1,850 ± 2,456</td>
<td>0.3</td>
<td>0.26</td>
</tr>
<tr>
<td>• COMPLEMENT – C4 (n.v.: 20-40 mg/dL)</td>
<td>22.9</td>
<td>0.78</td>
<td>0.67</td>
<td>7.0 ± 8.2</td>
<td>0.06</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Table 3: Clinical and immunological parameters of MC patients with active and non-active cutaneous vasculitis

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>ACTIVE (9)</th>
<th>NON ACTIVE (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURPURA (%)</td>
<td>9 (100)</td>
<td>0</td>
</tr>
<tr>
<td>URTICARIAL LESIONS (%)</td>
<td>3 (33)</td>
<td>0</td>
</tr>
<tr>
<td>LIVEDO RETICULARIS (%)</td>
<td>2 (22)</td>
<td>0</td>
</tr>
<tr>
<td>LEG ULCERS (%)</td>
<td>6 (66)</td>
<td>0</td>
</tr>
<tr>
<td>CRYOCRIT (%; mean ± SD)</td>
<td>3.76 ± 1.2</td>
<td>8.14 ± 2.8</td>
</tr>
<tr>
<td>C Y R O G L O B U L I N IMMUNOCHEMICAL TYPES (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE II</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TYPE III</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>γ-GLOBULIN LEVELS (n.v.: 0.7 – 1.8 gr/dL; mean ± SD)</td>
<td>1.16 ± 0.7</td>
<td>1.13 ± 0.9</td>
</tr>
<tr>
<td>SERUM IgM (n.v.: 40 – 230 mg/dL; mean ± SD)</td>
<td>400 ± 114</td>
<td>413 ± 190</td>
</tr>
<tr>
<td>RF ACTIVITY (n.v.: ≤ 20 IU/mL; mean ± SD)</td>
<td>390 ± 110</td>
<td>415 ± 167</td>
</tr>
<tr>
<td>COMPLEMENT C4 (n.v.: 20 – 40 mg/dL; mean ± SD)</td>
<td>4.1 ± 2.1</td>
<td>5.3 ± 1.9</td>
</tr>
<tr>
<td>CXCL13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERUM CONCENTRATION (pg/mL; mean ± SD)</td>
<td>325 ± 160*</td>
<td>112 ± 32</td>
</tr>
<tr>
<td>PERIPHERAL NEUROPATHY (%)</td>
<td>4 (44)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>NEPHROPATHY (%)</td>
<td>2 (22)</td>
<td>2 (18)</td>
</tr>
</tbody>
</table>

*p < 0.001
Fig. 1

A

B

C

D

E

CXCL13 mRNA (368 bp)

β-Actin mRNA (241 bp)

ACTIVE VASCULITIS

NON ACTIVE VASCULITIS
Fig. 2
Increased serum levels of the chemokine CXCL13 and upregulation of its gene expression are distinctive features of HCV-related cryoglobulinemia and correlate with active cutaneous vasculitis

Domenico Sansonno, Felicia Anna Tucci, Laura Troiani, Gianfranco Lauletta, Michele Montrone, Vincenza Conteduca, Loredana Sansonno and Franco Dammacco

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.