ATM kinase activity modulates Fas sensitivity through the regulation of FLIP in lymphoid cells

Venturina Stagni # (1, 2), Maria Giovanna di Bari # & (1, 2), Silvia Cursi (1, 2,), Ivano Condò (3), Maria Teresa Cencioni (4), Roberto Testi (3), Yaniv Lerenthal (5) Enrico Cundari (6) and Daniela Barilà (1, 2)*

(1) Dulbecco Telethon Institute, Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata", Via Montpellier, 1 00133 Rome, Italy. (2) Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179, Rome, Italy (3) Laboratory of Immunology and Signal Transduction, Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata", Via Montpellier, 1 00133 Rome, Italy. (4) Laboratory of Neuroimmunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179, Rome, Italy (5) The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. (6) Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, 00185 Rome, Italy.

& Present Address: Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1402, USA.

These authors equally contributed to this work

* To whom correspondence should be addressed

E-mail: daniela.barila@uniroma2.it, dbarila@dti.telethon.it

Phone: +39-06-501703168

Fax: +39-06-501703330

Running Title: ATM kinase regulates Fas-induced apoptosis

Keywords: Ataxia Telangiectasia, ATM kinase, Fas-induced apoptosis, FLIP, lymphoma.
ABSTRACT

Ataxia Telangiectasia (A-T) is a rare cancer-predisposing genetic disease, caused by the lack of functional ATM kinase, a major actor of the DSB DNA-damage response. A-T patients show a broad and diverse phenotype, which includes an increased rate of lymphoma and leukemia development. Fas-induced apoptosis plays a fundamental role in the homeostasis of the immune system and its defects have been associated with autoimmunity and lymphoma development.

We therefore investigated the role of ATM kinase in Fas-induced apoptosis. Using A-T lymphoid cells we could show that ATM deficiency causes resistance to Fas-induced apoptosis. A-T cells upregulate FLIP protein levels, a well-known inhibitor of Fas-induced apoptosis. Reconstitution of ATM kinase activity was sufficient to decrease FLIP levels and to restore Fas sensitivity. Conversely, genetic and pharmacological ATM kinase inactivation resulted in FLIP protein upregulation and Fas resistance.

Both ATM and FLIP are aberrantly regulated in Hodgkin lymphoma. Importantly, we found that reconstitution of ATM kinase activity decreases FLIP protein levels and restores Fas sensitivity in Hodgkin lymphoma derived cells. Overall, these data identify a novel molecular mechanism through which ATM kinase may regulate the immune system homeostasis and impair lymphoma development.
INTRODUCTION

Ataxia telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar progressive neurodegeneration leading to ataxia, dilatation of blood vessels in the eye and facial area (telangiectasia), sensitivity to γ-irradiation, high incidence of tumorigenesis in the lymphoid system and deficiency in immunoresponses. A-T pathology is characterized by the loss of functional ATM protein kinase. Following DNA damage, ATM is rapidly activated, (auto)phosphorylated \(^1\) and, in turn, it phosphorylates a number of substrates which all contribute to cell growth arrest or, alternatively, apoptosis (reviewed in \(^2\)). The higher cancer predisposition of A-T patients has been associated with the lack of DNA damage response, which results in genomic instability \(^3\). The immune system is the major target of tumor development in these patients, and lymphoma and leukemia are very frequent \(^4,5\). This clinical feature is consistent with the central role of ATM in the management of the DNA DSBs generated during the immune system development and function in physiological conditions\(^6\). Indeed most of the lymphoma developed in A-T patients are characterized by aberrant VDJ recombination\(^6\). More interestingly, ATM expression is aberrantly low in several B and T cell lymphomas irrespective of A-T genotype\(^7\)\(^-\)\(^10\).

Fas (CD95/APO-1) is a transmembrane protein belonging to the tumor necrosis factor superfamily. Upon binding of Fas ligand or agonistic antibodies, the Fas receptor recruits several cytosolic proteins to form the death-inducing signalling complex (DISC). This is necessary to catalyze dimerization, and processing of Procaspase-8 to generate the active Caspase-8 tetramer, composed of two p18 and two p10 subunits, which initiates the caspase cascade\(^11\). Procaspase-8 activation is absolutely required to trigger receptor-activated apoptotic response\(^12\) and its catalytic activity has to be tightly regulated to avoid inappropriate activation and undesired cell death\(^13\). FLIP protein is structurally similar to Procaspase-8 and can therefore compete with Procaspase-8 for binding to DISC, thus
preventing Caspase-8 activation and the following apoptotic cascade. Two isoforms of FLIP, arising from alternative splicing, are normally present in most of the cells. FLIP-Long (FLIP-L), similarly to ProCaspase-8, has two DED domains that mediate the recruitment to the DISC, as well as a p18 and a p10 subunit but it lacks the Cys residue in the active site and is therefore catalytically impaired. However, in some contexts FLIP-L can also dimerize and therefore promote Caspase-8 activation14. Conversely, FLIP-Short (FLIP-S) contains only the DED domains and it behaves as a pure inhibitor of ProCaspase-8 activation and Fas-induced apoptosis13.

The death receptor system is essential for the regulation of the lymphoid system homeostasis15. It is assumed that the negative selection process of B as well as T cells in the germinal center (GC) and thymus, respectively, depends on Fas system16,17. Several lines of evidence indicate the importance of this system for the balance between B cell proliferation and apoptosis18. Indeed, mice lacking functional Fas expression suffer from autoimmunity and increased incidence of B cell lymphomas19,20. Patients with mutations that impair the function of proteins involved in Fas-dependent apoptosis develop the autoimmune lymphoproliferative syndrome (ALPS), which predisposes them to autoimmune disorders and to lymphoma development21,22. Finally, Fas mutations where identified in lymphomas, in particular those deriving from GC B cells(reviewed in23).

Classical Hodgkin’s lymphoma (cHL), a common human lymphoma, has been proposed to derive, most frequently, from GC cells24. Currently, the molecular pathogenesis of cHL remains unclear. Interestingly, Hodgkin/Reed Sternberg (HRS) cells, the malignant cells of classical Hodgkin's lymphoma (cHL), resist to Fas-induced apoptosis25 and Fas resistance has been proposed to play an active role in the development of HRS cells. Indeed, these cells evade the control of the immune system and initiate the tumour growth. Recently, Fas resistance of HL-derived cell lines has been proposed to be caused by the aberrant upregulation of FLIP proteins in these cells.
Indeed, the specific downregulation of FLIP expression by siRNA sensitizes these cells to Fas-induced apoptosis26,27. Remarkably, immunohistochemistry studies have shown that most cases of Hodgkin’s disease are ATM negative7, although ATM loss of heterozygosity is a rare event28, and therefore alternative mechanisms may account for ATM downregulation29.

Taking into account the linkage between Fas impairment and the development of those tumors that are more frequent in A-T patients the question arises as to whether any relationship exists between Fas and ATM signaling pathways.

Here we show that ATM deficiency results in a significant resistance of lymphoid cells derived from AT patients to Fas-induced apoptosis. Interestingly, loss of endogenous ATM kinase activity results in the aberrant upregulation of FLIP protein levels. Consistently, ATM kinase activation downregulates FLIP protein levels providing a novel mechanism to modulate Fas sensitivity. Furthermore Hodgkin Lymphoma cells that are characterized by Fas-resistance, may be sensitized to Fas upon ATM kinase expression. These data point to ATM as a novel player in Fas-induced apoptosis and suggest a novel molecular mechanism for the increased lymphoma susceptibility of A-T patients and for the development of B cell lymphoma.

MATERIALS AND METHODS

DNA constructs

pcDNA3-Flag-ATM-wt, pcDNA3-Flag-ATM-Kin- were kindly provided by M. Kastan. shFLIP construct and its control were kindly provided by H. Walczak30.

Antibodies and other reagents

The following antibodies and reagents were used: anti-phosphoSer1981-ATM (Rockland), anti-ATM (MAT3, generously provided by Y. Shiloh), anti-phosphoSer15-p53
(Cell Signaling), anti-p53 (Santa Cruz, Pab240), anti-phosphoThr68-Chk2 (Cell Signaling), anti-Chk2 (kindly provided by D. Delia), anti-pS139 H2A.X (UBI), anti-Fas IgM monoclonal antibody (CH11; UBI), anti-Flag (Sigma), anti-Caspase-8 (clone 5F7, MBL), anti-FLIP(S and L) (H-202 Santa Cruz), anti-active Caspase-3 (Cell Signaling), caspase-inhibitor zVAD (Biomol), NCS (kindly provided by Y.Shiloh), KU-55933 (kindly provided by KUDOS).

Cell culture and transfections

C3ABR and L6 cells (kindly provided by M. Lavin and Y. Shiloh) as well as GM-03189, GM-02782 cell lines, were cultured in RPMI 1640 medium with 10 mM HEPES, 1.0 mM sodium pyruvate, 10% fetal bovine serum. C3ABR and L6 cells were stably transfected by electroporation using 20 μg of the indicated constructs. Stably transfected cells where selected in the presence of 500 μg/ml G418. HL-derived cell line, L428, kindly provided by H. Kashkar and M. Kronke, were transfected by electroporation.

Analysis of apoptosis

C3ABR, L6, L6pCDNA, L6-Flag-ATM-wt, L6-Flag-ATM-Kin- and L6-shFLIP cells lines were treated to undergo apoptosis with 250-500 ng/ml anti-Fas antibody. Where indicated in western blot and immunofluorescence analysis cells were also treated with NCS (100ng/ml for 1h) or stimulated in the presence of 40 μM zVAD caspase-inhibitor, which was added 30 min before stimulation with Fas.

Apoptosis was quantified by propidium iodide (Sigma) nuclear staining or by the analysis of Annexin V (Pharmigen) exposure using a FACSscan (Becton Dickinson). Specific apoptosis was determined as follows: (% of apoptotic cells with anti-Fas - % of apoptotic cells without anti-Fas) / (100 - % of apoptotic cells without anti-Fas).

Analysis of Fas-receptor levels

To analyze the expression of Fas protein cells were incubated for 30’ RT with mouse anti-human Fas antibody (APO1,Transduction Laboratories). Next, cells were
reacted with PE-conjugated goat anti-mouse IgG(H+L) (Pharmigen) for 30 min at RT. Cells were analyzed using a flow-cytometer. For each cell line incubation with PE-conjugated alone served as negative controls. Mean fluorescence intensity of cell stained with anti-Fas was used to compare the level of Fas expression.

Flow cytometry of phosho-Ser1981-ATM in apoptotic cells

Our protocol is a variation of a recent method used to evaluate phosphoepitope status by flow cytometry31. \(5 \times 10^5\) cells were fixed in 4\% formaldehyde and incubated 15 min at 4 °C. They were then permeabilized by resuspending with vigorous vortexing in 1 ml ice-cold MeOH and incubated at -20°C O/N. Cells were washed and resuspended in PBS-Tween 0.5\% containing 5\% Normal Goat Serum (NGS) containing anti-mouse-phospho-Ser1981-ATM and rabbit-active-Caspase-3 primary antibodies and incubated for 1 h at room temperature. After washing and repeating the process with anti-mouse-AlexaFluor488 and anti-rabbit-AlexaFluor633 conjugated secondary antibodies, flow cytometry was evaluated in a FACScanto (Beckton Dickinson).

Immunofluorescence analysis

C3ABR, L6-pCDNA, L6-FlagATM-wt and L6-Flag-ATM-Kin- cells line were fixed, permeabilized and immunofluorescence were carried out as previously described32. Flag-ATM protein was visualized with monoclonal anti-Flag (Sigma) diluted 1:500 followed by fluorescein-conjugated anti-mouse antibody (Alexis) diluted 1:200 in blocking buffer. Phospho-S1981ATM was labeled with anti-pS1981 ATM (Rockland) diluted 1:1000 followed by rhodamine-conjugated anti-rabbit diluted 1:600 (Alexis) or by fluorescein-conjugated anti-rabbit antibody diluted 1:200. Nuclei were visualized with Hoechst 33342 (Molecular Probes) diluted 1:20,000 in PBS-0.1\% Triton X-100.

Immunoblotting

Cell extracts were prepared in IP buffer (50 mM Tris-HCl (pH 7.5), 250 mM NaCl, 1\% NP-40, 5 mM EDTA, 5 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 25 mM NaF, 1
mM orthovanadate, 10 μg/ml TPCK, 5 μg/ml TLCK, 1 μg/ml leupeptin, 10 μg/ml soybean trypsin inhibitor, 1 μg/ml aprotinin). For immunoblotting, 100-200 μg of protein extract were separated by SDS-PAGE, blotted onto nitrocellulose membrane and detected with specific antibodies. All immunoblots were revealed by ECL (Amersham).

Caspase-8 activity assay.

To determine Caspase-8 activity in C3ABR, L6pCDNA, L6-FlagATM-WT and L6-FlagATM-KD cells line, cells were induced to undergo apoptosis with 500 ng/ml of anti-Fas mAb. Protein extracts were assayed for caspase-8 activity using IETD-AMC as a substrate Ac-IETD-AMC at 37 ºC in 200 μl assay buffer (20 mM Tris, pH 7.4, 0.1 M NaCl, 10% sucrose, 0.1% CHAPS, 10 mM DTT) containing 700 μg protein extract. Reaction was started by the addition of 10 μM Ac-IETD-AMC. Cleavage of the substrate as a function of time was monitored reading the absorbance at 460 nm upon excitation at 390 nm. The enzymatic activity was determined from the linear portion of the curve.

Reverse transcription-polymerase chain reaction (RT-PCR)

Total cellular RNAs were isolated using Trizol reagent (Invitrogen) and subjected to RT using oligo(dT) primer and M-MLV reverse transcriptase (Invitrogen) according to the manufacturer’s protocol. RT reaction was then amplified by PCR using the primers described in34. Amplification of actin was performed in the same PCR reaction as internal control. PCR products were run on a 2% agarose gel and visualized by ethidium bromide staining.

Statistical methods

All data were analyzed and presented as mean ± SD (n<10). The significance of differences between populations of data were assessed according to the Student’s two tailed T-test with a level of significance of at least p < 0.05 (alpha conventionally equal to 0.05). This analysis arises in the problem of estimating the mean of a normally distributed population when the sample size is small.
RESULTS

ATM deficient cells are resistant to Fas-induced apoptosis

To investigate whether ATM could participate in Fas-mediated apoptosis, we compared the sensitivity to Fas of two lymphoblastoid cell lines widely used in studies on ATM activity, one established from an AT patient (L6)\(^{35}\), the other one from a healthy control donor (C3ABR)\(^{36}\). Fas was stimulated with agonistic anti-Fas antibodies that mimic the binding of Fas-Ligand and triggers the apoptotic response. Interestingly L6 cells, which lack the expression of ATM protein, were significantly resistant to Fas-induced apoptosis (Fig. 1A, B). Similar results were obtained also with other A-T lymphoblastoid cell lines, such as GM-03189, GM-02782 (Supplementary Fig. 1). To address the question of whether ATM kinase activity is required for Fas sensitivity, we stably reconstituted ATM expression in L6 cells. For this purpose L6 cells were stably transfected with constructs that allow the expression of either FLAG-ATM-wt protein (L6-ATM-wt) or the kinase dead FLAG-ATM-Kin- protein (L6-ATM-Kin-), or with the empty vector as control (L6-pCDNA). ATM expression was monitored by immunoblotting with specific antibodies. (Fig. 1C). L6-ATM-wt and L6-ATM-Kin- cells expressed same levels of ATM protein. Interestingly, the reconstitution of the expression of ATM in the L6-ATM-wt cells dramatically sensitized these cells to Fas-induced apoptosis (Fig. 1 D, E and Supplementary Fig. 2). The expression of the ATM-kinase-defective mutant, FLAG-ATM-Kin-, completely failed to restore Fas sensitivity. Overall these results, suggest that ATM kinase activity enhances Fas-induced apoptosis.

Caspase activation is a pre-requisite of Fas-dependent ATM activation

We therefore asked the question of whether Fas stimulation triggers ATM kinase activation and whether this may contribute to Fas sensitivity. To evaluate the effect of Fas-stimulation on ATM kinase activity, protein extracts at different times of stimulation were
analyzed. Similarly to what has been described following DNA damage37-41, Fas stimulation resulted in the typical ATM-dependent phosphorylation cascade. In particular, ATM was phosphorylated on its autophosphorylating activating site \textit{i.e.} Ser19811, and p53, Chk2 and H2AX became phosphorylated at Ser15, Thr68 and Ser139 respectively(Fig. 2A and Supplementary Fig. 3). These data indicate that Fas stimulation results in ATM activation. Importantly, ATM activation was completely prevented by preincubation with the general caspase-inhibitor z-VAD (Fig. 2A), thus suggesting that, in the absence of caspase activation, no Fas-induced ATM activation occurs. To evaluate this possibility, we established a new flow cytometry–based assay that allowed us to analyze the levels of phospho-Ser1981-ATM vs Caspase-3 activation, which accounts for apoptotic response. This analysis revealed that ATM activation mainly occurs in cells that activate Caspase-3, supporting the hypothesis that Fas-dependent ATM activation is downstream Caspase-3 activation, and therefore most likely does not play a major role in Fas sensitivity (Fig. 2B). Fas stimulation also resulted in the cleavage of ATM protein (Fig. 2A), similarly to other apoptotic stimuli, which trigger ATM kinase cleavage most likely through Caspase-3 activity42. Moreover the uncleavable mutant of ATM, ATM-D863A, previously characterized42, sensitized A-T cells to Fas-induced apoptosis to the same extent as ATM-wt, further confirming that the cleavage per se does not modulate Fas sensitivity (data not shown). Finally, Fas stimulation triggered ATM phosphorylation on Ser1981 only on those cells that showed apoptotic morphology characterized by nucleus condensation or fragmentation (Fig. 2C). Overall, these findings strongly suggest that ATM activation upon Fas stimulation is a passive event subsequent to DNA fragmentation, and therefore most likely does not contribute significantly to cell fate.

\textbf{ATM kinase activity downregulates c-FLIP protein levels}

To get more insight in the molecular mechanism by which ATM modulates Fas-induced apoptosis, we analyzed the expression profile of those proteins that are relevant
for this signaling. FACS analysis showed that ATM expression and activity do not modulate the levels of Fas (Fig. 3A). Immunoblotting analysis showed that all cell lines express comparable levels of Caspase-8, independently on ATM activity (Fig. 3B). Remarkably, despite the observation that Caspase-8 is equally expressed in all cell lines, its activation following Fas crosslinking is significantly delayed in the ATM deficient cells (L6-pCDNA) as well as in the ATM kinase activity deficient cells (L6-ATM-Kin-) (Fig. 3C, 3D). Full activation of Caspase-8 upon Fas stimulation requires its processing, essential to get a stable active caspase-8 tetramer and to allow its release from the DISC and subsequent cleavage of cytoplasmic substrates, such as executioner caspases\(^{11}\). Immunoblotting experiments, using an anti-Caspase-8 antibody raised against the p18 subunit, showed that the lack of ATM results in the delayed accumulation of the intermediate processing product p43 and of the p18 subunit (Fig. 3C). Moreover, ATM deficiency delayed Fas-induced Caspase-8 activation, measured as its ability to cleave its substrate peptide IETD (Fig. 3D).

Being c-FLIP a well characterized inhibitor of Fas signaling, we wanted to investigate the possible relationships between ATM activity and c-FLIP expression. Importantly, the lack of ATM expression triggers the upregulation of c-FLIP (Fig. 4A), which may account for Fas resistance of AT cells (Fig. 1). Reconstitution of ATM kinase activity in L6-ATM-wt cells significantly decreased FLIP-L and FLIP-S expression levels, which may account for the recovery of Fas sensitivity (Fig. 1). Again, the ATM-Kin- mutant completely failed to downregulate FLIP (Fig. 4A). To test whether indeed ATM activity modulates Fas sensitivity via the regulation of FLIP levels, we generated a stable A-T cell line, L6-shFLIP, where FLIP expression has been genetically reduced through specific shRNA that selectively targets FLIP-L and FLIP-S isoforms. These cells express low levels of FLIP proteins comparable to the endogenous level of ATM kinase reconstituted cells (Fig. 4B). Indeed, the reduction of FLIP sensitizes A-T cells to Fas-induced apoptosis (Fig.
4C and Supplementary Fig. 2), indicating that the aberrant levels of FLIP proteins may be responsible for Fas resistance in A-T cells. Overall these experiments show that ATM kinase sensitizes cells to Fas-induced apoptosis through the modulation of FLIP levels. This observation suggests that ATM kinase activity may downregulate FLIP. Indeed stimulation with neocarzinostatin (NCS), that classically triggers ATM kinase activation, resulted in a reduction of the levels of FLIP protein (Fig. 5A). This effect is completely abrogated in cells that lack ATM protein or reconstituted with the ATM kinase defective mutant (Fig. 5A). According to these data, NCS treatment significantly sensitized cells to Fas-induced apoptosis (Fig. 5B).

The observation that FLIP is aberrantly upregulated in A-T cells as well as in A-T cells reconstituted with inactive ATM (Fig. 4A) suggests that the endogenous basal activity of ATM is sufficient to downregulate FLIP protein levels. To unambiguously address this issue, ATM proficient cells were incubated in the presence of the ATM kinase inhibitor KU-55933. Indeed, this treatment triggered FLIP upregulation (Fig. 5C). Interestingly, preincubation with KU-55933 for 1 hour is not sufficient to increase FLIP protein levels (Fig. 5C) and fails to protect cells from Fas-induced apoptosis (Fig. 5D). Conversely, preincubation with KU-55933 for 8 hours, which is sufficient to trigger FLIP protein accumulation, dramatically impairs Fas-induced apoptosis to the same extent of A-T cells (Fig. 5D). These data clearly show that ATM kinase activity is required to modulate Fas sensitivity through the control of FLIP protein levels.

ATM kinase activity modulates FLIP protein stability

To evaluate whether ATM modulates the mRNA levels of FLIP, we analyzed FLIP mRNA levels in ATM proficient and ATM deficient cell lines. RT-PCR experiments showed that the levels of FLIP transcripts are comparable in all cell lines independently on ATM expression and activity (Fig. 6A), suggesting that FLIP regulation does not occur at transcriptional level. In agreement with this assumption, an exogenous FLAG-tagged FLIP-
L driven by a heterologous promoter was repressed similarly to the endogenous FLIP-L when stably transfected C3ABR-FLAG-FLIP-L cells were stimulated with NCS to trigger ATM kinase activity (Fig. 6B). We therefore tested whether ATM kinase activity accelerates FLIP proteins degradation by blocking nascent translation with cycloheximide (CHX). Cells where pretreated with the ATM kinase inhibitor KU-55933 for 8 hrs to have the same initial levels of FLIP proteins and then, upon KU-55933 removal, they were incubated for different times with CHX. The degradation of both FLIP forms was significantly faster when L6 cells where reconstituted with ATM-wt than with its kinase-dead homologue (Fig. 6C). This approach allowed us to conclude that FLIP-protein degradation is significantly increased dependently on ATM kinase activition and that ATM kinase downregulates FLIP protein stability.

ATM kinase activity sensitizes Hodgkin Lymphoma cells to Fas-induced apoptosis

Resistance to death-receptor-mediated apoptosis is supposed to be important for the deregulated growth of B cell lymphoma. Hodgkin/Reed Sternberg (HRS) cells, the malignant cells of classical Hodgkin’s lymphoma (cHL), resist to Fas induced apoptosis. Fas resistance in this system is due to the aberrant upregulation of FLIP proteins. Conversely, ATM expression and function is impaired in many HL cases and in several HL-derived cell lines. To test whether ATM loss of function may contribute to Fas resistance through FLIP protein upregulation, we took advantage of a lymphoma cell line, L428, that has been previously characterized for the aberrant downregulation of ATM activity and for the aberrant upregulation of FLIP protein levels. Transient transfection of ATM downregulates FLIP levels (Fig. 7A) and restores Fas sensitivity (Fig. 7B), suggesting that targeting of ATM kinase activity significantly contributes to death receptor resistance of HL cell lines and most likely plays a functional role in this pathology.

DISCUSSION
Important defects of the immune system, leading to a significant increase of lymphoma and leukemia development, are one of the major features of A-T syndrome4,5. Since ATM kinase plays a central role in the DSB DNA damage response and this response is required in some physiological context such as the immune system homeostasis, the lack of ATM activity has been proposed to be responsible for aberrant chromosomal translocations originated as a consequence of a failure of the DNA damage response and indeed associated to several lymphomas and leukemias6.

Fas-dependent apoptosis plays a fundamental role in the regulation of the homeostasis of the lymphoid system15. Failure in the Fas signaling causes, both in mice and in humans, autoimmunity as well as aberrant proliferation and lymphoma development19-22.

We reasoned that since defects in Fas-induced apoptosis result in defects in the immune system that partially resemble some of the abnormalities characteristic of the immune system of A-T patients, ATM kinase may play a role in Fas-induced apoptosis. According to our hypothesis, the present article shows that cells that lack ATM kinase are significantly resistant to Fas induced apoptosis (Fig. 1). Reconstitution experiments showed that ATM catalytic activity is required to sensitize cells to Fas (Fig. 1 D, E). We could show that Fas stimulation triggers ATM kinase activation. However, our data strongly suggest that ATM activation upon Fas stimulation occurs when the apoptotic signaling is already irreversible, as a consequence of DNA condensation and fragmentation during the apoptotic response. Therefore ATM activation does not seem to play a major role in the sensitivity to Fas-induced apoptosis. This apparent paradox prompted us to investigate whether basal ATM kinase may modulate the level and/or the activity of any central player of Fas signaling. Fas sensitivity mainly relies on Fas-receptor expression on cell surface and on Caspase-8 activity, which is absolutely required to drive the caspase cascade and execute the apoptotic program. Importantly, ATM protein does not modulate Fas-receptor
or Caspase-8 protein levels (Fig. 3A, B). However, A-T cells are impaired in Caspase-8 activation consistently with their resistance to Fas (Fig. 3C, D). It has been clearly established that FLIP proteins may modulate Caspase-8 activation in vitro and in vivo (reviewed in13). Moreover FLIP level is tightly regulated during T and B cell activation and its decrease parallels the enhancement of Fas sensitivity (reviewed in44). Importantly, we could show that A-T cells significantly accumulate FLIP proteins (Fig. 4A). Reconstitution of ATM kinase activity downregulates FLIP proteins. Conversely a catalitically inactive ATM fails to downregulate FLIP. Importantly, there is a strict relationship between FLIP levels and the sensitivity of the different cell lines to Fas-induced apoptosis. To further test the hypothesis that ATM kinase sensitizes cells to Fas-induced apoptosis through the downregulation of FLIP proteins, we interfered FLIP expression in A-T cells, by specific shRNA constructs. Following this approach it was possible to downregulate FLIP to the same levels observed in ATM proficient cells which, in turn resulted in the restoration of Fas sensitivity in A-T cells (Fig. 4B, C). Therefore we concluded that ATM kinase activity modulates Fas sensitivity through the regulation of FLIP protein levels.

The observation that FLIP levels decrease in A-T cells upon reconstitution with kinase active ATM but not with a kinase defective mutant (Fig. 4A) suggests that a basal ATM kinase activity may be sufficient to downregulate FLIP levels. The presence of an endogenous basal ATM activity, which may be further induced upon DNA damage has been already described45,46. Consistently with the presence of such a basal activity, NCS treatment, which triggers ATM activation, downregulates FLIP in the presence of a kinase competent ATM protein (Fig. 5A). Conversely, the treatment of ATM proficient cells with the ATM kinase inhibitor KU-55933 triggers FLIP upregulation (Fig. 5C). These data allow us to propose that ATM kinase activity modulates FLIP protein levels. Consistently, while the decrease of FLIP levels following NCS treatment sensitizes cells to Fas induced apoptosis (Fig. 5B), the upregulation of FLIP levels after 8 hours preincubation with KU-
55933 protects cells from Fas-induced apoptosis (Fig. 5D). Overall, we provide evidence for A-T cell resistance to Fas-induced apoptosis and we demonstrate that ATM kinase activity may modulate Fas sensitivity through the regulation of FLIP proteins level. Moreover, we could show that ATM modulates FLIP protein stability (Fig. 6). Further experiments will clarify the molecular mechanism beyond this regulation.

Overall, these findings points to the upregulation of FLIP protein levels as a putative novel marker of A-T cell lines. We are currently investigating the levels of FLIP protein in heterozygous derived A-T cell lines. This study along with further experiments on peripheral blood cells from A-T patients will address the question whether FLIP upregulation could be used as a novel A-T prognostic marker.

Importantly, A-T patients have an increased rate of lymphoma and leukemia development, with a frequent occurrence of B-cell lymphomas such as Hodgkin Lymphomas^4,5. Interestingly, several independent studies on HL reported the aberrant downregulation of ATM activity as a common event, thus suggesting that ATM loss may promote HL development^7,9. Furthermore it has been clearly shown that HL are very resistant to Fas- and TRAIL-induced apoptosis and this correlates clearly with the aberrant upregulation of FLIP levels. Indeed the downregulation of FLIP is sufficient to sensitize back these cells to death-receptor-induced apoptosis^26,27. It has been reported that NF-B transcription factor up-regulates FLIP expression^47. Interestingly, the transcription factors NF B and AP1 are aberrantly activated in HL and have been proposed to be responsible for the modulation of the levels of most of the proteins aberrantly expressed in HL^48-50. Indeed, repression of NF B activity triggers FLIP protein downregulation in HSR cells^27.

We have shown that ATM kinase activity modulates FLIP protein levels. To test whether the lack of ATM kinase activity in HSR cells may contribute to FLIP downregulation we restored ATM activity in L428 cells, an HL-derived cell line previously characterized for aberrantly low ATM function^29 and for aberrantly high FLIP levels^26,27. Using this approach
we could show that ATM activity is sufficient to decrease FLIP levels and to sensitize L428 cells to Fas-induced apoptosis (Fig. 7). This finding, along with the data in literature on ATM deficiency in HL7,9, allows us to speculate that AT deficiency could also contribute to lymphoma development via the loss of control on FLIP levels which in turn triggers Fas resistance.

In summary, we identified a novel function for ATM kinase as a regulator of FLIP levels and of Fas sensitivity and suggested that this signaling may contribute to the homeostasis of the immune system. It is also tempting to speculate that failure of the ATM-dependent FLIP regulation, might be at least partially responsible for the increased frequency of lymphomas associated to A-T, as well as for the development of lymphoma in those situations where ATM kinase activity is downregulated through alternative mechanisms other than homozygous deletion. Furthermore, the induction of ATM activation may provide a novel tool to downregulate FLIP protein levels and to sensitize those lymphomas where endogenous ATM is still functional to death receptor induced apoptosis. Importantly, treatment of tumor cells with DNA-damaging drugs like 5-FU has been shown to downregulate cFLIP and thereby to sensitize cells to death receptor-induced apoptosis30. We observed that ATM kinase activity is required for this effect (data not shown), suggesting that indeed this mechanism might be diagnostically and therapeutically relevant.

Finally, we provide novel evidence for a basal endogenous activity of ATM kinase independent of the exogenous DNA damage induction, which probably accounts for differences in the level of expression of FLIP protein. This basal activity of ATM could be relevant also in other cellular processes and contribute, at least in part, to the complexity of A-T phenotype. Therefore, investigations comparing different structural and functional features of wt and A-T cells in the absence of DNA damage, may strongly contribute to broaden current knowledge on ATM kinase function and A-T pathology.
ACKNOWLEDGMENTS

We acknowledge Y. Shiloh, M. Kastan, D. Delia, H. Walczak, H. Kashkar, M. Kronke, L. Chessa and KUDOS for kindly providing reagents, A. Diamantini for FACS sorting (MOFLO), M.P. Paronetto for RT PCR experiment support and C. Sette and all his lab members for helpful discussion and critical reading of the manuscript. D.B. is an Assistant Telethon Scientist and is supported by the Italian Telethon Grant (TCP00061), V.S., M.G., and S.C. have been supported by the Italian Telethon Foundation and by the Italian Compagnia di San Paolo-Imi Bank Foundation. V.S. is presently supported by Fondazione Santa Lucia. This work has been supported by grants from the Italian Telethon Foundation (TCP00061), from the Italian Association for Cancer Research (AIRC), from the Italian Compagnia di San Paolo-Imi Bank Foundation, and from the AT Childrens’ Project, to D.B. This work was also supported by a grant from AIRC to R.T.

AUTHORSHIP

Contribution: V.S. performed the research and analyzed the data, M.G.d.B performed the research, S.C. generated the shFLIP cell lines, I.C. supervised the work with the ATM reconstituted cell lines, M.T.C. assisted with the flow cytometry and apoptosis analysis, R.T. analyzed the data, Y.L. analyzed the data, E.C. wrote the paper, D.B. designed the research and wrote the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.
REFERENCES

13. Peter ME. The flip side of FLIP. Biochem J. 2004; 382:e1-3

FIGURE LEGENDS

Figure 1. **ATM deficient cells are resistant to Fas-induced apoptosis.** ATM proficient cells (C3ABR) and ATM deficient cells (L6) were treated with 250ng/ml of anti-Fas mAb. Apoptosis was determined by the analysis of DNA fragmentation in propidium iodide stained cells (P.I) (A) or by the analysis of Annexin V binding (B), 24 hrs after anti-Fas treatment. (C) ATM deficient cells (L6) were stably transfected with ATM-wt, ATM-Kin- or with empty vector as control using 20 μg of the indicated constructs. For immunoblotting, 80-100 μg of protein extract were separated by SDS-PAGE, and transferred on nitrocellulose. ATM protein was revealed with anti-ATM (MAT3) antibodies. (D, E) Cells were treated to undergo apoptosis with 250ng/ml of anti-Fas mAb. Apoptosis was determined by the analysis of DNA fragmentation upon propidium iodide nuclear staining (P.I) (D) or by the analysis of Annexin V exposure (E) , at 24 hrs after anti-Fas treatment.

Figure 2. **ATM kinase activation following Fas-induced apoptosis is a late passive event** A) C3ABR cells were induced to apoptosis with 250 ng/ml anti-Fas IgM monoclonal antibody. Untreated and NCS-treated cells that triggers DSB and classically induces ATM activation51, were used as controls. For immunoblotting, 80-100 μg of protein extract were separated by SDS-PAGE, and transferred on nitrocellulose. The proteins of interest and
their phosphorylation were revealed by immunoblotting with specific antibodies. B) C3ABR cells were treated to undergo apoptosis with 250 ng/ml anti Fas IgM monoclonal antibody (CH11; UBI). Untreated and treated cells were analyzed with by flow-cytometry for active caspase-3 and phospho-Ser1981-ATM. C) C3ABR cells were treated to undergo apoptosis as in B. Untreated and NCS-treated cells were used as controls. Cells were fixed, permebilized and immunofluorescences were carried out as previously described 32. Nuclear condensation and fragmentation has been evaluated by Hoechst staining.

Figure 3. ATM kinase activity promotes Caspase-8 activation. A) Fas receptor levels were detected by flow-cytometry analysis. Cells were incubated with anti-Fas antibodies followed by PE-conjugated secondary antibodies (dark lines). For each cell line an incubation with PE-conjugated alone served as negative controls (light lines). B) Caspase-8 expression was revealed by immunoblotting on extracts obtained by the indicated cell lines. 80-100 μg of protein extract were separated by SDS-PAGE, transferred on nitrocellulose and Caspase-8 expression revealed using specific antibodies. C) Protein extracts from the indicated cell lines stimulated to undergo apoptosis with anti-Fas antibodies, have been separated by SDS-PAGE and Caspase-8 revealed by immunoblotting with specific antibodies. The arrows point to the entire protein, p55, as well as to the processing products p43 and p18. D) Caspase-8 activity from the same extracts was measured by the hydrolysis of the Caspase-8 substrate Ac-IETD-AMC.

Figure 4. Basal ATM kinase activity regulates FLIP protein levels. A) FLIP expression was revealed by immunoblotting on extracts obtained from the indicated cell lines. 80-100 μg of protein extract were separated by SDS-PAGE, transferred on nitrocellulose and FLIP expression revealed using specific antibodies. The arrows point to FLIP-L and FLIP-S isoforms. B) ATM deficient L6 cells were stably transfected with shFLIP or with a scrambled oligo as control. Protein extracts from the indicated cell lines were probed for
FLIP expression by immunoblotting as described in A. The arrows point to endogenous FLIP-L and FLIP-S.

C) The indicated cell lines were stimulated to undergo apoptosis with 250ng/ml of anti-Fas mAb. Apoptosis was determined by the analysis of DNA fragmentation upon propidium iodide nuclear staining (P.I) 24 hrs after anti-Fas treatment.

Figure 5. Modulation of ATM kinase activity results in the regulation of FLIP protein levels which in turn determines Fas sensitivity.

A) Different cell lines were treated with NCS for 3 hrs to trigger ATM kinase activation. 80-100 μg of protein extract were separated by SDS-PAGE, transferred on nitrocellulose and FLIP expression revealed using specific antibodies.

B) C3ABR cells were stimulated to undergo apoptosis with 250ng/ml of anti-Fas mAb in the presence or in the absence of NCS pretreatment for 3 hrs. Apoptosis was determined by the analysis of DNA fragmentation in propidium iodide stained cells (P.I) 24 hrs after anti-Fas treatment.

C) The indicated cell lines were incubated in the presence of the specific ATM kinase inhibitor KU-55933 (10 μM) for 1 or 8 hrs. 80-100 μg of protein extract were separated by SDS-PAGE, transferred on nitrocellulose and FLIP expression revealed using specific antibodies.

D) C3ABR cells were preincubated for 1 or 8 hrs with the specific ATM kinase inhibitor KU-55933 (10 μM), to allow endogenous ATM kinase inactivation and FLIP levels upregulation and then stimulated to undergo apoptosis with 250ng/ml of anti-Fas mAb. Apoptosis was determined by the analysis of DNA fragmentation in propidium iodide stained cells (P.I) 24 hrs after anti-Fas treatment.

Figure 6. ATM kinase activity downregulates FLIP protein stability.

A) RT-PCR analysis of FLIP-L and FLIP-S RNA expression levels was performed in the indicated cell lines. Amplified actin was used as an internal control.

B) C3ABR-FLAG-FLIP-L stably transfected cells were incubated with NCS for different times to trigger ATM kinase activation. 80-100 μg of protein extract were separated by SDS-PAGE, transferred on nitrocellulose and endogenous (*) and transfected FLIP (**) expression revealed using...
specific anti-FLIP antibodies. C) Cells were pretreated with KU-55933 O/N, washed, and then incubated with CHX for the indicated times.

Figure 7. ATM kinase activity downregulates FLIP protein levels and sensitizes Hodgkin Lymphoma cell lines to Fas induced apoptosis.

A) L428 HL cells were transiently transfected with the indicated constructs along with GFP. 24 hrs after transfection GFP positive cells were isolated by FACS sorting, and incubated for additional 12 hrs. For immunoblotting, 80-100 μg of protein extract were separated by SDS-PAGE, and transferred on nitrocellulose. The proteins of interest and their phosphorylation were revealed by immunoblotting with specific antibodies. B) L428 HL cells were transiently transfected with the indicated constructs along with GFP. 24 hrs after transfection cells were stimulated to undergo apoptosis with 250ng/ml of anti-Fas mAb. Apoptosis was determined by the analysis of Annexin V binding 24 hrs after anti-Fas treatment, upon FACS sorting of GFP positive cells.
Figure 1

A. Propidium Iodide

B. Annexin V

C. Western Blot

D. Propidium Iodide

E. Annexin V

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
ATM kinase activity modulates Fas sensitivity through the regulation of FLIP in lymphoid cells

Venturina Stagni, Maria Giovanna di Bari, Silvia Cursi, Ivano Condo, Maria Teresa Cencioni, Roberto Testi, Yaniv Lerenthal, Enrico Cundari and Daniela Barila