STEREOTYPED PATTERNS OF SOMATIC HYPERMUTATION IN SUBSETS OF PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA: IMPLICATIONS FOR THE ROLE OF ANTIGEN SELECTION IN LEUKEMOGENESIS

Fiona Murray1*, Nikos Darzentas2*, Anastasia Hadzidimitriou2,3*, Gerard Tobin1, Myriam Boudjogra4, Cristina Scielzo5, Nikolaos Laoutaris6, Karin Karlsson7, Fanny Baran-Marzsak8, Athanasios Tsaftraris2, Carol Moreno9, Achilles Anagnostopoulos3, Federico Caligaris-Cappio5, Dominique Vaur10, Christos Ouzounis2, Chrysovala Belessi6, Paolo Ghia5, Fred Davi4, Richard Rosenquist1, and Kostas Stamatopoulos3

From: (1) Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; (2) Computational Genomics Unit/ Institute of Agrobiotechnology, Centre for Research and Technology, Thessaloniki, Greece; (3) Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece; (4) Laboratory of Hematology and Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, Paris, France; (5) Laboratory and Unit of Lymphoid Malignancies, Department of Oncology, Università Vita-Salute, San Raffaele and Instituto Scientifico San Raffaele, Milano, Italy; (6) Hematology Department, Nikea General Hospital, Athens, Greece; (7) Department of Hematology, Lund University Hospital, Lund, Sweden; (8) Laboratory of Hematology, Hôpital Avicenne and EA 3046 Université Paris 13, Bobigny, France; (9) Institute of Hematology and Oncology and Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain; (10) Laboratory of Biology and Oncology, Centre François Baclesia, Caen, France.

*Fiona Murray, Nikos Darzentas and Anastasia Hadzidimitriou contributed equally to this work as first authors.

Running title: Somatic hypermutation patterns in CLL
Corresponding author:
Paolo Ghia, M.D., Ph.D.
Università Vita-Salute San Raffaele
Via Olgettina 58, 20132 Milano, Italy
Phone: +39-02-2643.4797/ Fax : +39-02-2643.4723
e-mail: ghia.paolo@hsr.it
ABSTRACT

We have examined somatic hypermutation (SHM) features in a series of 1967 immunoglobulin heavy chain gene (IGH) rearrangements obtained from patients with chronic lymphocytic leukemia (CLL) and compared them with IGH sequences from non-CLL B cells available in public databases. SHM analysis was performed for all 1290 CLL sequences in this cohort with <100% identity to germline. At the cohort level, SHM patterns were typical of a canonical SHM process. However, important differences emerged from the analysis of certain subgroups of CLL sequences defined by: (i) IGHV gene usage; (ii) presence of stereotyped heavy chain complementarity-determining region 3 (HCDR3) sequences; and (iii) mutational load. We demonstrate that recurrent, “stereotyped” amino acid changes occur across the entire IGHV region in CLL subsets carrying stereotyped HCDR3 sequences, especially those expressing the IGHV3-21 and IGHV4-34 genes. These mutations are under-represented among non-CLL sequences and thus can be considered as CLL-biased. Furthermore, we show that even a low level of mutations may be functionally relevant, given that stereotyped amino acid changes can be found in subsets of minimally mutated cases. The very precise targeting and distinctive features of SHM in selected subgroups of CLL patients provide further evidence for selection by specific antigenic element(s).
INTRODUCTION

Developing B cells generate a vast repertoire of antibody specificities through somatic recombination of distinct variable (V), diversity (D) (heavy chain only), and joining (J) genes to form the variable domain exons of immunoglobulins (IG)\(^1\). Unlike heavy chain complementarity determining regions (HCDR) 1 and 2, which are entirely encoded by the IGHV gene, HCDR3 is created \textit{de novo} by the VDJ recombination process\(^1\). The skewing of diversity to the HCDR3 implies that HCDR3 sequences are the principal determinants of specificity, at least in the primary repertoire\(^2\)-\(^3\). However, HCDR3 diversity is not enough to realize the full potential of antibody diversity\(^4\). Furthermore, unconventional antigens, such as B cell superantigens, may be recognized not via the CDRs but rather via the framework regions (FRs)\(^5\).

Somatic hypermutation (SHM) of IG variable genes forms a second round of diversification after somatic recombination which increases antibody diversity\(^6\). SHM has long been thought to occur mainly in the germinal centers (GCs) after antigen stimulation and in a manner dependent on T cell help\(^7\). Recent reports, however, suggest that SHM can be T cell independent and may also occur outside classical GCs\(^8\)-\(^13\).

In recent years, the mutational status of IGHV genes has been established as one of the most important molecular genetic markers in defining prognostic subgroups of chronic lymphocytic leukemia (CLL). CLL patients who carry IGHV genes with \(\geq 98\%\) identity to the closest germline gene (“unmutated”) follow a more aggressive clinical course and have strikingly shorter survival than patients carrying IGHV genes with \(< 98\%\) identity to germline (“mutated”)\(^14\)-\(^15\). The 98% cut-off was chosen as a short cut to exclude potential polymorphic variants\(^16\)-\(^19\) and has been used by the vast majority of studies to make the clinically relevant distinction between “mutated” and “unmutated” cases. Initially it was assumed that CLL cells expressing unmutated IGHV genes derived from naïve B cells. Nevertheless, it was subsequently demonstrated that all CLL cells, irrespective of IGHV gene mutation status, have a surface phenotype typical of antigen-experienced B cells and show gene expression profiles similar to memory B cells\(^14\),\(^20\)-\(^23\).

The CLL IG repertoire is characterized by over-representation of selected IGHV genes, in particular IGHV1-69, IGHV4-34, IGHV3-7 and IGHV3-21, although their relative frequencies vary between cohorts\(^14\),\(^24\)-\(^27\). SHM does not appear to occur uniformly among IGHV genes: for example, the IGHV1-69 gene is consistently
reported to carry very few mutations as opposed to the IGHV3-7, IGHV3-23 and IGHV4-34 genes, which typically show a high load of mutations14, 24-27.

Recently, multiple CLL subsets with distinctive IG heavy and light chain gene rearrangements were characterized and found to have remarkably stereotyped HCDR3 sequences within their B cell receptors (BCRs)27-34. The expression of stereotyped BCRs was reported as significantly more frequent among CLL patients with unmutated vs. mutated IGHV genes32, 34. CLL cases expressing stereotyped BCRs may also share unique molecular and clinical features, suggesting that a particular antigen-binding site can make a difference in terms of clinical presentation and possibly prognosis30, 34. For instance, the IGHV3-21/IGLV3-21 subset should be regarded as unfavorable whatever the degree of mutation35, whereas the IGHV4-34/IGKV2-30 subset seems to be associated with an indolent course of the disease34, 36.

Shared replacement mutations (“stereotyped” amino acid changes) at particular codon positions have been reported for a few subsets34, 37. These selective hypermutations may thus be interpreted as further evidence of antigen selection in CLL. That notwithstanding, relatively little is known about the pattern of SHM in CLL using certain IGHV genes or in subsets with stereotyped BCRs, in relation to that of B cells from healthy individuals or patients with autoreactive diseases.

In this study, we examined the IGHV/IGHD/IGHJ rearrangements of 1939 patients with CLL and compared them with a large panel of IGH sequences from various types of normal and autoreactive B cells available in public databases. We demonstrate striking repertoire biases and HCDR3 features in unmutated or minimally mutated sequences, suggesting that, at least in some cases, the lack of mutations could be interpreted in the context of antigenic pressure to maintain the BCR in a germline state. While SHM patterns were, for the most part, typical of a canonical SHM process, we report that groups of CLL cases expressing the IGHV3-21 and IGHV4-34 genes exhibit unique SHM patterns. Remarkably, we also demonstrate that recurrent, “stereotyped” amino acid changes may often be evident across the entire IGHV gene sequence of patients with CLL expressing mutated BCRs with stereotyped HCDR3 sequences, even among minimally mutated cases.
PATIENTS AND METHODS

Patient group
A total of 1939 patients with CLL from collaborating institutions in Finland (n=33), France (n=756), Greece (n=452), Italy (n=178), Spain (n=59) and Sweden (n=461) were studied for IGHV repertoire and mutational status. All cases displayed the typical CLL immunophenotype as described earlier and met the diagnostic criteria of the National Cancer Institute Working Group (NCI-WG). Written informed consent was obtained according to the Helsinki declaration and the study was approved by the local Ethics Review Committee of each institution.

PCR amplification of CLL IGH rearrangements
In the vast majority of cases (1797/1939 cases; 93%), peripheral blood samples were analyzed; bone marrow (105 cases), lymph nodes (28 cases) and spleen specimens (9 cases) were also analyzed. Amplification and sequence analysis of IGH rearrangements were performed on either DNA or cDNA as previously described or using the BIOMED-2 protocol. Sequence data was analyzed using the IMGT database and tools. All sequences were in-frame; any partial sequences that did not include the entire HCDR1 were excluded from the analysis.

Collection of non-CLL sequence data
Non-CLL IGH sequences were retrieved from the IMGT/LIGM-DB database in August 2006. Stringent criteria were followed so that redundant, poorly annotated, out-of-frame, incomplete or clonally-related sequences were excluded from the analysis. The non-CLL cohort was intentionally diverse in order to offer the opportunity for comparisons with various types of B cells. The final collection of 5303 unique IGHV-D-J sequences included (i) 447 sequences from B cell lymphoproliferative disorders, (ii) 3235 sequences from normal B cells, (iii) 499 sequences from "immune dysregulation" disorders (allergy, asthma, various types of immunodeficiency), and (iv) 1122 sequences from autoreactive cells (Supplemental Table 1).

Sequence analysis and data mining
Both CLL and non-CLL sequence sets were submitted to the IMGT V-QUEST analysis software to obtain gene and allele usage and mutation data. The following information was extracted:
1. IGHV gene usage, percentage of identity to germline, and HCDR3 length
Output data from IMGT V-QUEST for both CLL and non-CLL sequence sets were parsed, re-organized, and exported to a spreadsheet through the use of computer programming with the Perl programming language. IGHV, IGHD and IGHJ gene usage, allele usage, percentage of identity to germline, and the HCDR3 length were recorded for each sequence.

2. Somatic hypermutation characteristics

Each nucleotide mutation in every sequence was recorded, as was the change or preservation of the corresponding amino acid (AA), identified as replacement (R) or silent (S), respectively. Amino acids were grouped into one of five categories, compiled according to standardized biochemical criteria and based on physicochemical properties (hydropathy, volume, chemical characteristics): (i) non-polar/aliphatic: G, A, P, V, L, I, M; (ii) polar, uncharged: S, T, C, N, Q; (iii) basic: K, R, H; (iv) acidic: E, D; (v) aromatic: F, Y, W.

In order to account for the fact that a mutation is more likely to occur in a HFR than a HCDR simply due to its greater length, each mutation was ‘weighted’, or normalized, by the codon length of the region in which it occurred, e.g. an AA mutation in a HCDR1 of length 8 would be assigned a weight of 1/8, or 0.13. Subsequently, in order to compare mutation distributions between groups (IGHV genes, subsets etc), the sum of the normalized mutation counts per HFR/HCDR was expressed as a percentage of the total normalized mutation counts in the group. We describe these values as the “normalized distribution percentages” throughout Results. Consequently, it was possible to compare mutation data (e.g. total mutations/R mutations/S mutations) per region (e.g. HCDR2, HFR3) or combinations of regions (HCDR1 and HCDR2), within/across different groupings of sequences (e.g. individual IGHV genes, homologous subsets and CLL vs. non-CLL sequences).

We extracted additional information on all AA changes codon-by-codon and examined whether the somatically introduced AA belonged to the same biochemical category as the mutating AA (“conservative” change) or not (“non-conservative” change).

3. Hotspot targeting.

Mutated sequences were also analyzed for targeting to the tetranucleotide (4-NTP) motifs RGYW/WRCY (R=A/G, Y=C/T, and W=A/T) and DGYW/WRCH (D=A/G/T, H=T/C/A). To account for differences in germline composition, counts were normalized by evaluating the number of 4-NTP mutations per HCDR/HFR nucleotide length per 4-NTP position for each sequence.
Statistical analysis

Descriptive statistics for discrete parameters included counts and frequency distributions. For quantitative variables, statistical measures included means, medians, standard deviation and min–max values. Significance of bivariate relationships between factors was assessed with the use of Chi-square and Fisher’s exact tests. For all comparisons, a significance level of p=0.05 was set and all statistical analyses were performed with the use of the Statistical Package SPSS Version 12.0 (SPSS Inc, Chicago, USA).
RESULTS

IGHV repertoire and mutation status

A total of 1967 in-frame IGHV-D-J sequences obtained from 1939 CLL patients were included in the analysis; 28 patients carried double in-frame rearrangements. Overall, this large and geographically diverse series confirmed previously published IGHV repertoire data obtained in smaller series (Supplemental Table 2). Following the 98% identity cut-off value, which is used to make the clinically relevant distinction between “mutated” and “unmutated” CLL cases, 1064/1967 sequences (54%) from our series were defined as “mutated”, whereas the remainder (903/1967 sequences, 46%) had “unmutated” IGHV genes. Of note, concordant mutational status was observed in both IGHV-D-J rearrangements in 15/28 cases with double in-frame rearrangements; in the remaining 13 cases, the two rearrangements had different mutational status.

We subdivided “unmutated” sequences into a “truly unmutated” subgroup, which included 677/1967 sequences (34.4%) with IGHV genes in germline configuration (100% identity), a “minimally mutated” subgroup, which included 133/1967 sequences (6.8%) with 99-99.9% identity to germline, and a “borderline mutated” subgroup, which included 93/1967 sequences (4.7%) with 98-98.9% identity to germline. The IGHV repertoires of the “mutated”, “minimally mutated”, “borderline mutated” and “truly unmutated” subgroups differed (Supplemental Table 3), in keeping with previous reports (Figure 1 / Supplemental Table 4). At the individual gene level, the distribution of rearrangements of IGHV genes according to mutation status varied significantly (Figure 1 / Supplemental Table 4). In particular, the IGHV1-69 and IGHV1-2 genes predominated among, respectively, “truly unmutated” and “minimally mutated” sequences. In contrast, other IGHV genes were mostly utilized in “mutated” (<98% identity) rearrangements (e.g., IGHV4-34, IGHV3-23, IGHV3-7). Finally, the IGHV3-21 and IGHV3-48 genes had the highest proportion of “borderline mutated” (98-98.9% identity) rearrangements. Significant differences were also observed with regard to mutation status among groups of sequences utilizing different alleles (39) of certain IGHV genes, in particular IGHV1-69, IGHV4-39 and IGHV3-30 (Supplemental Table 5).

“Truly unmutated” sequences had significantly longer HCDR3s (median 21 AA, range 4-32 AA) than all other sequences; a significant difference in HCDR3 length was also observed among “minimally mutated” (median 19 AA, range 9-29) and “borderline mutated” or “mutated” sequences (median 15 AA for both groups, range 9-30 AA) (Figure 2) (p<0.001 for all comparisons).
Targeting of somatic hypermutation

Nucleotide substitution analysis was performed for all CLL sequences of the present series with <100% identity to germline. Of the 18149 mutations analyzed, transitions predominated (10219/18149, or 56.3%), in keeping with a canonical SHM process. However, at the level of individual IGHV genes, IGHV3-21 rearrangements showed distinctive features. In particular, compared to all other IGHV3 subgroup genes, IGHV3-21 rearrangements showed: (i) significantly fewer G-to-A substitutions (12.6% vs. 17.2%; p<0.01); (ii) significantly more T-to-A substitutions (14% vs. 7.8%; p<0.001). As revealed by comparison to non-CLL IGHV3-21 sequences, the over-representation of the T-to-A substitution was “IGHV3-21/CLL-biased”.

SHM frequencies in the HFRs and HCDRs were calculated for all IGHV subgroups. Here, as in all analyses, the normalized distribution percentages (as described in the Patients and Methods section) were employed. Examination of the three largest IGHV subgroups (IGHV1/3/4) revealed markedly different SHM targeting. Overall, there was a greater targeting of R mutations to the HCDRs (especially HCDR2) of IGHV3 sequences compared to IGHV1 and IGHV4 sequences (Supplemental Table 6). At the level of individual genes of the IGHV1/3/4 subgroups, the highest normalized R/S mutation ratios in HCDRs were observed among sequences utilizing the IGHV4-59, IGHV3-15, IGHV4-4, IGHV3-21 and IGHV3-33 genes. In contrast, the lowest R/S mutation ratios in HCDRs were seen among IGHV4-39, IGHV4-34 and IGHV3-48 sequences (Supplemental Tables 7-8).

In particular, within the HCDR2, IGHV3-21 sequences had the highest R mutation targeting and the lowest S mutation targeting relative to all other genes. IGHV3-21 sequences also carried the lowest R mutation frequencies in all three FRs. Conversely, IGHV4-34 sequences displayed the lowest R mutation frequency as well as the lowest R/S mutation ratio in HCDR2. As revealed by comparison to IGHV4-34 sequences from normal and autoreactive cells, the paucity of R mutations in HCDR2 is a “CLL-biased” feature (Figure 3).

A significantly higher clustering of R mutations to 4-NTP motifs in the HCDR2 were observed among IGHV3- vs. IGHV1- or IGHV4-expressing sequences (p<0.01). A significant bias for R mutation targeting to 4-NTPs was also evident in HFR3 of IGHV4-expressing sequences, as exemplified by markedly different targeting for AA changes of two consecutive, alternative serine codons. In particular, the AGC codon (“the hottest of SHM hotspots”46-47) at IMGT/HFR3-92 carried an AA change in 59% of mutated IGHV4 sequences, whereas the TCT codon at position IMGT/HFR3-93 carried an AA change in only 4% of sequences. Of note, the targeting of the AGC
serine codon at IMGT/HFR3-92 was significantly higher in CLL vs. normal vs. autoreactive IGHV4 sequences (59% vs. 39% vs. 23.6%; p<0.05).

Recurrent amino acid changes in subsets of CLL cases expressing stereotyped HCDR3 sequences

Analysis of sequences from the present series following previously described criteria allowed us to identify 530/1967 sequences (26.9%) as belonging to 110 different subsets with stereotyped HCDR3 (Supplemental Table 9), of which 48 have been reported previously; each subset included from two up to 56 cases. The frequency of sequences carrying a stereotyped HCDR3 was significantly higher among “truly unmutated” or “minimally mutated” (43.4% and 36.7%, respectively) vs. “borderline mutated” (24.7%) vs. “mutated” (15.5%) sequences (p<0.001 for all comparisons).

Shared (“stereotyped”) AA changes (i.e., the same AA replacement at the same position) across the whole IGHV gene sequence were identified for subsets of CLL sequences with stereotyped HCDR3s. As revealed by comparison of the CLL vs. non-CLL datasets, certain AA changes could be considered as “CLL-biased”. Furthermore, for certain IGHV genes, many stereotyped AA changes occurred significantly more frequently in cases with stereotyped rather than heterogeneous HCDR3 sequences and, therefore could be considered as “subset-biased” (Table 1). A comprehensive list of such stereotyped AA changes is provided in Supplemental Table 10. The most striking “CLL-biased” hypermutations were observed in the following subsets of sequences with stereotyped HCDR3s:

1. Nineteen sequences from the present series utilizing allele *02 of the IGHV1-2 gene belonged to two subsets with stereotyped HCDR3s. The first subset (#1) included 53 minimally mutated / truly unmutated sequences which utilized IGHV genes of the same clan (IGHV1-2/IGHV1-3/IGHV1-18, IGHV5-a, IGHV7-4-1). Among 15 IGHV1-2*02-expressing sequences of this subset, 9 had 100% identity to germline whereas 6 were found to carry a single replacement mutation, leading to a W-to-R change at IMGT/HFR2-55 (Figure 4A). The second subset (#28) included 5 IGHV1-2 sequences with stereotyped HCDR3s of which one utilized allele *01 and had 100% identity to germline, whereas four utilized allele *02 (as previously described) and carried the same single replacement mutation as described above for the subset #1. Comparison of “subset” IGHV1-2*02 sequences to CLL IGHV1-2*02 sequences with heterogeneous HCDR3 or non-CLL IGHV1-2*02 sequences demonstrated that the W-to-R change was “subset-biased”. In two cases of this
subset, germline sequence analysis of the IGHV1-2 gene confirmed that the W-to-R change was generated somatically and, thus, did not represent a polymorphism.

(2) Fifty-six IGHV3-21 sequences with stereotyped HCDR3s belonged to subset #27,29,32-34. In this subset, four different recurrent mutations were observed at a frequency of 15-32% (Figure 4B). Comparison to CLL IGHV3-21 sequences with heterogeneous HCDR3s or non-CLL IGHV3-21 sequences demonstrated that AA changes (3) and (4) were “subset-biased” (Table 1). Remarkably, within CLL, subset #2 cases had a higher targeting of the HCDR2 than non-subset-#2 IGHV3-21 cases (Supplemental Table 11).

(3) Among a group of 27 IGHV4-34 sequences with stereotyped HCDR3s which belonged to two different subsets (#4, #16)32-34, 36, four different recurrent mutations were observed at a frequency of 35-100% (Figures 4C-4D). Noticeably, comparison to CLL IGHV4-34 sequences with heterogeneous HCDR3 or non-CLL IGHV4-34 sequences demonstrated that three of the four stereotyped AA changes were “subset-biased” (Table 1). Similar to subset #2, subset #4 and subset #16 sequences also showed distinctive SHM distribution “profiles” in the HCDRs/HFRs compared to IGHV4-34 sequences with heterogeneous HCDR3s. In particular, subset #4 IGHV4-34 sequences displayed a notably higher targeting of HFR2 and HCDR1 than IGHV4-34 sequences with heterogeneous HCDR3s; subset #16 cases also demonstrated a notably higher targeting of the HCDR1 than IGHV4-34 sequences with heterogeneous HCDR3s (Supplemental Table 11).

(3) Among a subset of four IGHV4-4-expressing sequences with stereotyped HCDR3s (subset #14)34, six different recurrent mutations were observed in 75-100% cases (Figure 4-E). Comparison to CLL IGHV4-4 sequences with heterogeneous HCDR3s or non-CLL IGHV4-4 sequences demonstrated that all the above AA changes were “subset-biased” (Table 1).

Mutation targeting of superantigenic-binding motifs

(1) A total of 706 IGHV3-expressing cases with <100% identity to germline were examined for SHM targeting to the IGHV3-specific motif responsible for Staphylococcal protein A (SpA) binding, which is mediated by a conformational surface generated by AAs at 13 positions in the V region of IGHV3 subgroup genes. Non-conservative residue variations at 2 or more positions of this motif result in loss of SpA binding activity. Overall, such variations were observed in 80/706 IGHV3-expressing cases (11.3%). Remarkably, significantly fewer changes were identified in rearrangements utilizing the IGHV3-21 vs. all other IGHV3 subgroup genes [13/79 (16%) vs. 377/627 cases (60%), p<0.01]. Furthermore, the few AA changes that did
occur in IGHV3-21 rearrangements (in particular those carrying a stereotyped HCDR3) tended to be conservative; only 2.5% of IGHV3-21 sequences (2/79) carried two or more non-conservative AA changes of the motif and neither of these belonged to subset #2. In contrast, though also relatively infrequent, up to three quarters of AA changes identified in rearrangements of other IGHV3 genes (even those with a similar mutation load as the IGHV3-21 rearrangements) could be non-conservative.

(2) A total of 126 IGHV4-34 sequences with <100% identity to germline were examined for SHM targeting to the IGHV4-34-specific motif responsible for carbohydrate I binding, which is mediated by a hydrophobic patch in HFR1 involving residue W7 on β-strand A and the AVY motif (residues 24–26) on β-strand B. Notably, few IGHV4-34 sequences were altered at the four positions of the anti-I/i motif. Overall, there were only 0.9-4.9% non-conservative AA changes at these codon positions and only one sequence had an AA change at more than one of the motif positions.
DISCUSSION

In the present study, 1967 IGHV-D-J sequences from 1939 patients with CLL were analyzed for SHM patterns and compared to public non-CLL sequences from the IMGT database. Our series consisted of mutated and unmutated sequences at a frequency reported as typical for CLL. The gene repertoire of “truly unmutated” (100% identity to germline) CLL sequences of the present series (n=677) was extremely skewed and also characterized by significantly longer HCDR3s. Furthermore, 43.4% of “truly unmutated” sequences were found to belong to a subset with stereotyped HCDR3s. These observations suggest that the unmutated state in CLL could reflect selective pressures for maintaining germline configuration. Unmutated BCRs of CLL B cells have recently been shown to be associated with autoreactivity and polyreactivity against molecules such as DNA, insulin and LPS, whereas BCRs in mutated CLL did not exhibit these polyreactive properties. Furthermore, as previously shown, the antigen binding site excluding the HCDR3 is exceptionally cross-reactive, at least until acted on by SHM. Based on the findings of the aforementioned studies and the results of the present study, it could perhaps be reasonable to speculate that unmutated BCRs with multiple specificities may provide CLL progenitors with a selective advantage because they widen the spectrum of potential antigenic stimuli.

Previous studies in both normal and autoreactive B cells have shown that even a few mutations may be functionally relevant. Along these lines, in the present study, we also explored potential biological implications of low mutational “load” in CLL. Therefore, SHM analysis was undertaken for the cohort of all 1290 sequences of the present series with <100% identity to germline. At the cohort level, SHM patterns were typical of a canonical SHM process. However, important differences emerged from the analysis of SHM in subgroups of CLL sequences defined by: (i) IGHV gene usage; (ii) HCDR3 length and degree of HCDR3 stereotypy; and, (iii) minimal vs. borderline vs. high mutation load.

Evidence for very precise SHM targeting was obtained by the evaluation of SHM patterns in different alleles of certain IGHV genes, indicating preferential selection of one allele over another. Remarkably, within the group of rearrangements utilizing the IGHV1-69 gene, 87% of sequences expressing the *01 allele were “truly unmutated” vs. only 50% of sequences expressing the *06 allele; yet, these two alleles differ from each other by only one AA at codon 82 (glutamic acid in IGHV1-69*01 / lysine in IGHV1-69*06). Furthermore, all “minimally mutated” IGHV1-2 sequences of subsets...
#1 and #28, which carried as a single mutation the tryptophane-to-arginine (W-to-R) change at IMGT-HFR2 codon 55, expressed allele *02 of the IGHV1-2 gene. This change causes the IG sequence to become more like the IGHV1-2*01 allele, since an arginine at that position is only present in the germline configuration of the IGHV1-2*01 allele. Of note, within the comparable non-CLL group, 10/17 IGHV1-2*02 sequences carrying this mutation encoded autoantibodies, of which 7 were rheumatoid factors (Supplemental Table 12). These findings illustrate that even very slight alterations in IG sequence appear to be selected for, perhaps because they may confer a clonal advantage.

At the level of individual IGHV genes, the most distinctive, often “CLL-biased”, SHM patterns were observed in groups of sequences utilizing the IGHV3-21 and IGHV4-34 genes. Although frequently mutated, almost a quarter of IGHV3-21 cases in our series had a low mutation load and fell into the ‘borderline/minimally mutated’ group. The distribution of R mutations and the nucleotide substitution spectra of IGHV3-21 sequences differed significantly from other IGHV3 genes. Of note, IGHV3-21 sequences with stereotyped HCDR3s belonging to subset #2 showed 0.8-2.4 fold lower targeting of all regions (except HCDR2) than non-subset-#2 IGHV3-21 sequences. Furthermore, several recurrent AA changes were observed among subset #2 IGHV3-21 sequences, in particular at HCDR2 codons. Remarkably, a serine deletion at IMGT/HCDR2 codon 59 was detected in 18 IGHV3-21 CLL sequences, all expressing stereotyped BCRs. This finding confirms and extends a recent report from our group, which first suggested that this deletion is “CLL-biased” 37. Therefore, while IGHV3-21 sequences are generally less targeted by SHM than other IGHV3 genes, the observed mutations appear to be very precisely and effectively targeted, indicating selection by specific antigen(s). Along these lines, it is also perhaps relevant that IGHV3-21 sequences from our series, in particular those carrying stereotyped HCDR3s, showed a strong tendency to retain germline configuration in the binding motif for Staphylococcal protein A, the prototype for a class of naturally arising proteins that have the properties of model B-cell superantigens5. At present, the biological and clinical implications of this observation (if any) remain unknown.

The IGHV4-34 gene encodes antibodies which are intrinsically autoreactive in the germline state by virtue of recognition of the N-acetyllactosamine (NAL) antigenic determinant of the I/i blood group antigen60. Anti-I/i IGHV4-34 antibodies also bind the linear poly-NAL in the B cell isofrom of CD4560. The I/i antigen may be expressed in oxidized apoptotic cells and CD45 is expressed by pre-apoptotic T cells61-62; these findings explain why IGHV4-34 antibodies bind apoptotic cells63. B cells whose
surface receptors bind to apoptotic cells may serve “housekeeping” functions by removing cellular debris. Thus, it is possible that immature B cells expressing IGHV4-34 participate in the removal of apoptotic cell remnants. However, given the remarkable cross-reactivity of IGHV4-34 antibodies against several auto- and exo-antigens, if immature IGHV4-34-expressing B cells participate in the uptake of apoptotic cell remnants in the bone marrow, at the same time, they must be undergoing modifications to ablate self-reactivity. These modifications may be introduced by somatic diversification mechanisms, such as SHM and receptor editing. In the present study, 79% of IGHV4-34 CLL sequences were mutated, in keeping with previous reports in smaller series. In line with the reasoning presented above, this trend might reflect the fact that IGHV4-34 sequences must undergo SHM in order to negate their autoreactivity and be sufficiently “safe” to be allowed into the functioning IG repertoire.

Previous studies have demonstrated that the region of the IGHV4-34 molecule that cross-reacts with the I antigen is a hydrophobic patch in HFR1 created by a discontinuous sequence involving a W residue at codon 7 and the AVY triplet at codons 24-26. On examination of the anti-I/i-binding motif in the HFR1 of IGHV4-34 CLL sequences from our series, we observed that each of the four positions of the W-AVY motif was very infrequently mutated. Most interesting, however, was the fact that none of subset #4 or subset #16 IGHV4-34 sequences were among those carrying an altered motif. Thus, in theory, these IGHV4-34-expressing CLL cells could still be bound (and stimulated for clonal expansion) by I/i antigens or the CD45 on B cells, similar to what has been reported previously for normal B cells. In this context, Catera et al recently demonstrated that three IGHV4-34 recombinant CLL antibodies with stereotyped BCRs, similar to our subset #4 sequences, bound to viable B cells via the NAL epitope.

HCDR3 sequence motifs enriched in basic amino acids have been shown to correlate strongly with reactivity of IGHV4-34 antibodies against both B cells and DNA. All subset #4 IGHV4-34 CLL sequences from our series have high HCDR3 isoelectric point values and all carry a coupl et of basic residues (arginine-arginine or arginine-lysine) at the IGHD-IGHJ junction. High isoelectric point, overall positive charge, and increased numbers of arginine residues are frequent features of many pathogenic anti-DNA antibodies. Although it is not possible to accurately predict IG specificity by sequence analysis alone, these findings suggest that subset #4 BCRs may have anti-DNA specificity.

In transgenic mouse model systems, introduction of acidic residues (particularly aspartic acid) by SHM is a means to edit anti-DNA reactivities. A remarkable
analogy can be drawn with SHM patterns observed in CLL sequences of subsets #4 and #16 from our series. Aspartic and glutamic acid residues introduced by SHM were observed with a high frequency in the HCDR1 of these sequences. Along these lines, it would be tempting to speculate that modification of subset #4 and #16 IGHV4-34 sequences by SHM in precursors of the CLL clones significantly reduced or eliminated the postulated anti-DNA reactivity. This hypothesis is supported by the study of Herve et al.\(^5\), in which unmutated revertant antibodies engineered from mutated IGHV4-34 recombinant antibodies of CLL patients, similar to subset #4 antibodies from the present series, showed increased HEp-2 reactivity and/or acquired polyreactivity. Therefore, the SHM patterns observed among IGHV4-34 CLL sequences, in particular those expressed by subset #4 and #16 cases, may induce a state of diminished responsiveness towards a selecting antigenic element. However, these IGHV4-34 clones could retain the ability to engage in superantigen-like interactions with various auto- and exo-antigens via their preserved (non-mutated) HFR1 motifs. Therefore, in principle, CLL progenitors could be activated or “kick-started” on infection or reactivation by certain microbial pathogens (CMV or EBV might be such pathogens\(^80-84\)) and thus receive signals promoting survival, expansion, malignant transformation, and potentially clonal evolution.

In conclusion, groups of patients with CLL utilizing certain IGHV genes - in particular subsets grouped according to HCDR3 composition - evidently carry shared, “stereotyped” mutations across the entire IGHV gene sequence. Furthermore, the mutation pattern within these subgroups was not only gene- and subset-biased, but also, in most cases, “CLL-biased”. The finding of such “stereotyped” mutations in mutated CLL sequences carrying stereotyped HCDR3s indicates that the leukemic progenitor cells may have responded in a similar fashion to the selecting antigen(s). Remarkably, as shown in the present study, selection for individual mutations is evident even in subsets with minimally mutated sequences, indicating a functional purpose for these modifications. Finally, the presence of stereotyped mutations is strong evidence that not only the HCDR3 but also other regions of the IG molecule could actively participate in antigen recognition and thus be involved in the development and evolution of the CLL clone.
ACKNOWLEDGEMENTS

The authors would like to sincerely thank Prof. Marie-Paule Lefranc and Dr. Veronique Giudicelli, Laboratoire d’Immunogenetique Moleculaire, LIGM, Universite Montpellier II, Montpellier, France, for their enormous support and help with the large scale immunoglobulin sequence analysis throughout this project. We also wish to thank Prof. Göran Roos, Department of Medical Biosciences, Umeå University, Sweden, Prof. Christer Sundström, Department of Genetics and Pathology, Uppsala University, Sweden), Dr. Mats Merup, Department of Medicine, Karolinska University Hospital, Huddinge, Sweden, Dr. Lyda Osorio, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden and Prof. Juhani Vilpo, Laboratory Centre, Tampere University Hospital, Tampere, Finland for providing samples and clinical data concerning Swedish and Finnish CLL patients; and, Dr. Hedda Wardemann, Max-Planck Institute for Infection Biology, Berlin, Germany, for her provision of antibody sequences of IgG+ memory B cells from healthy donors. We also acknowledge the contribution of Dr Ulf Thunberg, Dr. Tatjana Smilevska, Maria Norberg, Arifin Kaderi, Ingrid Thörn and Kerstin Willander to the sequence analysis.

This work was supported by the Swedish Cancer Society, the Swedish Research Council, Medical Faculty of Uppsala University, Uppsala University Hospital, Lion’s Cancer Research Foundation in Uppsala, Sweden; the Networks of Excellence BioSapiens (contract number LSHG-CT-2003-503265) and ENFIN (contract number LSHG-CT-2005-518254), both funded by the European Commission (Computational Genomics Unit, Thessaloniki, Greece); the Associazione Italiana per la Ricerca sul Cancro (AIRC, Milano), the Italian Ministry of Foreign Affairs, the CLL Global Research Foundation (Milano, Italy). ND is supported by an ENTER career development award from the General Secretariat for Research and Technology, Greek Ministry of Development. CS is a recipient of a fellowship from the Foundation Anna Villa e Felice Rusconi, Varese, Italy.

FM, ND and AH performed research, analyzed data, and wrote the paper. GT performed research and wrote the paper. MB, CS, KK, FB-M, CM and DV performed research. NL, AA and FC-C provided samples and associated data. AT and CO supervised research. CB, PG, FD, RR and KS designed and supervised the research and wrote the paper. The authors declare no competing financial interests.
REFERENCES

66. Spellerberger MB, Chapman CJ, Mockridge CI, Isenberg DA, Stevenson FK. Dual recognition of lipid A and DNA by human antibodies encoded by the VH4-21 gene: a
possible link between infection and lupus. Hum Antibodies Hybridomas. 1995;6:52-56.

73. Li Y-C, Spellerberg MB, Stevenson FK, Capra JD, Potter KN. The I binding specificity of human VH4-34 (VH4.21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J Mol Biol 1996;256:577-589.

FIGURES

Figure 1. Distribution of rearrangements of the 10 most frequent IGHV genes of the present series according to mutational status.
Figure 2. Distribution of HCDR3 lengths according to mutational status. The striking peak at codon length 9 is predominantly comprised of IGHV3-21 subset #2 cases which carry a distinctively short, stereotyped HCDR3.
Figure 3. R/S normalized mutation ratios in the HCDR2 of rearrangements utilizing the IGHV4-34 gene. Statistically significant differences were observed between CLL vs. normal (N) or autoreactive (AU) clones.
Figure 4. Amino acid sequence alignments of 5 selected subsets defined by HCDR3 stereotypy. Sequence alignments for (A) Subsets #1 and #28; (B) subset #2; (C) subset#4; (D) subset #14; (E) subset #16 are represented as sequence logos85,86 to summarize a total of 106 sequences belonging to these selected subsets (Supplemental Table 10). In each subset representation (i.e. sequence logo), the colored letters above the line represent the amino acids used in that particular subset, while the grey letters shown upside down below the line represent the germline amino acid composition of the relevant IGHV gene. Each colored letter indicates an amino acid position where a mutation occurred. When more than one change was observed in a position, the letters representing each change are displayed as a stack. Thus, the size of the AA symbol represents the relative frequency of that AA at that position relative to all other mutations at that position in that subset. The height of the inverted germline amino acid symbol is the sum of the heights of the upright amino acids. Blank spaces represent amino acids which are unchanged in the CLL IGHV sequence as compared to the germline sequence. Amino acids are colored based on their similarity in terms of their physicochemical properties: [GAPVLIM], blue; [FYW], purple; [STCNQ], green; [KRH], red; and, [DE], orange. Sequence logos are vertically stretched so that the tallest upright stacks are of the same size, irrespective of the number of sequences. For example, in subset #4, 9 of 20 sequences carry E whereas 5 of 20 sequences carry D at position IMGT/HCDR1-28 (see supplemental Table 10); therefore, E is taller than D at that position in the sequence logo for subset #4 (C), while the height of the inverted germline G is the sum of the heights of the upright D and E. Further information about number of sequences with a certain amino acid change out of total number of sequences in each subset can be found in Table 1 and Supplemental Table 10. For clarity, only codons 27 to 104, corresponding to HCDR1-HFR3 of the V region, are shown. In (B), the letter X denotes the Serine deletion at IMGT/HCDR2 codon 59.
Table 1. “Stereotyped” amino acid changes. The frequency of changes among mutated sequences utilizing the same IGHV gene was recorded in CLL sequences with stereotyped HCDR3s (sequences belonging to subsets), CLL sequences with heterogeneous HCDR3s and sequences from normal or autoreactive clones. For this comparison, non-CLL sequences were pooled regardless origin (i.e. whether they derived from normal or autoreactive B cells). That notwithstanding, full details about non-CLL sequences (including origin) are provided in Supplemental Tables 1 and 12.

<table>
<thead>
<tr>
<th>IGHV1-2*02 sequences</th>
<th>Change</th>
<th>CLL-Subset#1</th>
<th>CLL-heterogeneous</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HFR2, codon 55</td>
<td>W-to-R</td>
<td>6/15</td>
<td>0/30</td>
<td>17/119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGHV1-2*02 sequences</th>
<th>Change</th>
<th>CLL-Subset#28</th>
<th>CLL-heterogeneous</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HFR2, codon 55</td>
<td>W-to-R</td>
<td>4/4</td>
<td>0/30</td>
<td>17/119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGHV3-21 sequences</th>
<th>Change</th>
<th>CLL-Subset#2</th>
<th>CLL-heterogeneous</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HCDR1, codon 32</td>
<td>S-to-T^a</td>
<td>11/56</td>
<td>6/29</td>
<td>12/95</td>
</tr>
<tr>
<td>IMGT-HCDR1, codon 34</td>
<td>S-to-N^a</td>
<td>9/56</td>
<td>2/29</td>
<td>7/95</td>
</tr>
<tr>
<td>IMGT-HCDR2, codon 61</td>
<td>S deletion</td>
<td>18/56</td>
<td>0/29</td>
<td>1/95</td>
</tr>
<tr>
<td>IMGT-HFR3, codon 66</td>
<td>Y-to-H</td>
<td>7/56</td>
<td>2/29</td>
<td>3/95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGHV4-34 sequences</th>
<th>Change</th>
<th>CLL-Subset#4</th>
<th>CLL-heterogeneous^b</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HCDR1, codon 28</td>
<td>G-to-D</td>
<td>5/20</td>
<td>0/108</td>
<td>6/320</td>
</tr>
<tr>
<td>IMGT-HCDR1, codon 28</td>
<td>G-to-E</td>
<td>8/20</td>
<td>6/108</td>
<td>18/320</td>
</tr>
<tr>
<td>IMGT-HCDR1, codon 32</td>
<td>G-to-D^a</td>
<td>7/20</td>
<td>20/108</td>
<td>49/320</td>
</tr>
<tr>
<td>IMGT-HFR2, codon 40</td>
<td>S-to-T</td>
<td>10/20</td>
<td>29/108</td>
<td>45/320</td>
</tr>
<tr>
<td>IMGT-HFR2, codon 45</td>
<td>P-to-S</td>
<td>10/20</td>
<td>17/108</td>
<td>33/320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGHV4-34 sequences</th>
<th>Change</th>
<th>CLL-Subset#16</th>
<th>CLL-heterogeneous^b</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HCDR1, codon 28</td>
<td>G-to-E</td>
<td>6/7</td>
<td>6/108</td>
<td>18/320</td>
</tr>
<tr>
<td>IMGT-HFR2, codon 40</td>
<td>S-to-T</td>
<td>4/7</td>
<td>29/108</td>
<td>45/320</td>
</tr>
<tr>
<td>IMGT-HFR2, codon 45</td>
<td>P-to-S</td>
<td>3/7</td>
<td>17/108</td>
<td>33/320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGHV4-4 sequences</th>
<th>Change</th>
<th>CLL-Subset#14</th>
<th>CLL-heterogeneous</th>
<th>Non-CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMGT-HCDR1, codon 33</td>
<td>S-to-N</td>
<td>3/4</td>
<td>0/17</td>
<td>8/90</td>
</tr>
<tr>
<td>IMGT-HFR2, codon 40</td>
<td>S-to-T</td>
<td>4/4</td>
<td>4/17</td>
<td>12/90</td>
</tr>
<tr>
<td>IMGT-HCDR2, codon 57</td>
<td>Y-to-H</td>
<td>4/4</td>
<td>3/17</td>
<td>7/90</td>
</tr>
<tr>
<td>IMGT-HCDR2, codon 58</td>
<td>H-to-P</td>
<td>3/4</td>
<td>0/17</td>
<td>0/90</td>
</tr>
<tr>
<td>IMGT-HFR3, codon 78</td>
<td>I-to-M</td>
<td>4/4</td>
<td>6/17</td>
<td>8/90</td>
</tr>
<tr>
<td>IMGT-HFR3, codon 92</td>
<td>S-to-N</td>
<td>3/4</td>
<td>4/17</td>
<td>10/90</td>
</tr>
</tbody>
</table>

^aThese mutations, though very frequent among sequences of a subset, were also identified at a high frequency among either CLL sequences with heterogeneous HCDR3 or non-CLL sequences and, thus, were not considered as “subset-biased”.

^bAll IGHV4-34 cases except for those belonging to subsets#4 and #16.
Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis