Prognostic and Oncogenic Relevance of TLX1/HOX11 Expression Level in T-ALLs

Julie Bergeron, Emmanuelle Clappier, Isabelle Radford, Agnès Buzyn, Corinne Millien, Gwendoline Soler, Paola Ballerini, Xavier Thomas, Jean Soulier, Hervé Dombret, Elizabeth A. Macintyre and Vahid Asnafi.

Affiliations:
From the Université Paris V René Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) EMI0210 and Assistance Publique-Hôpitaux de Paris (AP-HP) Hôpital Necker-Enfants-Malades, Paris, France; INSERM U728 IUH and Hematology Laboratory AP-HP Hôpital St-Louis, Paris, France; Hematology Department Hôpital Necker-Enfants-Malades, Paris, France; Service d’hématologie biologique Hôpital Armand Trousseau, Paris, France; Department of Hematology Hôpital Edouard Herriot, Lyon, France; and Hematology Department Hôpital St-Louis, Paris, France.

Correspondance and Reprints:
Vahid Asnafi, Hôpital Necker Enfants Malades, Tour Pasteur 2e étage, Laboratoire d’hématologie, 149 rue de Sèvres, 75015 Paris, France, e-mail: Vahid.asnafi@nck-aphp.fr.

Supported by grants from the Fondation de France (UB : 032145 ; N° Engt : 2005006547) and the Association de Recherche contre le Cancer (N. 3136). Julie Bergeron is a Fellow of the National Cancer Institute of Canada (NCIC) through an award from the Terry Fox Foundation (TFF).

Partial results were presented in abstract form at the 48th annual meeting of the American Society of Hematology, Orlando, FL, December 10, 2006.

The online version of the article contains a data supplement.
Abstract:

TLX1 is a homeodomain transcription factor generally associated with a favourable outcome in T-ALL. However, the molecular mechanisms of *TLX1* deregulation remain unclear and various transcript levels in the absence of 10q24 abnormalities have been reported. A reproducible and accurate delineation of TLX1+ T-ALL will be necessary for proper therapeutic stratification. We have studied 264 unselected T-ALLs (171 adults and 93 children) and show that T-ALLs expressing high levels of *TLX1* (n=35, 13%), defined as a RQ-PCR ratio of *TLX1/ABL* >1.00E+00, form a homogeneous oncogenic group, based on their uniform stage of maturation arrest and oncogenetic and transcriptional profiles. Furthermore, TLX1-high T-ALLs harbour molecular *TLX1* locus abnormalities in the vast majority (31/33), a proportion largely underestimated by standard karyotypic screening. T-ALLs expressing *TLX1* at lower levels (n=57, 22%) do not share these characteristics. Prognostic analysis within the adult LALA94 and GRAALL03 prospective protocols demonstrate a better event-free (p=0.035) and a marked trend for longer overall survival (p=0.059) for TLX1-high T-ALLs, while the expression of lower levels of *TLX1* does not impact on prognosis. We propose that TLX1+ T-ALLs be defined as cases expressing *TLX1/ABL* ratios >1 and/or demonstrating *TLX1* rearrangement. Therapeutic modification should be considered for those patients.
Introduction:

A large proportion of T-cell Acute Lymphoblastic Leukemias (T-ALLs) show a normal (30-40%) or failed (15-20%) karyotype.1,2 Molecular cytogenetic approaches have allowed identification an increasing number of oncogenetic lesions in this disease.3,4 Oncogenes such as TLX1/HOX11, TLX3/HOX11L2, TAL1 and the CALM-AF10 and MLL fusion transcripts appear lineage and stage of maturation arrest-specific and as such are likely to represent key leukemogenic features.5-8 More recently, evidence of NOTCH1 mutations in about half of T-ALLs has further enhanced the biological heterogeneity of T-ALLs.9 However, few of these known oncogenetic markers have demonstrated clear prognostic significance. Conflicting outcomes have been associated with HOX11L2, TAL1 deregulation and NOTCH1 mutations.7,10-14 TLX1 overexpression and/or translocation generally confers a better prognosis but this association, when found, varies between series.11,12,15-18

Deregulated expression of the TLX1 gene, situated on chromosome 10q24, is reported in 20-30% of T-ALLs but only 14% of adults and 4-7% of childhood T-ALLs show a 10q24 translocation when evaluated by standard karyotypic methods.15-17,19 The stringency of the association between TLX1 expression and the presence of a translocation has therefore been questioned.18 Observed levels of expression, assessed by Real Time Quantitative PCR (RQ-PCR), vary greatly between samples.11,18 The reference genes used and RQ-PCR-defined thresholds for ‘high level’ TLX1 expression differ between authors, which makes data comparison difficult. It has been proposed that adults with a T-ALL expressing elevated levels of TLX1 should not undergo bone marrow transplantation during first remission.17 A stringent and standardised definition of $\text{TLX1}(+)$ T-ALL is therefore important if it is to be used for therapeutic stratification.

We undertook this study to clarify the biological and clinical significance of TLX1 levels of expression in 264 (93 pediatric and 171 adult) T-ALLs which have undergone extensive conventional and molecular cytogenetic, immunophenotypic and oncogenetic analysis.
Materials and Methods:

Patients and diagnostic analysis
Diagnostic peripheral blood or bone marrow samples from: 264 T-ALLs, defined by expression of cytoplasmic and/or surface CD3, CD7 and negativity for CD19 and MPO; 30 B-ALLs and 21 acute myeloid leukemias (AMLs) were analyzed after the patients provided informed consent according to the Declaration of Helsinki. Approval for these studies was obtained from the Comite Consultatif de Protection des Personnes dans la Recherche Biomedicale Lyon B (CCPRPB) Institutional Review Board. Patients were considered adults when older than 15 years. Ninety-eight Adult T-ALLs were treated within the LALA-94 multicenter trial and 33 within the GRAALL-2003 trial. Details of patients classification, DNA and RNA extraction, immunophenotype, and TCR analysis were described previously.5,20,21
cDNA synthesis was performed centrally at the Necker facility, and RNA quality assessed and normalized by quantification of ABL on an ABI PRISM 7700 or 7000 (Perkin-Elmer Applied Biosystems, Branchburg, NJ), using guidelines from the Europe Against Cancer program.22 Samples with an ABL cycle threshold (Ct) above 32 were excluded from analysis. Each experiment included 2 nontemplate controls for contamination and all RQ-PCRs were performed in duplicate. All primers spanned an intron and absence of genomic amplification was confirmed by RQ-PCR from peripheral blood lymphocyte (PBL) DNA. Transcript quantification was performed after normalization by the ABL housekeeping gene from the standard curves using the delta of delta Ct method. Primers and RQ-PCR probes have been previously reported.8,23

Assessment of RQ-PCR amplification efficiency of $TLX1$ and ABL
Logarithmic $TLX1$ plasmid dilutions were conducted and quantified by RQ-PCR. Efficiency slopes for $TLX1$ and ABL dilutions were comparable with respective slope values of -3.53 and -3.45. In reproducibility experiments (n=10), the Ct of detection for a dilution corresponding to one $TLX1$ copy per well was inconstant and varied between 38.04 and 41.1 (figure S1 on the Blood website). Hence, we considered that Cts above 38 were not quantitative and were classified as $TLX1$-negative.

FISH analysis
Dual color FISH experiments were performed with two sets of overlapping probes flanking the $TLX1$ locus on each side of the breakpoint: 5’ RP11-179B2 and RP11-1031N22 labeled with FITC-dUTP and 3’ RP11-324L3 and RP11-119018 labeled with Rhodamine-dUTP.
A normal TLX1 locus yields a fusion signal (Figure 2A). A TLX1 translocation yields a split signal (Figure 2B).

Ligation-Mediated PCR (LM-PCR)

LM-PCR was performed using a JD1 or Dδ3 probe, as described. Briefly, 1µg of DNA was digested with 2 blunt end restriction enzymes, DraI and PvuII. Ligation of 50pmol of an adaptor to both ends of the restriction fragments was followed by two rounds of PCR using nested adaptator-specific primers and the JD1 or Dδ3 specific primers respectively 5’-gTTCCACAgTCACgggTTC-3’ and 5’-TgggACCCAgggTgAggATAT-3’. The LM-PCR products were sequenced in both directions using the JD1 primer and the nested adaptor specific primer. The sequences were blasted in the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/BLAST) and on the Ensembl genome browser tool (http://www.ensembl.org/Multi/blastview). Results obtained by LM-PCR were confirmed with a designed primer set.

TLX1-TCRD junction screen:

A multiplex PCR reaction was performed using the 10q24 5’-gACATCCCTTCCTCAGACgC-3’ and the TCRD 3’ Jδ1 and Dδ3 aforementioned primers. Briefly, 100ng of DNA was amplified for 40 cycles in the presence of 0,2nM each primer, 2mM MgCl2, 200µM dNTP, ABI Buffer II and 1 U Taq Gold (Perkin Elmer). Cycling parameters included: preactivation 7min at 94°C followed by denaturation for 45sec at 94°C, annealing for 1min at 57°C and extension for 90 sec at 72°C for 40 cycles and a final extension for 10min at 72°C.

Allelic expression analysis:

PCR amplification and sequencing of genomic DNA identified polymorphic markers in the 3’ untranslated region (3’UTR) of TLX1, as described. DNAse-treated mRNA from heterozygous samples was reverse transcribed, amplified and sequenced. The mono- or bi-allelic expression pattern was determined by sequence analysis.

Large scale expression analysis :

An independent series of 92 T-ALL samples from Saint-Louis Hospital (Paris, France), including 56 children (median age 9 years; range 1 to 15) and 36 adults (median age 27; range 17 to 66) was previously analysed by large scale expression analysis using
Affymetrix U133A arrays. Clinical, immunological and oncogenic group of these cases have been described.8

LALA-94 and GRAALL-2003 trials

Ninety eight adults from the LALA-9421 and 33 from the GRAALL-2003 clinical protocols could be classified into TLX1-high, -low and -negative based on RQ-PCR-defined criteria. The LALA-94 multi-center prospective randomized trial was reported and discussed previously. The complete remission (CR) rate (86%), survival outcome (median, 28 months), and follow up (median, 43 months) of the 98 LALA-94 patients T-ALLs with available cDNA did not differ significantly from the 236 T-ALLs included in the LALA94 protocol. The GRAALL-2003 protocol was a pediatric-inspired Phase 2 trial which enrolled 224 adults with Ph-negative ALL between November 2003 and November 2005. Preliminary results have been presented recently, with a median follow-up of 18 months.26 We report here on 33 patients with available cDNA for our analysis. The outcome for these 33 patients did not differ from the overall 74 T-ALLs included in the GRAALL-2003.

Statistical analysis

Patient characteristics and CR rates were compared using the Fisher exact test while median comparisons were performed with the Mann-Whitney test. Overall survival (OS) was calculated from the date of randomization until the date of death or last contact. Event-free survival (EFS) was calculated from the date of randomization until the date of induction failure, first relapse, death, or last contact. OS and EFS were estimated by the Kaplan-Meier method, 27 then compared by the log-rank test. 28 For OS and EFS estimations and comparisons, all patients who received an allogeneic stem cell transplantation (SCT) were censored at SCT time. Adjustments were performed using the Cox model and tested by the log likelihood ratio test. All calculations were performed using the STATA software, version 9.0 (Stata Corporation, College Station, TX, USA).

RESULTS:

RQ-PCR TLX1 quantification defines 3 groups of T-ALL:

RQ-PCR quantification of *TLX1* from 264 T-ALLs (171 adults and 93 children) was performed centrally and expressed as a *TLX1*/ABL ratio (Figure 1). Results range from 4.0 x 10E+2 to undetectable. Thirty-five samples expressed *TLX1* at high level with ratios of *TLX1* over *ABL* greater than 1 (range 2.0 to 4.0 x 10E+2). For the purpose of this
manuscript, these T-ALLs are designated as the ‘TLX1-high’ group. Fifty-seven cases expressed $TLX1$ at a lower level, with a median $TLX1$ value of 8.0×10^{-4} (range 1.0×10^{-5} to 1.0×10^{-1}) and are designated as the ‘TLX1-low’ group. One hundred and seventy-two samples were classified in the TLX1-negative group. Strikingly, the TLX1-high and TLX1-low group do not overlap and are separated by at least 1 log of $TLX1$ level of expression (figure 1). As reported, no B-cell ALL nor AML expressed high levels of $TLX1$ but low levels were observed for 3/30 B-ALLs and 4/21 AMLs. Low $TLX1$ expression was also found in the B-ALL (RS 4;11, RAJI, REH), Myeloblastic (Kasumi and K562) and T-ALL (RPMI, MOLT4, CEM, MOLT13, MKB1, Jurkat, HBP-ALL) cell lines (data not shown). $TLX1$ was not expressed in 5 control bone marrows, 10 normal peripheral blood lymphocytes and 5 normal neonatal thymi.

$>90\%$ of TLX1-high T-ALLs have an abnormal 10q24 locus and show monoallelic $TLX1$ expression:

Karyotype results were available for 175 cases (22 failed and 67 unavailable). Eleven (6\%) show clonal 10q24 abnormalities, all 11 cases belonged to the TLX1-high group. However, 17 TLX1-high T-ALLs with successful karyotypes did not demonstrate 10q24 rearrangement (Table 1). The remaining 7 TLX1-high samples did not have karyotypic data available. Among these 24 TLX1-high samples without evident karyotypic data abnormality, 2 could not be explored by molecular techniques due to the absence of appropriate material. Of the 22 evaluable samples, 20 demonstrated either a split 10q24 locus by FISH (Figure 2A), suggestive of a translocation (n=16), or a $TLX1$-TCRD junction by LM-PCR (n=4). Two samples showed a normal (fusion) FISH pattern (figure 2B), with no evidence of a TCR-TLX1 junction by LM-PCR. Overall, of 33 TLX1-high T-ALLs with cytogenetic and/or DNA available for appropriate analysis, 31 (94\%) demonstrated a $TLX1$ cytogenetic aberration.

Twelve of 15 TLX1-high samples tested were informative (heterozygous) for a single nucleotide polymorphism in the 3’UTR region of $TLX1$. Monoallelic expression of $TLX1$ was observed in all 12. Of note, one of the two TLX1-high samples for whom no $TLX1$ cytogenetic lesion was evidenced by FISH or LM-PCR was evaluable for allele-specific expression and showed a monoallelic pattern of $TLX1$ expression.

TLX1-low T-ALLs have an intact 10q24 locus:
Among the 42 TLX1-low T-ALLs with an available karyotype, none showed karyotypic 10q24 abnormalities (Table 1). FISH analysis was performed for 14 TLX1-low T-ALLs. The TLX1 locus appeared intact in all of these cases, including the 3 patients expressing the highest TLX1 levels of the TLX1-low group. FISH was also performed on 11 cell lines expressing low levels of TLX1 and all showed normal TLX1 loci. Among TLX1-high samples, the sequenced translocation breakpoints on chromosome 10, identified by LM-PCR, were relatively clustered (full details of this cluster will be published in detail elsewhere). One particular set of primers successfully amplified 30% of the TLX1-TCR junctions among the 21 TLX1-high samples tested. The sensitivity of this primer set was evaluated at 10 x 10E-3/-4 log dilution (Figure 3). In order to verify whether we could evidence a minor TCRD-TLX1 subclone causing the low TLX1 expression in the TLX1-low T-ALLs, we searched the TLX1-low samples for TCRD-TLX1 rearrangements with this designed PCR primer set. A total of 30 TLX1-low T-ALLs were tested but no TLX1-TCRD junctions were amplified. For allele specific expression analysis, it was not possible to amplify sufficient cDNA from the 3’UTR region of a significant number of TLX1-low samples in order to reliably study their allelic expression.

TLX1-high but not TLX1-Low T-ALL share common immuno-genotypic and transcriptional features:

Of the 264 T-ALLs, 241 cases have undergone TCR expression and rearrangement analysis and have been TCR classified as described. All 32 TLX1-high tested demonstrated TCRB V(D)J rearrangement on at least one allele and an uniform CD34- (31/32, 97%) CD1a+ (32/32, 100%) CD4/8 DP (28/32, 87%) cortical phenotype. They were closely correlated (90%) to an IMB/pre-AB stage of maturation arrest (Table 2). TLX1-low and TLX1-neg T-ALLs were not tightly linked to any specific stage of maturation arrest although the TLX1-low group harbours less TCR-expressing cases compared to the TLX1-neg group (p=0.01).

TLX1-high T-ALLs expressed TLX1 by definition and were uniformly negative for TLX3, CALM-AF10 or SIL-TAL1 (table 3). In contrast, TLX1-low T-ALLs constituted a heterogeneous oncogenic subgroup. Interestingly more “HOX” expressing cases such as TLX3+ or CALM-AF10+ samples were found among the TLX1-low samples (p<0.05) compared to the TLX1-negative T-ALLs.

TLX1 and array analysis of an independent series of 92 T-ALLS
Homogeneous T-ALL oncogenic subgroups (TAL-RA, TAL-RB, MLL, CALM-AF10, HOXA-t, TLX1, TLX3, and Immature) have been defined by gene expression profiling from an independent series of 92 T-ALL samples, using unsupervised clustering (U133A Affymetrix microarray) and correlation with immunological and oncogenic transcript expression data. We measured TLX1 expression levels in these cases by RQ-PCR using identical conditions and classified cases as TLX1-high, -low, and -negative cases as described above. Distribution of the cases within the oncogenic subgroups was analysed with respect to the TLX1 status. As expected, all TLX1-high cases shared a homogeneous gene expression profile and clustered in the TLX1 subgroup. In contrast, TLX1-low cases were distributed amongst the other subgroups (Figure 4), as were TLX1-negative cases. Moreover, there was no case in the so-called HOX-R branch that had low TLX1 expression as sole homeobox gene expression (i.e. all cases in this unsupervised branch expressed HOXA, TLX1-high, or TLX3), suggesting that low TLX1 expression cannot trigger the biological profile defining this branch. These data reinforce the view that whereas TLX1-high cases represent a homogeneous oncogenic subgroup with biological significance, low TLX1 expression does not trigger oncogenic pathways.

Prognostic value of TLX1-high versus TLX1-low expression within the adult LALA-94 and GRAALL-2003 therapeutic protocols:

Ninety-eight patients from the LALA-94 and 33 from the GRAALL-2003 protocol were included. The median age of the included patients was 29 (range 16-58). The median white blood cell count at diagnosis of all included patients was 21.4 x 10^9 cells/mm^3 (0.2-759). There were 20 TLX1-high, 37 TLX1-low and 74 TLX1-neg samples. Patient characteristics among the three subgroups are shown in Table 4. Overall, 118/131 patients (90%) achieved CR including 20/20 patients in the TLX1-high, 30/37 in the TLX1-low and 68/74 in the TLX1-neg subgroup. However, the achievement of CR at first induction was greater in the TLX1-high subgroup as compared to combined TLX1-low and TLX1-neg subgroups (Table 4). Median EFS of all 131 patients was 23 months. EFS events were induction death in 5 patients (3, 2, and 0 in the TLX1-neg, -low, and -high subset, respectively), resistance to induction in 8 patients (3, 5, and 0 in the TLX1-neg, -low, and -high subset, respectively), relapse in 54 patients (32, 15, and 7 in the TLX1-neg, -low, and -high subset, respectively; including 1 relapse after SCT), and death in first CR in 6 patients (3, 2, and 1 in the TLX1-neg, -low, and -high subset, respectively; including 4 deaths after SCT). After censoring at stem cell transplantation (SCT) time, median EFS of TLX1-neg, -low, and -high patients was 20 months, 16 months, and not reached, respectively (Figure 5A, P=0.04 by log-rank
test). After adjustment on trial and age, the difference between TLX1-high patients and TLX1-low/-neg patients was statistically significant (hazard ratio in the TLX1-low/-neg subgroup, 1.53 (95% CI: 1.03-2.27; P=0.035). Median OS of all 131 patients was 43 months. After censoring at SCT time, median OS of TLX1-neg, -low, and –high patients was 31 months, 28 months, and not reached, respectively (Figure 5B, P=0.08 by log-rank test). After adjustment on trial and age, there was a marked trend for longer OS in TLX1-high patients as compared to TLX1-low/-neg patients (hazard ratio in the TLX1-low/-neg subgroup, 1.56 (95% CI: 0.98-2.48; P=0.059).

Discussion:

In this study, we sought to determine the onco-biological and clinical significance of TLX1 expression in T-ALL, since published data on the subject were conflicting. We show that two independent groups of TLX1-expressing T-ALLs exist: a homogenous good prognosis group with high level TLX1 expression, due to TLX1-TCR juxtapositioning in the majority, and a heterogeneous group with low level TLX1 expression and neutral prognostic impact. Therapeutic stratification of TLX1+ T-ALL is increasingly envisaged; this will require reproducible distinction of TLX1-high and TLX1-low T-ALL within the different prospective adult and pediatric T-ALL trials.

High level expression was defined as TLX1/ABL RQ-PCR ratios greater than 1 (TLX1\(>1.\text{E}+00\) ABL), with a clear demarcation of at least one log from TLX1-low cases. Distinction of low level expression from TLX1 negativity depends on the sensitivity of the technique. We considered samples with an absolute TLX1 Ct higher than 38 to be TLX1-negative, based on reproducibility experiments conducted with TLX1 plasmid dilutions. This ensured that the TLX1-low group expressed reasonably quantifiable TLX1 amounts. The fact that no TLX1 was detected in normal peripheral blood, bone marrow, thymic cDNA or genomic DNA confirms the leukemic origin of these low level TLX1 transcripts. This bi-modal pattern of TLX1 expression in T-ALL has been reported but its biological significance was unexplored. Multicenter reproducibility of these RQ-PCR criteria needs to be evaluated.

TLX1-high T-ALLs corresponded to 18% of adult and 5% of pediatric cases, in keeping with similar estimates, but lower than reported by other authors. Only 39% demonstrated karyotypic 10q24 abnormalities, despite the fact that the incidence of 10q24 abnormalities (1/56 ; 2% of pediatric and 10/119 ; 8% of adult T-ALLs) and the overall karyotype failure rate (22/197 ; 11%) approximated published prevalences. Combined
interphase FISH and TCRD LM-PCR analyses demonstrated that the vast majority of cases without 10q24 karyotypic abnormalities were due to TLX1 rearrangement. Given that neither TCRA/D-TLX1 t(10;14), nor TCRB-TLX1 t(7;14) are cryptic, the low detection rate is likely to result from difficulty in obtaining representative mitosis from T-ALL blasts, although half of the TLX1-high cases without apparent 10q24 rearrangements did demonstrate clonal abnormalities. The two TLX1-high T-ALLs which demonstrated no TLX1 rearrangement by FISH or TCRD LM-PCR may bear 10q24 abnormalities that are beyond the scope of the molecular approaches used, such as intragenic insertion of a transcriptional deregulator other than TCRD. The mono-allelic expression of TLX1 in one of these cases is in keeping with deregulation in cis. This 6% false negative rate by FISH/ LM-PCR (2/33 fully analysed TLX1-high T-ALLs) suggests that standardised RQ-PCR is the most appropriate method for initial screening, if therapeutic stratification is to be envisaged. Such an approach is, however, entirely dependent on a reproducible capacity to distinguish TLX1-high from TLX1-low cases, and a combined RQ-PCR and FISH approach is optimal. Based on the data presented here, cases with a TLX1/ABL ratio greater than 1 are likely to be associated with a TLX1 rearrangement, those with TLX1/ABL ratios below 0.1 are unlikely to have TLX1 rearrangement if the sample is representative of the leukaemia, and those with intermediate ratios should be analysed by FISH with TLX1 and TCR probes.

TLX1-high T-ALLs demonstrated a homogenous stage of maturation arrest (IMB, pre-AB) characteristic of cortical thymocytes arrested around the TCRβ selection, a correspondingly distinct gene expression profile and were mutually exclusive of the other major T-ALL oncogenic markers : TLX3, CALM-AF10 and SIL-TAL1, in marked contrast to TLX1-low T-ALLs. Taken together, TLX1-high T-ALL represent a distinct oncogenic group, biologically different from TLX1-low T-ALLs.

The survival curves of the combined LALA-94 and GRAALL-2003 adult trials reported here clearly show that only high levels of TLX1 expression confer a better prognosis. TLX1 translocation or expression has generally been associated with a better prognosis, although the strength of the association varies between series and small patient numbers often preclude appropriate prognostic evaluation. The absence of a standardised PCR definition of TLX1-positive T-ALLs also makes data comparison difficult. Notably, the trend towards better prognosis seems to be more pronounced when authors consider ‘high’ TLX1 expressors or TLX1-translocated samples. A better leukemia-free survival in adult T-ALL was associated with high TLX1 expression in the study by Ferrando et al. A trend for a better outcome was observed in pediatric T-ALL by Kees and al., when 19.7% of the cohort was classified as TLX1-high, compared to only
5% in the present series. It is possible that the use of a higher threshold to define TLX1-
high T-ALL would have allowed even better prognosis discrimination, although performing
such an analysis in pediatric protocols would require large patient numbers, given the
relative rarity of pediatric TLX1-high T-ALL, as defined here. Since all T-ALLs with
10q24 abnormalities correspond to TLX1-high cases, the t(10;14) is associated with a trend
toward better EFS even with limited patient numbers in both pediatric and adult T-ALL. TLX1-low T-ALLs are not a homogeneous group, since they demonstrated variable
immunophenotypic, oncogenotypic and transcriptional features and a similar response to
treatment as TLX1-negative cases. We cannot formally eliminate the possibility of minor
TCR-TLX1 subclones in these cases but consider this to be unlikely since no TLX1-TCR
junction could be identified amongst 30 TLX1-low samples tested with a sensitivity of
10×E-3/-4. Given that most of the ‘TLX1-low’ T-ALLs demonstrate other oncogenic
markers, oncogenic cooperation involving low levels of TLX1 is possible, as proposed for
NOTCH1 mutations. TLX1-low T-ALLs did, however, tend to correlate with an immature
stage of maturation arrest and, more particularly, the “HOXA” associated oncogenic
markers CALM-AF10, MLL and HOXA-TCR, compared to TCR+, SIL-TAL+ or TAL-
RA T-ALLs. This low expression of TLX1 could reflect an underlying global homeodomain
gene deregulation program with low level transcription of TLX1 occurring as some kind
of leakage effect. While such considerations are beyond the scope of this manuscript, if
such a mechanisms occurs, it is unlikely to be restricted to T-ALL, since low TLX1
expression was also seen in B lineage ALL and AML.

Taken together, the importance of a standardized definition of TLX1 positivity can
not be overstressed if, as suggested in adult T-ALL, TLX1 status is to be used to dictate
therapeutic decisions such as bone marrow transplantation. As detailed above, we propose
that TLX1-high T-ALLs should be defined by a molecular RQ-PCR approach, refined when
necessary by FISH, although initial FISH screening will detect the majority of cases and
will need to be considered if RQ-PCR classification does not prove reproducible in inter-
laboratory comparisons within prospective clinical trials. We also propose that within adult
T-ALL, TLX1 positivity be restricted to cases with 10q24 rearrangement and/or TLX1/ABL
RQ-PCR ratios >1 and that such cases be stratified as low risk acute leukemia. All adult
cases with lower RQ-PCR ratios and absence of 10q24 rearrangements by FISH with
appropriate probes should be considered TLX1-negative. It is probable that similar criteria
will be appropriate in pediatric T-ALL, but this will require assessment within prospective
large scale trials.
Acknowledgments: We thank all participants in the LALA94, GRAALL and FRALLE trials for collecting and providing data and samples, especially Véronique Lhéritier, data manager, Christine Pérot and Jacqueline Van Den Akker.

Statement of authorship:

V.A. and E.A.M. designed and supervised the research; J.B., E.C., C.M. and P.B. performed molecular analyses; J.B., I.R. and G.S. performed cytogenetic analyses; H.D. and X.T. performed clinical data analyses; J.B., V.A., E.A.M., HD and J.S. wrote the paper.

OA. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood. 2002;100:991-997

Table 1. Successful/available karyotype results among the 3 TLX1-defined groups

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>TLX1-high n (%)</th>
<th>TLX1-low n (%)</th>
<th>TLX1-neg n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>264</td>
<td>35† (13%)</td>
<td>57† (22%)</td>
<td>172‡ (65%)</td>
</tr>
<tr>
<td>Karyotypes available §</td>
<td>175</td>
<td>28 (16%)</td>
<td>42 (24%)</td>
<td>105 (60%)</td>
</tr>
<tr>
<td>Abnormal (10)(q24)</td>
<td></td>
<td>11/28 (39%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abnormal (clonal) with normal (10)(q24)</td>
<td>8/28 (29%)</td>
<td>31/42 (74%)</td>
<td>65/105 (62%)</td>
<td></td>
</tr>
<tr>
<td>46XX or 46XY</td>
<td></td>
<td>9/28 (32%)</td>
<td>11/42 (26%)</td>
<td>40/105 (38%)</td>
</tr>
</tbody>
</table>

†30 adults and 5 children. †41 adults and 16 children. ‡100 adults and 72 children. §Unavailable karyotypes include 1, 4 and 17 failed karyotype attempts among the TLX1-high, TLX1-low and TLX1-neg groups respectively. ||(10)(q24) aberrations included: t(10;14)(q24;q11) in 7 cases, t(7;10)(q35;q24) in 2 cases, del(10)(q24) and der(10) for 1 case each.
<table>
<thead>
<tr>
<th>Stage of Maturation Arrest</th>
<th>TLX1-high n (%)</th>
<th>TLX1-low n (%)</th>
<th>TLX1-neg n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Phenotypes</td>
<td>32</td>
<td>53</td>
<td>156</td>
</tr>
<tr>
<td>IM</td>
<td>1 (3%)</td>
<td>17 (32%)</td>
<td>39 (25%)</td>
</tr>
<tr>
<td>IMB or pre-AB</td>
<td>29 (91%)</td>
<td>24 (45%)</td>
<td>51 (33%)</td>
</tr>
<tr>
<td>TCR-AB</td>
<td>1 (3%)</td>
<td>5 (9%)</td>
<td>31 (20%)</td>
</tr>
<tr>
<td>TCR-GD</td>
<td>1 (3%)</td>
<td>7 (13%)</td>
<td>35 (22%)</td>
</tr>
</tbody>
</table>

IM, immature; IMB, Immature with V-D-J TCRB but cTCRB negative; pre-AB, surface TCR negative, cTCRB expressing cases; TCR-AB, αβ T Cell Receptor-expressing; TCR-GD, γδ T Cell Receptor-expressing.
Table 3. Molecular Oncogenetic analysis

<table>
<thead>
<tr>
<th>Oncogene Expression</th>
<th>TLX1-high n (%)</th>
<th>TLX1-low n (%)</th>
<th>TLX1-neg n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total assessed</td>
<td>35 (100%)</td>
<td>55</td>
<td>164</td>
</tr>
<tr>
<td>TLX1</td>
<td>35 (100%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TLX3</td>
<td>0</td>
<td>18 (33%)</td>
<td>24 (15%)</td>
</tr>
<tr>
<td>CALM-AF10</td>
<td>0</td>
<td>10 (18%)</td>
<td>12 (7%)</td>
</tr>
<tr>
<td>SIL-TAL1</td>
<td>0</td>
<td>3 (5%)</td>
<td>23 (14%)</td>
</tr>
<tr>
<td>None of the above</td>
<td>0</td>
<td>24 (44%)</td>
<td>105 (64%)</td>
</tr>
</tbody>
</table>

TLX1, TLX3, CALM-AF10 and SIL-TAL1 expression, measured by RQ-PCR, among the 3 TLX1-defined T-ALL groups.
Table 4: Clinical Characteristics of the GRAALL2003 and LALA94 Patients

<table>
<thead>
<tr>
<th></th>
<th>TLX1-high</th>
<th>TLX1-low</th>
<th>TLX1-neg</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (N)</td>
<td>20</td>
<td>37</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Trial (LALA/GRAALL)</td>
<td>14/6</td>
<td>29/8</td>
<td>55/19</td>
<td>0.78</td>
</tr>
<tr>
<td>Median age (years)</td>
<td>35.5 (17-51)</td>
<td>32 (17-54)</td>
<td>26 (16-58)</td>
<td>0.06</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>17/3</td>
<td>27/10</td>
<td>61/13</td>
<td>0.42</td>
</tr>
<tr>
<td>Median WBC (G/L)</td>
<td>19.0 (1.1-179)</td>
<td>12.6 (1.1-320)</td>
<td>22.6 (0.2-759)</td>
<td>0.36</td>
</tr>
<tr>
<td>CR rate in one course</td>
<td>20 (100%)</td>
<td>26 (70%)</td>
<td>57 (77%)</td>
<td>0.007 **</td>
</tr>
<tr>
<td>Overall CR rate</td>
<td>20 (100%)</td>
<td>30 (81%)</td>
<td>68 (92%)</td>
<td>0.22 **</td>
</tr>
<tr>
<td>EFS at 3 years * [95% CI]</td>
<td>54% [24-76]</td>
<td>24% [9-42]</td>
<td>36% [23-49]</td>
<td>0.035 **</td>
</tr>
<tr>
<td>OS at 3 years * [95% CI]</td>
<td>64% [32-84]</td>
<td>36% [17-55]</td>
<td>48% [34-62]</td>
<td>0.059 **</td>
</tr>
</tbody>
</table>

* All patients who received SCT were censored at SCT time. ** Outcome comparisons were performed for the TLX1-high versus TLX1-neg/-low subgroup and adjusted on treatment protocol and age.
Figure 1. **TLX1 level of expression.** RQ-PCR quantification of *TLX1* transcripts normalised for ABL in: 171 adults (□) and 93 children (○) T-ALL samples, 30 B-ALLs (▲), 21 AMLs (♦), 5 normal bone marrows (●), 10 normal peripheral blood lymphocytes (○) and 5 normal Thymi (+). Results are expressed as a *TLX1/ABL* ratio and displayed on a logarithmic scale. A clear separation of a minimum of one log fold expression separates the TLX1-high from the TLX1-low samples. The cut-off value of >1.0E+00 is displayed [……]. Samples with a detectable *TLX1* signal but inferior to 1.00E-05 were considered negative, based on plasmid dilutions experiments.
Figure 2. **Interphasic dual color 10q24 FISH.** Probes were labelled as follow: *TLX1*-5’ FITC, green signal; *TLX1*-3’ rhodamine, red signal. (A) 2 fusion signals, indicative of 2 intacts 10q24 loci. (B) A fusion signal and a split signal, indicative respectively of a normal 10q24 locus and a 10q24 locus rupture, suggestive of a translocation.
Figure 3. Multiplex-PCR products of \textit{TCRD-TLX1} junctions in T-ALLs. Upper lane: \textit{TCRD-TLX1} junctions among 8 TLX1-high T-ALLs. Besides are loaded 10 representative products of the same PCR experiment, performed on 30 TLX1-low samples. No \textit{TCRD-TLX1} junction was amplified among the 30 TLX1-low T-ALLs tested. Lower lane: Logarithmic dilutions estimated the PCR sensitivity to reach $10^{-3/-4}$. The DNA ladder appears on the left.
Figure 4. *TLX1* level of expression measured by RQ-PCR among the different oncogenic groups as defined by transcriptional profile. Levels of *TLX1* were normalised for *ABL* and displayed on a logarithmic scale. The total number of cases in each group is indicated. All TLX1-high samples co-cluster.
Figure 5. Prognostic analysis. (A) Event-free survival, censored at stem cell transplantation time (P=0.04 by log-rank test); after adjustment for trial and age, the P value for the TLX1-high vs TLX1-low/-neg comparison was 0.035. (B) Overall survival, censored at stem cell transplantation time (P=0.08 by log-rank test); after adjustment for trial and age, the P value for the TLX1-high vs TLX1-low/-neg comparison was 0.059.
Prognostic and oncogenic relevance of $TLX1/HOX11$ expression level in T-ALLs

Julie Bergeron, Emmanuelle Clappier, Isabelle Radford, Agnes Buzyn, Corinne Millien, Gwendoline Soler, Paola Ballerini, Xavier Thomas, Jean Soulier, Herve Dombret, Elizabeth A. Macintyre and Vahid Asnafi

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.