Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses

Fedde Groot¹, Sonja Welsch², and Quentin J. Sattentau¹

¹The Sir William Dunn School of Pathology, ²Wellcome Trust Centre for Human Genetics, Division of Structural Biology, University of Oxford, United Kingdom

* Corresponding author
The Sir William Dunn School of Pathology
The University of Oxford,
South Parks Road,
Oxford OX1 3RE, UK

tele: +44 1865 275510
fax: +44 1865 275511

Running title: HIV-1 spread from macrophages to T cells

key words: HIV-1, macrophage, T cell, virological synapse
Abstract
Macrophages are reservoirs of HIV-1 infection, proposed to transmit virus to CD4+ T cells, the primary target of the virus. Here we report that human monocyte-derived macrophages (MDM) rapidly spread HIV-1 to autologous CD4+ T cells resulting in productive infection. Transmission takes place across transient adhesive contacts between T cells and MDM, which have the features of a virological synapse including co-polarization of CD4 on the T cell with HIV-1 Gag and Env on the macrophage. We propose that an infected MDM can infect at least one T cell every six hours. Since HIV-1-infected macrophages can survive for many weeks, these results highlight the central role played by macrophages in HIV-1 infection and pathogenesis.
Introduction

Macrophages are central players in HIV-1 pathogenesis: they are among the first cells infected by the virus, and have been proposed to spread infection to the brain and to form a long-lived virus reservoir\(^1,2\). Two recent studies have shown that HIV-1 in macrophages assembles in a newly-identified intracellular compartment that is a large and complex invaginated plasma membrane domain\(^3,4\). The function of this compartment is unknown, but presumably HIV-1 may be stored here, protected from effector elements of the humoral immune system.

In direct T cell-T cell spread of HIV-1, we and others have demonstrated that HIV-1 forms a ‘virological synapse’ (VS)\(^5\)\(^-\)\(^8\). The VS is a multi-molecular complex that forms at the interface between HIV-1-infected and uninfected, receptor-expressing cells. Its assembly is driven by gp120-CD4-coreceptor interactions and depends upon stable cell-cell junctions maintained by adhesion molecules\(^5,9\). Direct T cell-T cell spread is likely to be the dominant mode of viral spread between these cells in culture, and probably in vivo\(^7\). HIV-1 also appears to spread from dendritic cells to T cells via a VS\(^10\). HIV-1-infected MDM can also transmit virus to PBL\(^2,11\), but the underlying mechanism has not been elucidated.

Here, we investigated the transfer of HIV-1 from MDM to autologous CD4\(^+\) T cells, and found that transfer of virus is rapid, and takes place across transient VS between T cells and MDM.

Materials and methods

Human MDM were generated and infected with HIV-1\(_{BaL}\) as described\(^4\), and maintained in X-VIVO medium (Lonza, Walkersville, MD) containing 1% autologous heat-inactivated and filtered serum. Autologous CD4\(^+\) T cells were negatively selected from PBL (Miltenyi-Biotec, Bergisch-Gladbach, Germany). Samples were fixed and stained as described\(^3,12\), and were mounted in ProLong Gold antifade reagent (Invitrogen, Carlsbad, CA), and analyzed at RT using a non-inverted Zeiss LSM5 Pascal microscope, linked to Pascal software V4.2SP1. Images were acquired using a 63x oil immersion objective (1.4 aperature) and processed using Adobe Photoshop V8.0.
Staining/washing buffer contained 5% human and goat serum. Antibodies used were L12013 (CFAR, UK) with donkey-anti-mouse-FITC (Jackson ImmunoResearch, Suffolk, UK), mouse-anti-Gag-p17 (NIBSC, 4C9) with goat-anti-mouse-IgG2a-alexa647 (Invitrogen), and biotinylated-2G1214 (endogenous biotin blocked with biotin-block (Invitrogen)) with streptavidin-Tritc (Jackson). Samples for electron microscopy (EM) were prepared and analyzed as described using a JEM-2000EX microscope (JEOL, Tokyo, Japan), or with a Tecnai F-30 microscope (FEI, Eindhoven, Netherlands).

For flow cytometry (FC), T cells were collected, fixed and stained for CD3 and CA-p24 as described. Inhibitors were 13B.8.2 (Coulter, Fullerton, CA), Q4120 (CFAR), T20 (NIH, USA), 2D7 (BD Biosciences, San Jose, CA) (all 10 µg/ml), AZT (NIH, 5 µM) and Tak-779 (NIBSC, 300 nM).

For quantitative real-time PCR (qPCR) samples, DNA was extracted as described. \(pol \)-primers: TGGGTTATGAACCTCCATCCTGA (sense), TGTCATTGACAGTCCAGCTGTCT (anti-sense). Reference-gene: human \(\beta \)-globin (AACTGGGCATGTGGAGACAGA (sense), CTAAGGGTGGAATAGACCAATG (anti-sense).

Results and Discussion

We co-cultured HIV-1-infected MDM (Figure 1A), with autologous CD4\(^+\) T cells for 6 hours, followed by fixation and staining for LSCM analysis. The T cells were pre-stained with CD4 non-blocking antibody, and after fixation and permeabilization, samples were stained for HIV-1 Gag and Env (Figure 1B,C). Since staining for HIV-1 Env in MDM is complicated by human antibodies binding efficiently to human Fc-receptors, we blocked with human serum and used biotinylated 2G12 to reduce background. A high proportion of MDM (>80%) in the co-culture had one or more T cells attached via the tip of a pseudopod-like extension of the T cell. In the majority of MDM in which HIV-1 Gag and Env were detected (10-30%, depending upon donor), these viral antigens colocalized with CD4 in the adherent T cells (1B,C). Colocalization of Gag, Env and CD4 was observed within 1 hour, and the proportion of MDM-T cell conjugates with colocalization of these antigens was maximal at 5-7 hours. Based on these data, we could not exclude the possibility that at least a proportion of the viral antigens were...
accumulating within the MDM at the contact site with the T cell, but virus was not infecting the T cell. However, we noted that the T cell contacts with the MDM were transient, and many T cells detached from the MDM after becoming Gag-positive, confirming that Gag was transferring to the T cell. To investigate this further, we carefully aspirated detached T cells from the MDM-T cell co-cultures, and analyzed them by LSCM (Figure 1D). We observed that 5-10% of the T cells were Gag-positive at 6 hours post co-culture. This confirmed that the interactions between MDM and T cells were short-lived, and combined with the data from 1B+C suggested that HIV-1 is efficiently transmitted to CD4+ T cells across a transient VS-like structure. This was reinforced by EM analysis of the contact zone between HIV-1-infected MDM and CD4+ T cells, which was characterized by tight adhesive junctions between the cells with regular gaps or pockets (Figure 1E). We found no evidence of cell-cell fusion, consistent with the lack of syncytium formation observed by LSCM. HIV-1 was detected within vesicular MDM-compartments similar to those previously described (1st panel Figure 1E), and virus was observed both proximal to, and in contact with, adherent T cells (2nd and 3rd panel). Further research will be required to determine how this virus-containing compartment in MDM relocates to the VS.

To quantify viral transmission, we harvested all T cells from co-cultures with MDM at various times, and analyzed the cells by FC. We stained for CD3 and intracellular HIV-1 Gag p24 in order to determine the percentage of HIV-1-positive T cells, and found that significant numbers (p<0.002 (ANOVA), as compared to t=0) of Gag-positive T cells could be detected after 1 hour (Figure 2A). After 12 hours, >12% of 5×10^5 T cells were Gag-positive. With an estimated average of 3×10^4 infected MDM per well, based on LSCM analysis and counting, we propose that each infected MDM is able to infect at least one T cell every 6 hours. To investigate the requirement for cell-cell spread compared to cell-free virus spread, we performed an experiment using a transwell system in which infected MDM were separated from T cells by a virus-permeable membrane. Figure 2B shows that after 10 hours co-culture, 8.5% of T cells that were in contact with HIV-1-infected MDM were infected. By contrast, cell-free virus infection resulted in 0.5% of HIV-1 infected cells, indicating that that cell-cell viral spread is >10-fold more efficient than cell-free spread. The presence of RT inhibitor AZT did not
reduce the percentage of Gag-positive T cells, demonstrating that the Gag measured by FC fully represents transmitted virus, and not newly produced Gag in the T cells. To investigate the role of HIV-1-receptor interactions, we tested antibody inhibitors of gp120-CD4 (13B.8.216, Q412013) and gp120-CCR5 (2D717), a small molecule inhibitor of gp120-CCR5 interaction (TAK-77918), and a fusion inhibitor (T2019). Viral transmission was substantially inhibited by CD4-blocking antibodies (Figure 2B) without any obvious reduction in the amount of MDM-T cell clustering, as confirmed by LSCM analysis (not shown). Blocking CCR5 with either 2D7 or TAK-779 gave more subtle but nevertheless significant inhibition, whereas T20 reduced transmission by more than 50%, indicating that gp41-mediated fusion plays a role in transmission by MDM, just as in dendritic15 and T cell5-mediated transmission. The inability of CCR5 antagonists to potently inhibit the presence of a HIV-1 Gag signal in the T cells might be interpreted as representing a proportion of CCR5-independent entry, in accord with another recent study8. However, another possibility is that HIV-1 particles released from infected MDM attach to the surface of T cells rendering them Gag-positive, but entry is inhibited due to CCR5 antagonists or T20. Part of the Gag signal in this experiment therefore may represent extra-cellular virus. We therefore set out to investigate whether MDM-mediated HIV-1 transfer established a productive infection in T cells. To do this we carefully aspirated detached T cells from MDM-T cell co-cultures at 0, 6, 12, and 24 hours, extracted DNA and performed qPCR for HIV-1 pol (Figure 2C). Our results demonstrated significant (p<0.02) de novo viral DNA synthesis within 6 hours of co-culture, rising to >20-fold above baseline at 24 hours, indicating that HIV-1 transmission results in rapid initiation of viral entry and reverse transcription in CD4+ T cells. Finally, productive infection of the T cells was confirmed in a replication-assay, where T cells harvested from MDM-T cell co-cultures were depleted of any residual MDM, cultured for an additional 5 days and supernatant p24 measured (Figure 2D).

Our data are consistent with a central role of MDM as an in vivo viral reservoir that efficiently seeds large numbers of T cells with HIV-1 via cell-cell spread across a VS. This finding has implications for viral pathogenesis in all immune tissues that contain cells of the macrophage lineage, with particular relevance to dense secondary lymphoid tissue.
Acknowledgements:
We thank Nicky Martin and Clare Jolly for helpful discussions, and the Centre for AIDS Reagents (CFAR), NIBSC and the NIH AIDS Research and Reference Reagent Program for reagents. This work was supported by fellowship number 106731 from The American Foundation for AIDS Research (amfAR), grant G0400453 from the MRC, UK and an award from the Neutralizing Antibody Consortium (NAC) of the International AIDS Vaccine Initiative (IAVI), USA.

Author contribution:
FG designed and performed the research, and wrote the paper; SW performed research; QJS designed research and wrote the paper.

The authors declare no competing financial interests.
References

Figure legends

Figure 1: Macrophages transmit HIV-1 to CD4⁺ T cells across a virological synapse-like structure. Human MDM were differentiated on glass coverslips for seven days prior to infection with 6 ng CA-p24 of the HIV-1_{Bal} isolate for a further 7 days. MDM were subsequently co-cultured with 5×10⁵ PHA/IL-2-activated autologous CD4⁺ T cells that were pre-stained for CD4. Unattached T cells were carefully removed by aspiration at various times after co-culture and incubated on poly-L-lysine-treated coverslips for 1 hour followed by fixation in 4% PFA. MDM were gently washed with warm RPMI, and were fixed together with remaining attached T cells. Samples were subsequently permeabilized and stained for Gag and Env, and analyzed by LSMC. (A) HIV-1-infected MDM in the absence of T cells. We used clone C49 to stain Gag-p17 which recognizes p17 cleaved from p55, representing mature virions. The right hand panel is a magnified image of the boxed region from the merged image. A white line is drawn to indicate the MDM cell membrane in A and B. (B and C) MDM-T cell co-cultures stained for CD4, Gag and Env (D) Detached CD4⁺ T cells stained for HIV-1 Gag and CD4. White scale bars in A-D: 10 µm. (E) EM analysis of the contact zone between HIV-1-infected MDM and CD4⁺ T cells. Cells were co-cultured for 5 hours in the presence of trace amounts of PHA (0.06 µg/ml) to stabilize clustered cells for sample preparation. M represents MDM; T represents CD4⁺ T cell, * represents virus-containing vacuolar compartment; V represents HIV-1 particles; arrows point to closely-apposed plasma membranes of MDM and T cells. Note that many of the cell and viral membranes appear dense and strongly contrasted by the presence of ruthenium red label. Black scale bars: 1 µm.

Figure 2: HIV-1 transmission to CD4⁺ T cells is receptor and fusion dependent, and results in productive infection. (A) HIV-1-infected MDM were co-cultured with autologous CD4⁺ T cells for 1-12 hours, followed by harvesting of the T cells with cold 5 mM EDTA/PBS. Cells were subsequently stained for CD3 and intracellular CA-p24 and analyzed by FC to determine the percentage of HIV-1 positive T cells. Data shown represent means of three independent experiments and error bars represent SEM. (B)
HIV-1-infected MDM were co-cultured with CD4+ T cells that had been pre-incubated with several inhibitors (1 hr, 37°C), followed by harvesting of the T cells after 10 hours, and staining for FC as in A. Alternatively, T cells were not added to MDM directly, but were separated by a transwell (0.3 μm pore size, Costar) to prevent cell-cell contact. Data represent the mean of triplicates in a single experiment and error bars represent + 1 SD. *p<0.02; **p<0.03; ***p<0.0001; ****p<0.00001, ANOVA. (C) Detection of HIV-1 reverse transcription using qPCR. HIV-1-infected MDM were co-cultured with autologous CD4+ T cells for 0, 6, 12 and 24 hours, followed by gentle aspiration of the T cells with warm RPMI, lysis, and DNA isolation and purification. qPCR using HIV-1 pol primers was performed to measure de novo viral DNA synthesis. Data were normalized to human β-globin. Data represent the mean of triplicates in a single experiment and error bars represent + 1 SD and * p<0.02, ANOVA (D) Replication of HIV-1 after transmission. CD4+ T cells were collected from 12 hour co-cultures with HIV-1-infected MDM, depleted of all MDM with CD14 beads (Milteny Biotec), and cultured for an additional week (10^5/well/250 μl). Viral replication was detected by p24 released into the supernatant by ELISA. Data represent the mean of quadruplicates in a single experiment and error bars represent + 1 SD.
Figure 1, Groot et al
Figure 2, Groot et al
Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses

Fedde Groot, Sonja Welsch and Quentin J. Sattentau