Targeted cancer therapy with a novel low dose rate alpha-emitting radioimmunoconjugate

Jostein Dahle1,*, Jørgen Borrebæk2, Thora J. Jonasdottir3, Anne Kristine Hjelmerud1, Katrine B. Melhus1, Øyvind S. Bruland4, Oliver W. Press5, and Roy H. Larsen1

1Department of Radiation Biology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. 2Algeta ASA, Kjelsås, 0411 Oslo, Norway. 3Small Animal Section, Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, 0033 Oslo, Norway. 4University of Oslo and Department of Oncology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. 5Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, USA 98109.

Corresponding author: Jostein Dahle, Department of Radiation Biology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. Email: jostein.dahle@rr-research.no, Tel: +47 22 78 12 03, Fax: +47 22 78 12 07.

Running title: α-radioimmunotherapy of lymphoma

Key words: low dose rate alpha radiation, radioimmunotherapy, lymphoma, 227Th, rituximab
Abstract

Alpha-emitting radionuclides are highly cytotoxic and are of considerable interest in the treatment of cancer. A particularly interesting approach is in radioimmunotherapy. However, α-emitting antibody conjugates have been difficult to exploit clinically due to short half-life of the radionuclides, low production capability or limited source materials. We have developed a novel technology based on the low dose rate α-particle emitting nuclide 227Th, exemplified here using the monoclonal antibody rituximab. In vitro, this radioimmunoconjugate killed lymphoma cells at Bq/ml levels. A single injection of 227Th-rituximab induced complete tumor regression in up to 60% of nude mice bearing macroscopic (32-256 mm3) human B-lymphoma xenografts at Bq/g levels without apparent toxicity. Therapy with 227Th-rituximab was significantly more effective than the control radioimmunoconjugate 227Th-trastuzumab and the standard β-emitting radioimmunoconjugate for CD20 positive lymphoma, Zevalin® (90Y-tiuxetan-ibritumomab). Thorium-227 based constructs may provide a novel approach for targeted therapy against a wide variety of cancers.
Introduction

Monoclonal antibodies conjugated to the β-emitting isotopes, 131I and 90Y, are currently standard treatment options for patients with CD20-expressing B-cell Non-Hodgkin’s lymphoma and have produced long-term responses in up to 86% of patients. However, the long path lengths of the β and γ emissions from these radionuclides generate dose-limiting myelosuppression at conventional doses and cardiopulmonary toxicities at higher doses when used with stem cell transplantation. Furthermore, the low energy transfer characteristics of the β-particles result in suboptimal killing of tumor cells, ultimately leading to relapse in the majority of treated patients.

Alpha-particle radiation, on the other hand, yields high linear energy transfer and confers potent cytotoxicity within a radius of less than 100 μm of the decaying radionuclide. Monoclonal antibodies labeled with α-emitting radionuclides 213Bi, 211At and 225Ac show promise for radioimmunotherapy. However, 213Bi and 211At are challenging to apply in clinical settings because of their short half-lives (46 min and 7.2 h, respectively) and their limited production capability with currently available technology. Actinium-225 ($t_{1/2} = 10.0$ d) has been effective when conjugated to monoclonal antibodies, but the supply of source material for the preparation of this nuclide is very limited. Cationic 223Ra ($t_{1/2} = 11.4$ d) has recently shown considerable promise in clinical trials in patients with skeletal metastases, and may also be used with liposomes, but cannot be stably conjugated to monoclonal antibodies.

Here we suggest that 227Th, the precursor of 223Ra, may be an attractive radionuclide to explore for radioimmunotherapy based on its physical and chemical properties and its availability. Thorium-227 has a half-life of 18.7 days and can be produced in practically unlimited amounts from 227Ac, which is generated by thermal neutron irradiation of 226Ra.
Consequently, long term operating generators for 227Th can be prepared relatively easily and affordably. The long half-life of 227Th should permit conjugation, administration and targeting of a 227Th-labeled radioimmunoconjugate (RIC) before a significant amount of 223Ra is generated. The relatively long half-life of 223Ra, in turn, assures that this nuclide would be largely excreted or trapped in skeletal hydroxyapatite before decay occurs. Although a considerable amount of 223Ra is taken up in bone, this probably will not cause bone marrow toxicity at relevant levels because of the short range of the α-particles as indicated by recent evaluation of this radionuclide in animals and humans. Thus, a therapeutic window permitting treatment with 227Th with acceptable toxicity may exist. Furthermore, the relatively modest γ components of 227Th and the 223Ra series reduce the necessity for patient shielding, allowing α-radioimmunotherapy to be given on an outpatient basis. The γ-photons emitted by 227Th are suitable for imaging and may facilitate dosimetry evaluation in patients.

Since antibody that binds to the tumor target will remain in the body for a longer time than antibody that is not bound, the longer half-life of 227Th also leads to a higher tumor-to-normal organ ratio of absorbed radiation than would be delivered by a nuclide with a shorter half-life. Micrometastases and disseminated malignancies have been proposed as the most suitable indications for radioimmunotherapy with α-emitters because of the short effective ranges of α-particles, since minimal disease permits more rapid targeting and has limited penetration barriers. However, the considerations above suggest that 227Th-labeled antibodies might also be effective for treatment of macroscopic tumors. These considerations motivated us to compare a standard β-emitting anti-CD20 radioimmunoconjugate, 90Y-tiuxetan-ibritumomab, with our α-emitting counterpart, 227Th-DOTA-p-benzyl-rituximab, in a lymphoma xenograft model.
Materials and Methods

Preparation of 227Th- DOTA p- benzyl- rituximab

Thorium-227, 227Th- p-isothiocyanato-benzyl-DOTA complexes and 227Th- DOTA-p-benzyl- rituximab (Mabthera®, F.Hoffman-LaRoche AG, Basel, Switzerland) were prepared as previously described 13,16,19. The specific activity of the radioimmunoconjugate was in the range of 650-5300 Bq/µg. The quality of the radioimmunoconjugate was assessed using lymphoma cells and a modified Lindmo method 20. Cell concentrations of up to 10^8 Raji cells pr ml were used to compensate for the modest specific activity of the radioimmunoconjugate 13,16. The immunoreactive fractions of conjugates used in the current study were between 56 and 65 %.

Measurement of cell growth

Cells of the CD20 expressing B-cell lymphoma line Raji were used. Single cell suspensions were grown in a humidified atmosphere with 95 % air / 5 % CO₂ in RPMI 1640 (PAA, Linz, Austria) supplemented with 13 % heat-inactivated FCS (PAA), 1 % L-glutamine (PAA) and 1 % penicillin-streptomycin (PAA). One million cells were seeded in 10 ml medium in 25 cm² bottles at day 0. In half of the bottles the cells were blocked by 10 µg/ml unlabelled rituximab. The 227Th-DOTA-p-benzyl-rituximab was added in amounts equivalent to 0, 100, 200 or 400 Bq/ml. At days 1, 4, 6 and 9 a 2.5 ml sample were taken for cell counting by a coulter counter 21. Subsequently, the cells were centrifuged, medium was removed so that 5 ml was left, and 5 ml fresh medium was added. The cells were resuspended and seeded out in the same bottles. In the bottles with blocked cells, 10 µg/ml unlabelled rituximab was added.

Animals

Institutionally breed female Balb/C nu/nu (NCR) mice that were 4-8 weeks old and had body weights in the range of 18-22 g at the start of the experiment were used. The animals were maintained under pathogen-free conditions, and food and water were supplied ad libitum. All procedures and experiments involving animals in this study were approved by the National Animal Research Authority and carried out according to the European Convention for the protection of Vertebrates used for Scientific Purposes. Mice were anesthetized with 200 µl...
Zoletil® mix (Virbac, Carros Cedex, France), diluted 1:5 with saline, given i.p. before implantation with about 2x2x2 mm pieces of Raji B-lymphoma tumor tissue.

Biodistribution experiments

The biodistributions of 227Th-DOTA-p-benzyl-rituximab, 227Th-DOTA-p-benzyl-trastuzumab (Herceptin®, F.Hoffman-LaRoche AG) and 125I-ibritumomab-tiuxetan (Schering AG, Berlin, Germany) were studied in mice with tumor sizes of 32-256 mm3 at the start of the study. Ibritumomab-tiuxetan was labeled with 125I in an IODOGEN Pre-Coated Iodination Tube (Pierce, Rockford, IL) according to the manufacturers description. The preparations were administered by tail vein injection of 100 µl solution to each animal. A mean activity of 1100 kBq/kg, 620 kBq/kg or 1250 kBq/kg was injected for 227Th-DOTA-p-benzyl-rituximab, 227Th-DOTA-p-benzyl-trastuzumab and 125I-ibritumomab-tiuxetan, respectively. For 125I-ibritumomab-tiuxetan the measured values were adjusted for the decay of 125I and 90Y. Six to eight animals were used per time point. Autopsies were performed after cervical dislocation at various time points after injection. The weight of each tissue sample was determined, and 227Th and 223Ra were measured by their most characteristic γ-rays employing the solid-state photon detector GEM-50 (Ortec, Oak Ridge, TN) coupled to a digital γ-ray spectrometer (Dispec Jr., Ortec) and analysed using the computer software Gammavision-32 Version 6.01 (Ortec). For 227Th the 235.97 keV γ-ray (11.6 % probability) was chosen and for 223Ra the 154.21 keV γ-ray (5.62 % probability) was chosen. The count rates in the samples were also routinely measured using a γ-counter (Crystal II Multidetector RIA System, Packard Instr. Co. Downers Grove, IL). The 125I-ibritumomab-tiuxetan samples were measured with a gamma counter (Cobra-gamma, Packard Instr. Co.). Samples of the injectates were used as references in the measurement procedures.

Calculation of absorbed radiation dose

The absorbed radiation doses were calculated assuming dose contributions coming only from α-particle emissions for the 227Th-conjugates. Mean α-energies of 5.9 MeV for 227Th and 26.4 MeV for 223Ra with α-emitting daughters in equilibrium were used. It was assumed that there was 100% absorption of the α-particles in the tissues measured. The biodistribution data were normalized to an injection of 200 kBq/kg body weight for the 227Th-conjugates. It was assumed that the radionuclides were uniformly distributed in the various tissues. For blood, 100% absorption of the α-particles was assumed. This is a simplification since there will be some escape of α-particles beyond the blood in the capillaries.
To determine the dose after 90Y-ibrutinomab-tiuxetan treatment, the activities of 125I-ibrutinomab-tiuxetan measured at different time points, t, were divided by
\[e^{-\frac{\ln 2}{T_{1/2}(125I)} t} \]
where $T_{1/2}(125I)$ is the half-life of 125I and then multiplied by
\[e^{-\frac{\ln 2}{T_{1/2}(90Y)} t} \]
where $T_{1/2}(90Y)$ is the half-life of 90Y. It was assumed that only the beta particle emissions contributed to the dose and that the radionuclides were distributed uniformly in the tissue. A mean beta-energy of 0.9336 MeV was used. The biodistribution data were normalized to an injection of 7.5 MBq/kg. It was assumed that there was 100% absorption of the beta particles in the tissues measured.

The total number of disintegrations from the time of the injection of the preparation until no activity was left in the body was calculated by area under curve (AUC) estimate of the activity concentrations in various tissues versus time. Thus, the total dose to each organ could be calculated by equation 1:

\[
Dose = AUC_0^\infty \cdot E_\beta \left(^{227}Th \right) + AUC_0^\infty \cdot E_\alpha \left(^{227}Ra + daughters \right) + AUC_0^\infty \cdot E_\alpha \left(^{90}Y \right)
\]

\[[1] \]

Experimental therapy studies

Treatment started when macroscopically growing tumors (32-256 mm3) had formed. Control mice were injected with 100 µl NaCl or with 100 µl PBS containing 20, 100 or 250 µg cold rituximab. For radioimmunotherapy, mice were injected with 50, 200, 400 or 1000 kBq/kg 227Th-DOTA-p-benzyl-rituximab, 200 or 400 kBq/kg 227Th-DOTA-p-benzyl-trastuzumab or 7.5, 15 or 30 MBq/kg of 90Y-tiuxetan-ibrutinomab, which correspond to 50%, 100% or 200% of recommended clinical human dosage of Zevalin® (Schering AG). Clinical grade Zevalin® was obtained from the Department of Nuclear Medicine at our institution. Tumor growth and mouse survival were assessed 3 times a week during the first week before injection and throughout the first month after injection; thereafter 2 times a week. Mice with tumor diameters larger than 20 mm were sacrificed. The different treatment groups were compared by the Mantley-Cox log-rank test. Treatment-induced growth delays, the differences in time to reach a size of 1000 mm3, were calculated after non-linear regression of mean growth versus time and compared using Student t-test.

Hematological evaluation

Balb/C[A1] nu/nu mice without tumors, weighing 25-30 g, were used for blood sampling at the 1-8 weeks time points. Animals used in therapy experiments and which had complete tumor regression to the treatment were compared with similar aged untreated animals at 14, 19, 30, and 36 weeks. The mice were divided into five
groups, each containing 12-15 mice receiving either saline or 200, 400, or 1000 kBq/kg 227Th-DOTA-p-benzyl-rituximab. At 1, 2, 3, 4, 5, 14 and 30 weeks after injection approximately 200 µl blood was collected from the vena saphena lateralis in 0.5 ml EDTA-coated tubes (Microtainer, BD, Franklin Lakes, NJ). At least three weeks separated each blood sampling of an individual mouse. In addition, at 6, 7, 8, 19 and 36 weeks after injection the mice were anesthetised using sevoflurane (Abbott, IL, USA), blood was collected by heart puncture and the mice were terminated by cervical dislocation. In week 1 and 5 the samples were counted by a hemolysis method 25. 100 ml blood were mixed with 1 ml lysing solution (VersaLyse, Beckman Coulter Inc, Fullerton, CA) for at least 15 min to remove red blood cells. Subsequently, the white blood cells were counted in an automatic viability analyzer (Vi-Cell-XR, Beckman Coulter Inc). At all other time points the blood samples were evaluated for complete blood counts (CBC) according to standard procedures by The Central Laboratory, Norwegian School of Veterinary Science.
Results

Single cell cancer model in vitro

Incubation with 227Th-DOTA-p-benzyl-rituximab for eight days significantly inhibited growth of CD20 positive human Raji B-lymphoma cells (Figure 1). On day 1, 4 and 6 of the experiment half of the medium was changed to simulate the elimination of radioimmunoconjugate that occurs in the body and to supply the cells with nutrients. Cold rituximab alone had no significant effect. Cultures containing cells that were blocked with cold rituximab prior to the addition of 227Th-DOTA-p-benzyl-rituximab demonstrated some growth inhibition due to non-specific radiation from the medium. The doubling time increased from 43 hours for untreated cells to 93 hours for cells treated with 400 Bq/ml 227Th-DOTA-p-benzyl-rituximab. It should be noted that the RIC specific activity was low in these experiments, typically between 0.5 and 1.0 MBq/mg.

Biodistribution of radioimmunoconjugates

To assess binding of 227Th-rituximab and retention of the daughter 223Ra \textit{in vivo}, the radioactivity per gram tissue was measured in various normal organs and tumor at various time points after injection of 227Th-DOTA-p-benzyl-rituximab in nude mice with CD20-expressing Raji xenografts (Figure 2 A and B). There was a large difference between the amount of activity of 227Th-DOTA-p-benzyl-rituximab in tumor and in normal organs. The uptake of 227Th-DOTA-p-benzyl-rituximab in Raji xenografts reached a maximum 4 days after injection (Figure 2 A). Previously, we measured the biodistribution of 227Th-DOTA-p-benzyl-rituximab in Balb/C mice without tumors 16, and similar normal tissue dose distribution profiles were observed. The control antibody trastuzumab (Herceptin\textregistered), which does not bind to Raji cells, was also conjugated to 227Th and injected into nude mice with Raji
xenografts to assess non-specific tumor uptake (Figure 2 C and D). The uptake of \(^{227}\)Th-DOTA-p-benzyl-trastuzumab in tumor was significantly less than with \(^{227}\)Th-DOTA-p-benzyl-rituximab (t-test, \(p < 0.05\)). The daughter nuclide, \(^{223}\)Ra, mainly localized to bone (e.g. femur and skull) for both radioimmunoconjugates (Figure 2 B and D), although some tumor retention was seen of \(^{223}\)Ra produced from \(^{227}\)Th-DOTA-p-benzyl-rituximab decaying in the tumors (Figure 2 B). The activity of \(^{125}\)I-tiuxetan-ibritumomab in tumor was lower than the activity in blood for all time points, and after the initial uptake it decreased with similar rate as the activity in blood (Figure 2 E). Thus, the tumor specificity was higher and the retention time in tumor was longer for \(^{227}\)Th-DOTA-p-benzyl-rituximab.

The radiation doses to normal tissues and tumor for \(^{227}\)Th-DOTA-p-benzyl-rituximab (Figure 3 A) and \(^{227}\)Th-DOTA-p-benzyl-trastuzumab (Figure 3 B) were determined by calculating the area under the biodistribution curves and multiplying the resulting cumulated activity with the mean \(\alpha\)-particle energy from \(^{227}\)Th or \(^{223}\)Ra and daughters. It was assumed that only \(\alpha\)-particles contributed to dose and that the radium daughters decayed in the same tissue as radium. When normalized to 200 kBq injected dose per kg body weight, the doses to tumor were approximately 0.5, 2 and 4 Gy for injected dosages of 50, 200 and 400 kBq/kg \(^{227}\)Th-DOTA-p-benzyl-rituximab, respectively. Injection of \(^{227}\)Th-DOTA-p-benzyl-trastuzumab resulted in a significantly lower radiation dose to tumor than injection of \(^{227}\)Th-DOTA-p-benzyl-rituximab. The radiation doses to other tissues were similar to the doses obtained with \(^{227}\)Th-DOTA-p-benzyl-rituximab.

For \(^{90}\)Y-tiuxetan-ibritumomab (Figure 3 C) the doses to normal tissues and tumor were calculated using the biodistribution curves of \(^{125}\)I-tiuxetan-ibritumomab. It was assumed that all the \(\beta\)-particles were absorbed by the tumor and that the mean \(\beta\)-energy was 933.6 keV \(^{23}\). The radiation doses to tumor were 0.6, 1.2 and 2.5 Gy for injected dosages of 7.5, 15 and 30
MBq/kg 90Y-tiuxetan-ibritumomab. For a given tumor radiation dose the doses to normal tissues were compared: The radiation doses to the liver and the spleen were similar, while the radiation doses to the blood, lung, kidney and intestines were more than 100 % higher for 90Y-tiuxetan-ibritumomab than for 227Th-DOTA-p-benzyl-rituximab. For the skull and the femur the radiation doses were more than 80 % lower for 90Y-tiuxetan-ibritumomab than for 227Th-DOTA-p-benzyl-rituximab.

Therapy of mice with Raji lymphoma xenografts

The efficacy of 227Th-DOTA-p-benzyl-rituximab for treating macroscopic tumors was assessed by measuring the growth of Raji lymphoma xenografts after radioimmunotherapy and comparing the results with control groups treated with saline, cold rituximab, 227Th-DOTA-p-benzyl-trastuzumab and the β-emitting radiomunonoconjugate 90Y-tiuxetan-ibritumomab (Zevalin®) (Figure 4 and 5). Treatment with 200 - 1000 kBq/kg 227Th-DOTA-p-benzyl-rituximab resulted in a pronounced delay in tumor growth and in a significant increase in survival compared to all other treatments (Table 1, Figure 4-6). Treatment with 50 kBq/kg 227Th-DOTA-p-benzyl-rituximab and cold rituximab had no significant effect on tumor growth or mean survival. The efficacy of the 227Th-DOTA-p-benzyl-rituximab treatment improved in a significant and dosage-dependent fashion in the range from 50 to 200 kBq/kg but there was no further increase in therapeutic effect from 200 to 400 kBq/kg. By using 1000 kBq/kg 227Th-DOTA-p-benzyl-rituximab a significant increase in growth delay as compared with 200 kBq/kg (t-test, p = 0.003) was obtained, although the long-term survival tended to be lower for 1000 kBq/kg than for 200 kBq/kg (Table 1).

There was no significant effect of cold rituximab (Figure 5 B-D, Figure 6 A). The highest dosage of cold rituximab used (10 mg/kg) is comparable to the clinical dosage used in humans (8.7 mg/kg) 26. One animal treated with isotonic NaCl exhibited tumor shrinkage
(Figure 5 A). We speculate that tumor regression in this animal was related to an immunological reaction induced by a wound on the tumor.

Radiolabeled trastuzumab, which targets HER2/neu, did not bind specifically to Raji tumors (Figure 2 C) and had no significant therapeutic effect (Table 1, Figure 4 B, Figure 5 I and Figure 6 C).

The commercially available β-emitting radioimmunoconjugate, 90Y-tiuxetan-ibrutinomab, which also targets CD20 presenting cells, had significantly less effect than 227Th-DOTA-p-benzyl-rituximab on tumor growth and survival (Table 1, Figure 4, Figure 5 J-L and Figure 6 D). However, despite the fact that treatment with 90Y-tiuxetan-ibrutinomab resulted in successful inhibition of tumor growth in some cases (Figure 5 J-L), it was much less striking than the effects of 200–400 kBq/kg of 227Th-DOTA-p-benzyl-rituximab. There was also a tendency to improved survival after treatment with 90Y-tiuxetan-ibrutinomab, but the effect was not statistically significant when compared with the control group.

Toxicity of 227Th-DOTA-p-benzyl-rituximab

There was a dosage related reduction in the white blood cell (WBC) count after treatment with 227Th-DOTA-p-benzyl-rituximab (Figure 7). The WBC nadir was around 3 weeks following injection with maximum 1 log reduction in WBC count. In the control mice the WBC count varied from 2.5 billion to above 10 billion pr l blood.[A2] In the group receiving a therapeutic dosage of 200 kBq/kg, bone marrow suppression was modest and after 4 weeks the WBC count was within the range of the control mice. The mice receiving 400 kBq/kg showed more signs of bone marrow suppression, but after 7 weeks the WBC count was within the range of the control mice[A3]. In the group receiving 1000 kBq/kg the hemotoxicity was more pronounced and 1 of 37 animals had to be terminated due to fatigue and weight loss.
However, only two mice in the two-three week time interval had lower WBC count than 1.3·10⁹/l and the WBC count for animals in the 1000 kBq/kg group reached the level of the control mice after 14 weeks. The number of platelets was within the reference limits for the majority of the samples. Three mice in the group receiving 1000 kBq/kg had slightly lowered platelet count three weeks after treatment (not shown). In conclusion, even at the highest dosage level the hematological toxicity was moderate.
Discussion

We have demonstrated that ^{227}Th-DOTA-p-benzyl-rituximab targets CD20-expressing Raji B-lymphoma tumor cells in vitro and in vivo, successfully inhibits tumor growth and improves survival in mice, even though very small amounts of isotope were employed. Since the therapeutice efficacy was so high with 200 kBq/kg ^{227}Th-DOTA-p-benzyl-rituximab the minimal required activity was probably between 50 - 200 kBq/kg, which can be extrapolated to 2.5 - 10 MBq for a 50 kg patient. Treatment with ^{227}Th-DOTA-p-benzyl-rituximab was significantly superior to treatment with clinically relevant dosages of Zevalin® and rituximab. The upper dosage with rituximab and the middle dosage with Zevalin® correspond to the recommended dosages for clinical use in humans on a mg/kg and MBq/kg scale, respectively. The safe human dosage of ^{227}Th-DOTA-p-benzyl-rituximab is not known and therefore a range of dosages was explored with this compound. The range of dosages selected for testing with ^{227}Th-DOTA-p-benzyl-rituximab was based upon reported dosages in preclinical radioimmunotherapy with ^{225}Ac and the knowledge that 250 kBq/kg of the thorium daughter ^{223}Ra is hematologically safe in humans. Also, in our study there was no evidence of delayed bone marrow toxicity, including myelodysplasia, even at the highest dosage level of ^{227}Th-DOTA-p-benzyl-rituximab.

The in vitro cell growth data demonstrated that it was possible to obtain specific single cell killing with low dose rate α-radioimmunotherapy with ^{227}Th. The mean number of α-particle hits per lymphoma cell necessary to inactivate more than 99% of the cells incubated with ^{211}At-rituximab has been calculated to be from 15 to 50. Fig. 1 shows that 400 Bq/ml of ^{227}Th-DOTA-p-benzyl-rituximab significantly inhibited cell growth. At this activity concentration, 22 µBq was bound to each cell, corresponding to 1.9 α-disintegrations per day, or about 15 after 8 days. However, the amount of radioimmunoconjugate bound to the
cells will decrease with increasing incubation time. Furthermore, only a third of the \(\alpha \)-particles are expected to hit the nucleus of lymphoma cells, assuming a cellular radius of 5.5-8.5 \(\mu \)m and a nuclear radius of 4.5-7 \(\mu \)m. Thus, with an initial activity of 400 Bq/ml the nucleus of each cell was on the average hit by approximately five targeted \(\alpha \)-particles during eight days. In addition, the cells were hit by \(\alpha \)-particles from unbound radioimmunoconjugate, from radioimmunoconjugate bound to neighbouring cells and from \(\alpha \)-particles from daughter nuclides generated during the incubation period. However, it is likely that some of the cells were not affected because of the long half-life of \(^{227}\text{Th}\). These cells divide with similar speed as the control cells. Furthermore, the number of viable cells was probably overestimated since cells undergoing early phases of apoptosis, necrosis and mitotic catastrophe, could not be distinguished from viable cells. Consequently, low dose rate \(\alpha \)-radioimmunotherapy has significant cytotoxicity against single cells and, likely, micrometastatic disease.

To assess the ability to treat macroscopic tumors \(^{227}\text{Th}\)-DOTA-p-benzyl-rituximab was injected into nude mice bearing macroscopic (32-256 mm\(^3\)) human B-lymphoma xenografts. There was a large difference between the amount of activity of \(^{227}\text{Th}\)-DOTA-p-benzylrituximab in tumor and in normal organs, which indicates a large therapeutic window. From Figure 2 it can be estimated that a 0.5 g tumor receives 820 million \(\alpha \)-hits if 200 kBq/kg \(^{227}\text{Th}\)-DOTA-p-benzyl-rituximab is injected. The density of the cells is approximately 1 mg/mm\(^3\) and the cell radius is \(\sim 7 \) \(\mu \)m (data not shown). We assume that 50% of the tumor is intercellular space. Thus such a tumor would consists of 175 million cells, which corresponds to a mean of 4.7 \(\alpha \)-particle hits per tumor cell nuclei if all \(\alpha \)-particles are absorbed by tumor cell nuclei and an \(\alpha \)-particle only impacts one nucleus. The uptake in the periphery of a large tumor is higher than in the central region of the tumor, but redistribution of
radioimmunoconjugate from inactivated cells in the periphery to viable cells in the core during the course of treatment may counteract heterogeneous tumor uptake.

Treatment with 1000 kBq/kg 227Th-DOTA-p-benzyl-rituximab had a significantly better effect on the early phase of tumor growth than 200 and 400 kBq/kg 227Th-DOTA-p-benzyl-rituximab while the effect on long-term survival tended to be better at 200 kBq/kg. This apparent contradiction might be related to the higher hematological toxicity of the 1000 kBq/kg dosage. It may be beneficial for the long term tumor control to have active immune cells, while the short term tumor control is more dependent on dosage level.

Several tumors had large necrotic cores, as determined by HE staining and microscopy. About 50% of the tumors had necrotic cores in the control mice, while approximately 90% of the tumors had necrotic cores in the mice treated with 227Th-DOTA-p-benzyl-rituximab. Thus, the high potency of 227Th may be attributed, at least in part, to its long half-life. Retention of the daughter nuclides, which also are α-emitters, in the tumor tissue may also have contributed to the favourable therapeutic effect.

Low dose rate α-radioimmunotherapy seems to be beneficial against macroscopic tumors as well as single tumor cells. There may be both advantages and disadvantages of using low dose rates. Disadvantages may include tumor tissue repair due to proliferation and possible DNA-repair, although the latter is less likely since α-radiation causes mainly irreparable double strand breaks in the DNA 30. The therapeutic level of 227Th found to be effective in this study was quite modest. The amount of 223Ra generated would probably not limit the use of 227Th, as indicated by the modest toxicity shown in recent clinical data on 223Ra in prostate and breast cancer patients 10.

The β-emitting, commercially available radioimmunoconjugate, 90Y-tiuxetan-ibritumomab, which also targets CD20 presenting cells, had significantly less effect than
The uptake of ²²⁷Th-DOTA-p-benzyl-rituximab in tumor was significantly lower than the uptake of ¹²⁵I-ibritumomab-tiuxetan. The immunoreactivity of ¹²⁵I-ibritumomab-tiuxetan was 57%, which is acceptable. The tumor uptake in percent of injected dose per gram 7 days after injection was 26% for ²²⁷Th-DOTA-p-benzyl-rituximab, 3% for ¹²⁵I-ibritumomab-tiuxetan and 19% for ¹²⁵I-rituximab (data not shown). Thus, labeling of rituximab with ¹²⁵I did not alter the tumor uptake significantly, indicating that ⁹⁰Y-tiuxetan-ibritumomab is not as suitable for therapy of mice with lymphoma xenografts as radiolabeled rituximab. Consistently, Ma et al. had to administer single injections of 278-370 MBq/kg ⁹⁰Y-tiuxetan-ibritumomab to achieve a significant increase in median survival time in a Ramos xenograft model. The standard patient dosage of ⁹⁰Y-tiuxetan-ibritumomab is 15 MBq/kg. It is noteworthy that ²²⁷Th-rituximab was significantly more effective than the clinically proven ⁹⁰Y-tiuxetan-ibritumomab.

The recently developed method yielding stable constructs of ²²⁷Th-DOTA-p-benzyl-IgG in therapeutic quantities, and the demonstration of safe, efficacious use against a macroscopic tumor model, employing modest dosages of isotope, suggest that clinical use of such targeted drugs is feasible. The 18.72 day half-life of ²²⁷Th would allow the drugs to be manufactured at a central radio-pharmacy and shipped throughout the world. Because of the extraordinary potency of the α-emitting ²²⁷Th radionuclide, limited amount of radioactivity would be required for therapeutic human use, permitting an economical and safe out-patient use. In addition, the half-life of ²²⁷Th may allow time to maximize the uptake in macroscopic tumors.
Acknowledgements

The authors are indebted to Solveig Garman-Vik, Thomas Halvorsen and Marita Martinsen, Department of Tumor Biology, and Hanne Mali Thesen Møllergård, Department of Radiation Biology, for assistance with the animal work and to Miriam Valan, Algeta ASA, for assistance with measurements with the germanium detector, the Central Laboratory at the Norwegian School of Veterinary Science for assistance with blood analyses. We thank Dag Rune Olsen, Department of Radiation Biology, Rikshospitalet Radiumhospitalet HE, for useful suggestions on data analysis. We are grateful to Kari Bjering and Arne Kolstad, Departments of Nuclear Medicine and Oncology, Rikshospitalet-Radiumhospitalet HF, for providing us with Zevalin®. This study has been partly financed by the MEDKAP program, The Norwegian Research council. Dr. Press is supported by NIH R01 grant R01 CA76287.

Authorship

Contribution: J.D and R.H.L. designed the experiments. J.D. wrote the manuscript. J.D., J.B. and A.K.H. performed the research. J.D. did the data analysis. J.B. and R.H.L. performed research and contributed the thorium-227 radioimmunoconjugates. Ø.S.B., R.H.L. and T.J.J. contributed to the experimental design and writing of the manuscript. K.B.M., J.B. R.H.L. and J.D. performed research and did quality control of the thorium-227 radioimmunoconjugates. O.W.P. contributed in writing the manuscript.

Conflict-of-interest disclosure: J.B. is employed by Algeta ASA who owns the patent for using 227Th for radioimmunotherapy and has provided research support for this study. R.H.L. and Ø.S.B. are founders of Algeta ASA and have a significant stock interest. Ø.S.B. and O.W.P. are members of the scientific advisory board of Algeta ASA. J.D. and T.J.J. have a
small amount of stocks in Algeta ASA. The remaining authors declare no competing financial interests.

Correspondence: Jostein Dahle, Department of Radiation Biology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway. E-mail: jostein.dahle@rr-research.no, Tel: +47 22 78 12 03, Fax: +47 22 78 12 07.

References

22. Institute for Transuranium Elements, Karlsruhe Germany. Nuclide Explorer 2000. (1.00).

Table 1. Growth delay and median survival for all treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Growth delay (days) ± SE<sup>1</sup></th>
<th>Median survival (days) ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>21 ± 1</td>
<td></td>
</tr>
<tr>
<td>rituximab (pooled)</td>
<td>3 ± 1</td>
<td>44 ± 10</td>
</tr>
<tr>
<td>50 kBq/kg<sup>227</sup>Th-rituximab</td>
<td>5 ± 1</td>
<td>26 ± 3</td>
</tr>
<tr>
<td>200 kBq/kg<sup>227</sup>Th-rituximab<sup>2</sup></td>
<td>17 ± 1</td>
<td>> 119</td>
</tr>
<tr>
<td>400 kBq/kg<sup>227</sup>Th-rituximab<sup>2</sup></td>
<td>15 ± 1</td>
<td>> 81</td>
</tr>
<tr>
<td>1000 kBq/kg<sup>227</sup>Th-rituximab<sup>2</sup></td>
<td>40 ± 7</td>
<td>75 ± 11</td>
</tr>
<tr>
<td>200 kBq/kg<sup>227</sup>Th-trastuzumab</td>
<td>0 ± 6</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>400 kBq/kg<sup>227</sup>Th-trastuzumab</td>
<td>2 ± 1</td>
<td>20 ± 1</td>
</tr>
<tr>
<td>7.5 MBq/kg Zevalin®</td>
<td>2 ± 2</td>
<td>33 ± 4</td>
</tr>
<tr>
<td>15 MBq/kg Zevalin®</td>
<td>3 ± 1</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>30 MBq/kg Zevalin®</td>
<td>3 ± 1</td>
<td>23 ± 3</td>
</tr>
</tbody>
</table>

¹Delay in days to reach a mean tumor size of 1000 mm³ as compared with treatment with NaCl.

²Growth delay significantly different from NaCl and rituximab (t-test, p < 0.05) and median survival significantly different from NaCl and rituximab (Mantley-Cox log rank test, p < 0.001).
Figure legends

Figure 1. In-vitro cytotoxicity. Relative number of surviving Raji cells treated with increasing activities of 227Th-p-benzyl-DOTA-rituximab. The relative cell number was calculated by dividing the number of treated cells by the number of control cells at day 8 after start of incubation. On day 1, 4 and 6 half of the medium was changed to simulate the elimination of radioimmunoconjugate that occurs in the body and to supply the cells with nutrients. Open circles: Binding of 227Th-p-benzyl-DOTA-rituximab to the cells was blocked by incubation with cold rituximab (10 µg/ml). Closed circles: Without cold rituximab. * = significantly different from corresponding blocked cells (t-test, p < 0.05). Error bars = standard error from 3-5 experiments.

Figure 2. Biodistribution of radioimmunoconjugates in mice with CD20-positive Raji xenografts. Uptake and retention of 227Th-p-benzyl-DOTA-rituximab (A, B), 227Th-p-benzyl-DOTA-trastuzumab (Herceptin®)(C, D) and 125I-ibritumomab-tiuxetan (E) in tumor xenografts and normal tissues were measured at various time points after injection into athymic mice bearing Raji xenografts. The activity per g was measured using the 236 keV line of 227Th (A and C) and a germanium detector. Panel B and D shows the activity per g of 223Ra measured using the 154 keV line of 223Ra. The measured 227Th activities were normalized to an injection of 200 kBq per kg body weight. The activity of 125I was measured using a gamma counter and normalized to an injection of 7.5 MBq 90Y per kg body weight. Error bars = standard error. 6-8 mice were used.

Figure 3. Absorbed doses to tumor xenografts and normal tissues. Cumulated activities were calculated from biodistribution curves and multiplied with the mean energy of the α-particles from 227Th or from 223Ra and daughters in order to estimate the absorbed dose after injection of 227Th-p-benzyl-DOTA-rituximab (A) or 227Th-p-benzyl-DOTA-trastuzumab (Herceptin®)(B). For 90Y-ibritumomab-tiuxetan (Zevalin®)(C) cumulated activities were calculated from the biodistribution curves of 125I-ibritumomab-tiuxetan adjusted for decay of 125I. The activities of 227Th-p-benzyl-DOTA-rituximab and 227Th-p-benzyl-DOTA-trastuzumab were normalized to an injection of 200 kBq/kg and the activities of 90Y-ibritumomab-tiuxetan were normalized to an injection of 15 MBq/kg.
Figure 4. Effect of α-based radioimmunotherapy on growth of Raji xenografts. Mean tumour size versus time after i.v. injection of cold rituximab, 50, 200 and 400 kBq/ml 227Th-p-benzyl-DOTA-rituximab (a) or i.v. injection of 200 and 400 kBq/ml 227Th-p-benzyl-DOTA-trastuzumab (Herceptin®) (b) or i.v. injection of 7.5, 15 and 30 MBq/kg 90Y-ibritumomab-tiuxetan (Zevalin®) (c). The data for cold rituximab were pooled from groups of mice injected with 20, 100 and 250 µg rituximab. Error bars = standard error. The tumors were not removed from the calculation of mean tumor size when the mice were censored.

Figure 5. Effect of α-based radioimmunotherapy on growth of individual raji xenografts. Individual tumour sizes versus time after i.v. injection of NaCl (a), 20, 100 and 250 µg cold rituximab (b-d), 50, 200, 400 and 1000 kBq/ml 227Th-p-benzyl-DOTA-rituximab (e-h) or i.v. injection of 200 and 400 kBq/ml 227Th-p-benzyl-DOTA-trastuzumab (Herceptin®) (i) or i.v. injection of 7.5, 15 and 30 MBq/kg 90Y-ibritumomab-tiuxetan (Zevalin®) (j-l).

Figure 6. Effect of α-based radioimmunotherapy on survival of athymic mice with Raji xenografts. The mice were i.v. injected with saline, 20, 100 and 250 µg cold rituximab (A) or 50, 200, 400 and 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab (B) or 200 and 400 kBq/kg 227Th-p-benzyl-DOTA-trastuzumab (Herceptin®) (C) or 7.5, 15 and 30 MBq/kg 90Y-ibritumomab-tiuxetan (Zevalin®) (D). Mice with tumor diameters above 20 mm were sacrificed. Median survival times of treated groups were compared with control and cold rituximab (pooled) using Mantley-Cox log rank test: p < 0.001 for 200, 400 and 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab. The rest of the treatments were not significantly different from the control group (NaCl). The groups receiving 200, 400 and 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab had also significantly longer survival than the group receiving 20 µg cold rituximab (p<0.05, Mantley-Cox log rank test). The groups receiving 200, 400 and 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab treatment groups were pooled in panel D and the pooled group had significantly longer survival than all the 90Y-ibritumomab-tiuxetan treatment groups (p < 0.01, Mantley cox log rank test). One mouse in the 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab group died after 42 days. n = number of mice per treatment.

Figure 7. Assessment of bone marrow toxicity of 227Th-p-benzyl-DOTA-rituximab. The number of white blood cells was counted each week for 8 weeks and at 14, 19, 30 and 36
weeks after injection of NaCl, 200, 400 and 1000 kBq/kg 227Th-p-benzyl-DOTA-rituximab. In week 1 and 5 the number of WBC was counted using a hemolysis procedure; in all other time points complete blood counts were obtained.
Figures

Figure 1
Figure 2

Days after injection: 0, 5, 10, 15, 20
Activity (Bq/g): 0, 200, 400, 600, 800, 1000, 1200, 1400, 1600

Blood, Lung, Liver, Spleen, Kidney, Small Intestines, Large Intestines, Femur, Skull, Tumor
Figure 3
Figure 4

A

Days

Tumor volume (mm3)

NaCl

rituximab

50 kBq/kg 227Th-rituximab

200 kBq/kg 227Th-rituximab

400 kBq/kg 227Th-rituximab

1000 kBq/kg 227Th-rituximab

B

Days

Tumor volume (mm3)

NaCl

200 kBq/kg 227Th-Herceptin

400 kBq/kg 227Th-Herceptin

C

Days

Tumor volume (mm3)

NaCl

7.5 MBq/kg Zevalin

15 MBq/kg Zevalin

30 MBq/kg Zevalin
Figure 5

- A, NaCl
- B, 0.8 mg/ml rituximab
- C, 4 mg/ml rituximab
- D, 10 mg/ml rituximab
- E, 50 kBq/kg 227Th-rituximab
- F, 200 kBq/kg 227Th-rituximab
- G, 400 kBq/kg 227Th-rituximab
- H, 1000 kBq/kg 227Th-rituximab
- I, 200 and 400 kBq/kg 227Th-Herceptin
- J, 7.5 MBq/kg Zevalin
- K, 15 MBq/kg Zevalin
- L, 30 MBq/kg Zevalin
Figure 6

A

Time from start of treatment (days)

Fraction of mice surviving

- control (n=22)
- 0.8 mg/kg rituximab (n=13)
- 4 mg/kg rituximab (n=5)
- 10 mg/kg rituximab (n=10)
Fraction of mice surviving vs. Time from start of treatment (days)

- Control (n=22)
- Rituximab (n=28)
- 50 kBq/kg 227Th-rituximab (n=10)
- 200 kBq/kg 227Th-rituximab (n=15)
- 400 kBq/kg 227Th-rituximab (n=19)
- 1000 kBq/kg 227Th-rituximab (n=15)
Time from start of treatment (days)

Fraction of mice surviving

control (n=15)
7.5 MBq/kg Zevalin (n=10)
15 MBq/kg Zevalin (n=10)
30 MBq/kg Zevalin (n=11)
227Th-rituximab (n=49)
Figure 7

The graph shows the number of WBC/l (white blood cells per liter) over weeks after injection for different doses of radiolabeled material. The x-axis represents weeks after injection, ranging from 0 to 30. The y-axis represents the number of WBC/l, ranging from 1e+8 to 1e+10.

- Control
- 200 kBq/kg
- 400 kBq/kg
- 1000 kBq/kg

The data points are scattered across the graph, indicating variability in the number of WBC/l with different doses and time after injection.
Targeted cancer therapy with a novel low dose rate alpha-emitting radioimmunoconjugate

Jostein Dahle, Jorgen Borrebaek, Thora J. Jonasdottir, Anne Kristine Hjelmerud, Katrine B. Melhus, Oyvind S. Brueland, Oliver W. Press and Roy H. Larsen