Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes

Dong-Ming Kuang¹, Yan Wu¹, Nini Chen¹, Jiasen Cheng², Shi-Mei Zhuang²,³, and Limin Zheng¹,³

¹ State Key Laboratory of Biocontrol, ² Key Laboratory of Gene Engineering of the Ministry of Education, and ³ State Key Laboratory of Oncology in Southern China, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, P. R. China

Running title: Mechanisms of TAM formation

Corresponding Authors:
Limin Zheng, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
Phone: 86-20-84112163; Fax: 86-20-84112169; E-mail: zhenglm@mail.sysu.edu.cn
Shi-Mei Zhuang, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China. Phone: +86-20-84112164; E-mail: lsszsm@mail.sysu.edu.cn

Grant support: This work was supported by the Outstanding Young Scientist Fund and project grants from the NSFC, China (30425025 and 30672388), the “973” program (2004CB518801 and 2005CB724600), Asia-Swedish Research Partnership Programme (2004-4893), and the Natural Science Foundation of Guangdong (05200303).
Abstract

Macrophages (Mφ) in most solid tumors exhibit a distinct immunosuppressive phenotype, but the mechanisms that allow tumor microenvironments to “educate” Mφ are incompletely understood. Here, we report that culture supernatants (TSN) from several types of tumor cell lines can drive monocytes to become immunosuppressive Mφ. Kinetic experiments revealed that, shortly after exposure to these TSN, monocytes began to provoke transient proinflammatory responses and then became refractory to subsequent stimulation. Other TSN that failed to cause such temporary preactivation did not alter Mφ polarization. Consistent with these results, we observed that the monocytes/Mφ in different areas of human tumor samples exhibited distinct activation patterns. Moreover, we found that hyaluronan fragments constitute a common factor produced by various tumors to induce the formation of immunosuppressive Mφ, and also that up-regulation of hyaluronan synthase-2 in tumor cells is correlated with the ability of the cells to cause Mφ dysfunction. These results indicate that soluble factors derived from tumor cells, including hyaluronan fragments, co-opt the normal development of Mφ to dynamically educate the recruited blood monocytes in different niches of a tumor. The malignant cells can thereby avoid initiation of potentially dangerous Mφ functions and create favorable conditions for tumor progression.
Introduction

Macrophages (Mφ) are essential components of host defense, and act as both APC and effector cells. Under the influence of local conditions, they acquire specialized phenotypic characteristics with diverse functional programs1–4. The M1 or classical Mφ are activated by microbial products and IFN-γ, and they are capable of efficiently killing microorganisms and tumor cells and eliciting adaptive Th1 immunity. In contrast, M2 Mφ are distinctly activated by anti-inflammatory molecules, such as IL-4 and IL-10, and they express different receptors, have a poor antigen-presenting capacity, and also suppress T-cell responses4,5. The M2 cells share an IL-12low/IL-10high phenotype and are generally better adapted to remodeling tissues5–7.

Mφ constitute a major component of the leukocyte infiltrate of tumors, and the tumor-associated Mφ (TAM) are derived almost entirely from circulating blood monocytes3,8,9. Mφ in normal or inflamed tissues exhibit spontaneous antitumor activity, whereas TAM are polarized M2 cells that suppress antitumor immunity and promote tumor progression5,8. Those findings agree with clinical studies showing that a high density of TAM is associated with poor prognosis in most solid tumors8–11. Although the precise underlying mechanisms are not yet clear, it is generally assumed that the tumor microenvironment is a critical determinant of the phenotype of local Mφ. Tumor-derived factors, including IL-10 and TGF-β1, “educate” the newly recruited monocytes to take on a M2 phenotype and perform a protumoral role4,12. In contrast, overexpression or local delivery of IL-12 can re-establish the antitumor activity of Mφ, and in that case a high density of TAM is correlated with a marked reduction in tumor growth13,14. Such opposing effects of Mφ on tumor progression indicate that selective modulation of Mφ polarization might serve as a novel strategy for cancer therapy. However, such an approach is hampered by the fact that the mechanisms by which tumor microenvironments educate Mφ to carry out specific tasks have not been fully elucidated.
Tumor microenvironments comprise both cellular and noncellular (matrix) components8,15. Hyaluronan (HA) is a major matrix constituent that normally exists as a high MW (> 1,000 kDa) polysaccharide composed of repeating units of glucuronic acid and N-acetylglucosamine16,17. Clinical and experimental studies have indicated that HA is not merely a space-filling material, but rather a key regulator for tumor progression17–20. HA is overproduced in many types of tumors, and in some cases HA levels are predictive of malignancy and poor prognosis19,20. Manipulation of HA production has been shown to markedly alter the course of tumor progression21. In addition, although not directly related to TAM, HA was recently found to induce potent proinflammatory responses in dendritic cells and Mφ22,23. Moreover, the effects of HA on tumor or immune cells are size dependent: small or intermediate-sized HA (INT-HA) fragments activate APC via CD44 or TLR22–24, whereas high-MW HA (HMW-HA) or fragments smaller than a hexasaccharide have no effect17,22. Such behavior indicates that tissue context can determine the action of HA by regulating both the level and the turnover of HA. These mentioned findings, together with results showing that tumor cells deactivate monocytes via CD44 and TLR25,26, suggest that HA fragments play an important role in the induction of TAM.

The present study shows that soluble factors derived from tumor cells induced transient activation of monocytes and subsequently drove them to develop into immunosuppressive Mφ. This observation, along with the distinct activation patterns of Mφ in tumor samples, indicates that tumor cells may co-opt the normal development of Mφ to dynamically educate the migrating monocytes in different niches of a tumor. Our results also suggest that the HA fragments are the common components released from tumor cells to induce early activation and subsequent formation of immunosuppressive Mφ. Moreover, we provide evidence that up-regulation of HAS2 in tumor cells is associated with the ability to cause dysfunction of monocytes.
Materials and Methods

The human tumor samples used in the present study were obtained from the Cancer Center of Sun Yat-Sen University and anonymized in accordance with local ethical guidelines. We have obtained approval from the Review Board of Cancer Center of Sun Yat-Sen University, and have obtained informed consent in accordance with the Declaration of Helsinki.

Reagents

The Ab and chemicals used and their sources were as follows: anti-IL-10, HLA-DR and control Ab, from R&D Systems (Abingdon, U.K.); anti-CD68 mAb and Envision System for immunohistochemistry, from DakoCytomation (Glostrup, Denmark); anti-CD44 Ab, from LabVision Corporation (Fremont, CA); Lipofectamine 2000, G418, Trizol, cell isolation and tissue culture reagents, from Invitrogen (Grand Island, NY); MMLV reverse transcriptase, from Promega (Madison, WI). The HA specific blocking peptide Pep-1 (GAHWQFNALTVR) and a control peptide (WRHGFALTAVNQ) were synthesized by GL Biochem Ltd. (Shanghai, China), as described previously 23. All other reagents were obtained from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated in the text.

Tumor cell lines and preparation of tumor culture supernatants (TSN)

Human cervical (HeLa), hepatoma (SK-Hep-1 and HepG2), and leukemia (THP1 and U937) cell lines were obtained from the American Type Culture Collection; glioma (U251), nasopharyngeal carcinoma (CNE1 and CNE2), and lung carcinoma (95D) cells were from the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. All cells were tested for mycoplasma contamination using single-step PCR method 27, and maintained in complete medium composed of RPMI 1640 (or DMEM) supplemented with 10% FBS. TSN were prepared by plating 5×10⁶ tumor cells in 10 ml of complete medium in 100-mm dishes for 24 h and thereafter changing the medium to complete DMEM medium supplemented with 10% human AB serum instead of FBS. After 2–3 days, the supernatants were harvested,
centrifuged, and stored in aliquots at –80°C.

Isolation and culture of monocytes

PBMC were isolated from buffy coats derived from blood of healthy donors by Ficoll density gradient as described previously\(^2^8\). The cells in DMEM alone were plated at \(4\times10^6\)/well in 24-well plates for 1.5 h, washed and then cultured in DMEM containing 10% human AB serum for 16 h to remove residual lymphocytes. Thereafter, the monocytes in DMEM containing AB serum were cultured in the presence of HA, 15% TSN, or medium alone for 6–8 days to obtain M\(\phi\)\(^2^8,2^9\). M\(\phi\) were activated by 10 ng/ml LPS or 50 U/ml IFN-\(\gamma\) for 18 h. In some experiments, the cells were pretreated with polymyxin B, CD44-blocking Ab, control IgG, Pep-1, or control peptide at the indicated concentrations before exposure to HA or TSN.

Flow cytometry

Monocytes/M\(\phi\) were detached with 5 mM EDTA, washed and then resuspended in PBS supplemented with 1% heat-inactivated FBS. Thereafter, the cells were stained with fluorochrome-conjugated mAb for CD14, CD64, CD80, CD86, and HLA-DR or control Ab (BD PharMingen; San Diego, CA), and analyzed by flow cytometry (FACS VantageSE, BD Immunocytometry Systems) using CellQuest software.

ELISA

Concentrations of TNF-\(\alpha\), IL-12p70, IL-1\(\beta\), and IL-10 were detected by ELISA kits (eBioscience; San Diego, CA).

Preparation of the HA fragments

INT-HA fragments were prepared by partial digestion of HMW-HA with limited amounts of testicular hyaluronidase exactly as previously described\(^3^0\). The sizes of HA fragments were determined by 0.5% agarose gel electrophoresis and visualized with cationic dye Stain-All.

Immunohistochemistry

Samples of hepatocellular carcinoma, lung cancers, and nasopharyngeal carcinoma (NPC)
(six of each) were obtained from the Cancer Center of Sun Yat-Sen University and anonymized in accordance with local ethical guidelines. Paraffin-embedded and formalin-fixed samples were cut into 5-µm sections, which were then processed for immunohistochemistry as previously described31. Following incubation with the indicated mAb, the adjacent sections were stained using the Envision System with diaminobenzidine or amino-ethylcarbazide.

Total RNA extraction and RT-PCR

Total RNA was isolated using Trizol reagent. Aliquots containing 2 µg of total RNA were transcribed reversely using MMLV reverse transcriptase. The specific primers used to amplify the genes are listed in Table S1. PCR products were resolved in 1.5% agarose gel and visualized by ethidium bromide staining.

Construction of siRNA expression plasmids and stable transfection

Based on plasmid pcDNA3.0 (Invitrogen), we constructed the plasmid pSi vector (Cheng et al., submitted), which contains human U6 RNA promoter and an enhanced green fluorescent protein (EGFP) expression cassette under the control of CMV promoter. The candidate sequence (5’-GGAGTCGTCACATTCTATA) in human HAS2 gene was selected for RNAi. A scrambled siRNA sequence (5’-CACTAGACTACTCATGGTGTGAGAT) that is not homologous to any human DNA sequence was used as a negative control. Two complementary oligonucleotides that contain sense and antisense siRNA sequences were synthesized chemically; these were the loop sequence (5’-TTCAAGACACA) and the flanking EcoRI and XbaI sites, which were subsequently annealed and ligated into the linearized pSi vector. Each construct was sequenced to confirm that the sequence of the insert was correct. The construct containing siRNA against the target sequence of HAS2 was designated pSi-HAS2, and the plasmid with scrambled siRNA was named Mock.

The plasmids were amplified, purified with a QIAGEN Plasmid Midi Kit (Qiagen,
Valencia, CA), and then transfected into SK-Hep-1 and U251 cells using Lipofectamine 2000 according to the manufacturer’s instructions. Transfected cells were selected with 800 µg/ml G418 for one month, and stable clones were maintained with 400 µg/ml G418.

Immunoblotting

The proteins from exponentially growing cells were extracted as previously described28. Equal amounts of cellular proteins were separated by 10% SDS-PAGE, immunoblotted with anti-HAS2 Ab (kindly donated by Dr. P. Heldin, Ludwig Institute for Cancer Research, Uppsala, Sweden), and visualized with a ECL kit.
Results

Induction of immunosuppressive macrophages by TSN from cells of solid tumors

To study the mechanisms involved in the induction of immunosuppressive Mϕ by a tumor environment, we first set out to establish conditions under which this process can be reliably reproduced in vitro. Human monocytes were cultured for 6 days in the presence or absence of TSN from 6 different solid tumors and 2 leukemia cell lines. On the sixth day, the control cells had differentiated into Mϕ with reduced expression of CD14 and increased expression of HLA-DR and CD86 on their surface. Exposure of monocytes to 15% TSN obtained from most solid tumor types used in our study, including SK-Hep-1, HepG2, HeLa, U251, and 95D cells, resulted in Mϕ with a markedly altered phenotype showing retained CD14 molecules and reduced expression of HLA-DR and CD86 on their surface. Exposure of monocytes to 15% TSN obtained from most solid tumor types used in our study, including SK-Hep-1, HepG2, HeLa, U251, and 95D cells, resulted in Mϕ with a markedly altered phenotype showing retained CD14 molecules and reduced expression of HLA-DR and CD86 (Figure 1A). These TSN-exposed Mϕ also released significant amounts of IL-10, but not TNF-α and IL-12p70 (Figure 1B).

To further elucidate the functional states of TSN-exposed Mϕ, we next examined how those cells responded to LPS and IFN-γ. In normal Mϕ, those two stimuli induce the classical activation pattern, such as the upregulation of HLA-DR, CD86 and CD64, and production of TNF-α. However, with the exception of an augmented production of IL-10, that pattern was completely absent in Mϕ that had been exposed to TSN from most solid tumors (Figure 1C-D; Table S2). In contrast, the TSN from NPC (CNE1 and CNE2) and leukemia (THP1 and U937) cells did not significantly affect the expression of surface markers or the profile of cytokine production in either resting or stimulated Mϕ (Figure 1; Table S2), even when used at a high concentration (40% TSN). These results clearly indicate that one or more soluble mediators released from solid tumors compel monocytes to develop into immunosuppressive Mϕ.

TSN caused transient early activation and subsequent deactivation of monocytes

TAM are almost entirely derived from circulating blood monocytes, which suggests that monocytes are educated by a tumor environment to adopt a specific phenotype during their
early migration/differentiation stage\(^8,9\). Therefore, we investigated the initial effects of TSN on freshly isolated monocytes, and the results showed that the TSN originating from most solid tumors induced transient activation of monocytes. The expression of HLA-DR, CD80, and CD86 was significantly up-regulated on monocytes after exposure to TSN for 18 h, but returned to a normal level within 48 h (Table S3). Measuring cytokines produced by TSN-stimulated monocytes over time revealed rapid accumulation of TNF-\(\alpha\), IL-12, and IL-1\(\beta\) in the culture supernatants, reaching a maximum or a plateau within 24 h. In particular, concentrations of TNF-\(\alpha\) and IL-1\(\beta\) peaked sharply between 8 and 16 h and then gradually declined. In contrast, IL-10 exhibited a delayed onset but a sustained elevation that lasted until at least 72 h after stimulation (Figure 2A). Polymyxin B did not affect the TSN-stimulated cytokine production, whereas it effectively blocked the activity of LPS in parallel experiments (Figure S1).

The distinct kinetics of different cytokines in the TSN-treated monocytes indicates that these cells might become “exhausted” and subsequently acquire a polarized M2 phenotype. To test this possibility, we washed monocytes at various time points after exposure to TSN and then recultured them for 18 h with the same TSN. As shown in Figure 2A, the ability of monocytes to produce TNF-\(\alpha\), IL-12, and IL-1\(\beta\) decreased with increasing pre-exposure time and was completely lost after 24 h, although the cells still produced IL-10. Monocytes that had been exposed to TSN for 72 h became refractory to further stimulation and exhibited an immunosuppressive phenotype (data not shown). In contrast, culture supernatants from CNE1 and THP1 cells, which did not affect the polarization of M\(\phi\) (Figure 1), failed to stimulate such preactivated and subsequently exhausted monocytes (Figure 2A). The TSN used in our study did not contain any measurable levels of TNF-\(\alpha\), IL-10, IL-1\(\beta\), and IL-12.

To ascertain whether TSN have a common mechanism of action, monocytes were pretreated with TSN from U251 or THP1 cells for 10 h, washed and then either recultured for
18 h in medium alone (to measure residual cytokine production) or re-exposed to different TSN. Monocytes that were pretreated with TSN from U251 cells were no longer capable of producing TNF-α and were unresponsive to a second stimulation with TSN, although they still produced IL-10. In contrast, THP1 TSN, which was unable to induce the transient activation of monocytes (Figure 2A), did not affect the capacity of monocytes to respond to other TSN (Figure 2B).

Distinct activation patterns of monocytes/Mφ in tumor samples

The results described above suggested that TSN may act sequentially on migrating monocytes in different niches of a solid tumor, which results in the formation of immunosuppressive Mφ in a cancer nest. To test this hypothesis, we examined the phenotype of Mφ in serial sections of human tumor samples stained for CD68 (marker for monocytes/Mφ), HLA-DR, and IL-10. In hepatocellular carcinomas, CD68-positive cells were present in all areas of the tissue, but often predominantly in the stroma surrounding the cancer nest. Most Mφ in the peritumoral stroma had a smaller volume and showed marked expression of HLA-DR, which implies that they were newly recruited and activated Mφ (Figure 3A). In contrast, most Mφ in the cancer nests were negative for HLA-DR but positive for IL-10, whereas the Mφ in adjacent normal tissue exhibited moderate expression of HLA-DR (Figure 3A). The IL-10 expression in Mφ was further confirmed with confocal microscopic analysis showing that most Mφ in the cancer nest were positively stained with IL-10 (Figure S2). Similar results were obtained in lung cancer tissues, including the accumulation of Mφ with high HLA-DR expression in the immediate vicinity of cancer nests (data not shown).

Since the TSN from CNE1 did not induce either early activation or subsequent deactivation of Mφ (Figures 1 and 2), we also examined the phenotype of Mφ in the biopsy samples of NPC tissue. In Figure 3B, significant infiltration of Mφ can be seen in NPC nests. However, most of the Mφ were negative for IL-10 but expressed HLA-DR, which indicates
that the Mφ in NPC were of a normal phenotype rather than being like the immunosuppressive cells seen in most solid tumors (Figure 3A and references 3, 8, and 11).

HA induced transient activation and subsequent deactivation of macrophages

In some cancer patients, high levels of HA are associated with poor prognosis17-20. However, studies have shown that HA fragments can induce potent proinflammatory responses in Mφ and dendritic cells22,23. Therefore, we studied the kinetic effect of HA on polarization of Mφ. INT-HA (50–200 kDa) was prepared by partial digestion of HMW-HA with limited amounts of hyaluronidase for 30 and 60 min (Figure 4A). Stimulation for 18 h with INT-HA elicited a dose-dependent monocyte activation that included a marked increase in cytokine production (Figure 4B) and upregulation of CD86 and HLA-DR expression (Table S3). HA fragments obtained after 30 or 60 min of digestion were similar with regard to their stimulatory effects on monocytes, whereas HMW-HA or the HA monomer had little or no impact (Figure 4B).

Moreover, exposure to INT-HA for six days induced monocytes to develop into suppressive Mφ that displayed preserved expression of CD14, decreased HLA-DR and CD86, and significant release of IL-10. The INT-HA-treated cells were refractory to stimulation with LPS or IFN-γ, although they did show augmented expression of IL-10 (Figure 4C-D), whereas HMW-HA or the HA monomer did not affect Mφ polarization (data not shown). These results indicate that, similar to TSN, INT-HA can induce transient activation of monocytes and sequential formation of immunosuppressive Mφ.

The role of HA fragments in TSN-induced monocyte dysfunction

In light of the above-mentioned results, we performed three sets of experiments to investigate the role of HA in TSN-induced polarization of Mφ. In these experiments, release of TNF-α and IL-10 was used as a measure of monocyte dysfunction.

First, monocytes were pretreated with INT-HA for 10 h, washed and then re-incubated for 18 h in the presence of INT-HA or TSN. The results showed that the 10-h pre-exposure to
INT-HA blocked the ability of the cells to produce TNF-α upon re-stimulation with TSN or INT-HA, although these monocytes still produced IL-10 (Figure 5A).

CD44 is the major cell surface receptor for HA. Therefore, we next determined the effect of mAb 5F12, which specifically blocks the binding of HA to CD44, on the TSN-induced monocyte dysfunction. As shown in Figure 5B, pretreatment of monocytes with this anti-CD44 mAb effectively inhibited the production of TNF-α in these cells stimulated by exposure to TSN or INT-HA; the rates of inhibition ranged from ~50% for U251 TSN to over 90% for HepG2 TSN (Figure 5B). IL-10 production induced by various TSN or INT-HA was also significantly decreased in monocytes that were preincubated with the blocking Ab, whereas the isotype-matched control Ab had no effect (Figure 5B).

In the third set of experiments conducted to gain further evidence that HA fragments in TSN are responsible for inducing monocyte activation, we tested the ability of an HA-specific blocking peptide (Pep-1) to hinder cytokine induction. As shown in Figure 5C, Pep-1 markedly inhibited the production of TNF-α and IL-10 in monocytes that had been activated by TSN or INT-HA, whereas the random control peptide had no effect. Pep-1 did not interfere with LPS induction of TNF-α or IL-10 in monocytes (Figure 5C). In addition, as compared to the HA levels in the TSN from NPC or leukemia cells, an average of sixfold higher amounts of HA was found in the TSN from tumors that induce immunosuppressive Mφ (Figure S3). These results clearly show that HA is a common component of different types of TSN which induce early activation and subsequent formation of immunosuppressive Mφ.

HAS2 expression in tumor cells was correlated with their ability to cause dysfunction of monocytes/Mφ

Three HA synthase (HAS) isoforms have been found in mammals. Therefore, we performed RT-PCR using the specific primers to examine their expression in both tumor cells and monocytes/Mφ. For semi-quantitative comparisons, we used 30 cycles for HAS2 and 26
cycles for HAS3 and hypoxanthine guanine phosphoribosyl transferase (HPRT). The results revealed that PCR products for HAS3 were detected in all types of cells we examined. Interestingly, the expression of HAS2 mRNA in tumor cells coincided with the ability of the cells to induce Mφ dysfunction; more specifically, the mRNA was detected in HeLa, U251, 95D, SK-Hep-1, and HepG2 cells, but not in other cells (Figure 6A). In contrast, using two separate sets of primers, HAS1 could not be detected in any of the cells examined even after 35 cycles of PCR (data not shown). However, other investigators have been successful in using one primer set to amplify HAS1 in myeloma cells.

Silencing of HAS2 in tumor cells inhibited their ability to cause monocyte dysfunction

To investigate whether HAS2 in tumor cells plays a role in inducing monocyte dysfunction, we established an HAS2-knockdown model in U251 and SK-Hep-1 cells. The vector-based RNAi system was applied to stably suppress the expression of HAS2 in these tumor cells. When we compared the endogenous level of HAS2 mRNA and protein expression in parental cells and mock transfectants, we found no apparent differences between the two cell lines. In contrast, expression of both mRNA and the protein was significantly decreased in cells stably transfected with pSi-HAS2, as compared to parental cells and mock transfectants. Inhibition of HAS2 expression did not alter the production of HAS3 (Figure 6B-C).

We next examined the effects of TSN from pSi-HAS2 transfectants on early monocyte activation and on the Mφ response to LPS stimulation. Compared to parental and mock-transfected cells, U251 or SK-Hep-1 cells with silenced HAS2 showed an attenuated ability to stimulate production of TNF-α in monocytes (Figure 6D). Furthermore, in Mφ that were exposed to TSN from HAS2-knockdown cells for seven days, the capacity to release TNF-α upon stimulation with LPS was partially restored (Figure 6E).
Discussion

Macrophages in most solid tumors exhibit a distinct phenotype with key properties similar to the immunosuppressive M2 cells. The present study showed that soluble tumor-derived factors promote the development of immunosuppressive Mφ by triggering a transient early activation of monocytes. This dynamic regulation of monocyte activity may represent a novel escape mechanism by which tumors co-opt the normal development of Mφ to educate the recruited monocytes to adopt specific phenotypes in different niches in a lesion. Moreover, we found that HA fragments constitute a common factor produced by a variety of human tumors to induce the suppressive Mφ, and also that up-regulation of HAS2 in tumor cells is correlated with their ability to cause Mφ dysfunction.

Despite the fact that TAM originate from prototypical inflammatory cells, they are strongly impaired with regard to various functions related to inflammation. In the current study, we observed that TSN from several different kinds of tumor cells effectively induced the formation of TAM. Interestingly, kinetic analysis revealed two opposing functional stages in the TAM life cycle: monocytes are rapidly activated during a narrow time window, 4 to 16 h after their first exposure to TSN, and afterwards the same cells become exhausted and their production of cytokines is extinguished, with the exception of IL-10. Inasmuch as TAM are derived from blood monocytes, such sequential preactivation and exhaustion of cells may reflect a novel immune-escape mechanism by which tumors dynamically regulate the functions of migrating monocytes at distinct intratumoral sites. More precisely, this means that, during their first exposure to the tumor microenvironment, the newly recruited monocytes may be transiently activated while they are approaching the stroma surrounding the tumor, with the aim of minimizing their potential to damage tumor cells. Thereafter, when these Mφ are in close proximity to the tumor cells, they become exhausted and thus fail to mount an effective antitumor immune response. This notion is supported by our observations.
in human hepatocellular carcinoma and lung cancer tissues, indicating that most CD68-positive cells are smaller and show high expression of HLA-DR in the peritumoral stromal region, whereas they exhibit a HLA-DR^{low}IL10^{high} phenotype in the cancer nest. Moreover, NPC cells that failed to trigger preactivation of monocytes did not alter the polarization of Mϕ, and, accordingly, Mϕ in both peritumoral and cancer nest regions of NPC tissues exhibited a normal phenotype.

The exhaustion of inflammatory cytokine production in TSN-exposed Mϕ is reminiscent of a phenomenon that has been described as LPS tolerance in APC^{38-41}. Soon after initial exposure to LPS, Mϕ and dendritic cells extinguish their synthesis of proinflammatory cytokines and switch from a Th1- to a Th2-inducing mode^{40,41}. Apparently, the TSN we used triggered Mϕ preactivation and exhaustion via a mechanism different from that associated with LPS, which is not affected by polymyxin B. After pre-exposure to TSN, the Mϕ become unresponsive not only to activation by the homologous TSN, but also to other stimuli, such as LPS and IFNγ. Thus, exhaustion is a general phenomenon that may also apply to other stimuli or cell lineages. For instance, Rissoan and colleagues^{42} observed that plasmacytoid dendritic cells stimulated with CD40L for six days were exhausted and induced Th2 responses, whereas in another study^{43}, in which exhaustion was avoided, it was found that such CD40L-activated cells preferentially primed Th1 responses. These findings further support the idea that the kinetics of monocyte activation, rather than the lineage of the monocytes, may be a critical factor in the M1-M2 polarization of Mϕ.

In cancer patients, HA concentrations are usually higher in malignant tumors than in corresponding benign or normal tissues, and in some cases its levels are associated with poor prognosis^{17-20}. The present study provides evidence that HA is a common factor that is derived from solid tumors to alter Mϕ polarization. The results of three sets of experiments support this conclusion. First, purified HA fragments were able to mimic the kinetic effect of
TSN in inducing the formation of immunosuppressive Mφ. Second, pretreatment with anti-CD44 mAb or Pep-1, to antagonize the interactions between HA and its receptors, markedly inhibited the TSN-mediated monocyte dysfunction. Third, up-regulation of HAS2 in tumor cells coincided with their ability to alter Mφ polarization, and silencing of HAS2 in tumor cells partially blocked the induction of monocyte/Mφ dysfunction. Therefore, it is tempting to suggest that HA fragments generated in tumor microenvironments constitute a common mediator of the sequential activation and exhaustion of newly recruited monocytes, resulting in the formation of immunosuppressive Mφ. This concept is supported by previous studies showing that HA fragments can rapidly stimulate the proinflammatory responses of Mφ and dendritic cells both in vitro and in vivo, whereas prolonged exposure to HA results in monocyte deactivation25,26.

In the present study, we found that INT-HA fragments had the greatest capacity to induce monocyte dysfunction, whereas HMW-HA or the HA monomer had little or no effect. This observation agrees with the general view that the HA exerts size-dependent effects and that INT-HA fragments are potent activators of immune cells22,23,44. Thus, the exact balance between the HA polymer and its degradation products within tumors is of major importance in the regulation of immune responses. It has been suggested that both the concentration and the size of HA are determined by the tissue context, which represents the net outcome of the intricate balance between the synthesis and degradation of HA within tumors17,23. Three isoforms of HAS, which differ with regard to their enzymatic properties and expression patterns, have been identified in humans17,35,45. HAS1 is the least active and drives the synthesis of HMW-HA (2,000 kDa). HAS2 is also associated with the synthesis of HMW-HA and its activity is essential for initiation and progression of breast cancer16,35. HAS3 synthesizes short HA chains, where its expression seems to be activated to produce smaller HA fragments for the pericellular matrix. We found that expression of HAS2 mRNA in tumor
cells coincided with their ability to induce Mϕ dysfunction, and that effect could be partially reversed by silencing HAS2 in tumor cells (Figure 6). These results indicate that HAS2 is an important common factor for tumor cells to alter Mϕ polarization, although the precise underlying mechanism is not yet known. Apparently, the ultimate size of HA fragments is determined by the concerted action of hyaluronidase or non-enzymatic degradation17,35. Therefore, it is possible that, in the presence of hyaluronidases, the HMW-HA synthesized by HAS2 is degraded into smaller HA fragments that apply their regulatory effect on immune cells. This idea is supported by a recent study in which invasive breast cancer cells expressing primarily HAS2 were found to liberate large quantities of HMW-HA which in the presence of active hyaluronidases, was rapidly degraded into the HA fragments of 10–100 kDa46. In addition, we have found that both Mϕ and tumor cells express the hyaluronidases \textit{Hyal-2} and \textit{Hyal-3} (unpublished results).

In all our experiments, anti-CD44 mAb or Pep-1 could only partially block the TSN-mediated monocyte/Mϕ dysfunction, which indicates that the effect of the TSN involved additional soluble factors from tumor cells. Besides producing numerous immunosuppressive cytokines and chemokines4,8,11, tumor cells also secrete molecules (e.g. gangliosides) which induced early activation of monocyte-derived APC and ultimately impaired their differentiation and activation47,48. The suppressive mechanisms of tumor associated macrophages are less well understood in human. Arginase and iNOS were reported to be implicated in macrophage mediated immunosuppression in mouse. However, arginase I is barely detectable and iNOS is generally thought to be inactive in human Mϕ49,50. Interestingly, it has been recently reported that expression of inhibitory molecule B7-H4 on human Mϕ is essential for their suppressive activity. Moreover, Treg cells can trigger the IL-10 production by APC, which in turn stimulate APC B7-H4 expression in an autocrine manner and render APC immunosuppressive via B7-H450,51. Therefore, characterization of the suppressive
mechanisms may provide new avenues for development of novel immune-based therapies to enhance anti-tumor immunity in human cancer.

Our results give important new insights into the formation of immunosuppressive Mϕ in tumors. HA fragments and other soluble factors derived from some cancer cells can alter the normal developmental process of Mϕ that is intended to dynamically regulate monocyte activation at distinct sites, and in that way avoid the potentially dangerous actions of the Mϕ and create conditions that are conducive to tumor progression. Apparently, the phenotype of Mϕ is determined by the local environment and varies with the type of tumor. Consistent with our results, other investigators have observed that large numbers of Mϕ in hepatocellular carcinoma and lung cancer samples were positively correlated with metastasis and reduced survival in the patients they studied10,52. In contrast, we noted that Mϕ exposed to NPC cells or found in NPC samples exhibited a normal phenotype (Figure 3B), and their presence was associated with good prognosis in NPC patients (unpublished results). Therefore, studying the mechanisms that can selectively modulate or reverse the phenotype of Mϕ might provide a novel strategy for anticancer therapy.
Acknowledgments

We thank Dr. Paraskevi Heldin for providing the anti-HAS2 Ab and Ms. Patricia Ödman for linguistic revision of the manuscript. The authors have no conflicting financial interests.

DMK designed and performed most of the research; YW and NC performed Western blot and RT-PCR analysis; JC constructed the siRNA plasmid; SMZ and LZ designed and supervised research and wrote the manuscript.
References

dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic

Adhesive and/or signaling functions of CD44 isoforms in human dendritic cells. J

33. Levesque MC, Haynes BF. Activated T lymphocytes regulate hyaluronan binding to

34. Mummert ME, Mohamadzadeh M, Mummert DI, Mizumoto N, Takashima A.

36. Calabro A, Oken MM, Hascall VC, Masellis AM. Characterization of hyaluronan synthase
expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells:
predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone
marrow cells derived from multiple myeloma patients. Blood. 2002;100:2578-2585.

IL-12 production and NF-kappa B activation in tumor-associated macrophages. J

38. Wittmann M, Larsson VA, Schmidt P, Begemann G, Kapp A, Werfel T. Suppression of
interleukin-12 production by human monocytes after preincubation with

2001;166:7504-7513.

Figure Legends

Figure 1. Exposure to TSN redirected monocytes to develop into immunosuppressive Mϕ.

Human monocytes were cultured for 6 days in medium alone (solid lines) or with 15% TSN from various tumor cells (dashed lines). (A and B) Expression of surface markers and production of cytokines were determined by flow cytometry and ELISA, respectively. (C and D) Thereafter, the Mϕ were left untreated (Med) or were stimulated with LPS or IFN-γ for 18 h and were subsequently analyzed. Panel C shows the results for Mϕ that were exposed to TSN from U251 cells. The histograms in A and C are representative of 10 separate experiments, and the mean fluorescence intensity (MFI) values for control and TSN-treated cells (mean ± SD) are indicated in Supplemental Table 2. The data on cytokine production represent the mean ± SE of 10 experiments. Statistical difference between groups was calculated by Student’s t Test. *p < 0.05 and **p < 0.01, compared with Mϕ that were cultured in medium alone.

Figure 2. TSN caused transient activation and subsequent deactivation of monocytes. (A) Monocytes were cultured with the indicated TSN for 0–72 h, after which the cytokine concentrations were determined by ELISA (left panels). For the TSN pretreatment (right panels), the cells were incubated with TSN for the indicated time periods, washed, and re-incubated with the same TSN for 18 h. TSN from CNE1 and THP1 cells did not induce the transient activation of monocytes. (B) Monocytes were pretreated with TSN from U251 (shaded bars), THP1 (solid bars) or medium (open bars) or cells for 10 h. Thereafter, the cells were washed twice and recultured in medium alone or with the indicated TSN for 18 h. Values given represent the mean ± SE of 4 separate experiments; *p < 0.05 and **p < 0.01, compared with untreated monocytes.

Figure 3. Distinct activation patterns of Mϕ in tumor samples. Adjacent sections of paraffin-embedded hepatocellular (A) or nasopharyngeal (B) carcinoma were stained with an
anti-CD68, anti-HLA-DR, or anti-IL-10 Ab (magnification x160 in A and x100 in B). The micrographs at higher magnification show the stained cancer nest (1), peritumoral stroma (2), and adjacent normal tissue (3). IL-10-positive Mφ are seen in the cancer nest (black arrow), and Mφ with high HLA-DR expression have accumulated in the immediate vicinities of the cancer nest in hepatocellular carcinoma (A).

Figure 4. INT-HA induced early activation of monocytes and subsequent formation of immunosuppressive Mφ. (A) HMW-HA (lane 1) was digested by exposure to hyaluronidase for 30 (lane 2) or 60 (lane 3) min, and the resulting INT-HA fragments were separated by agarose gel electrophoresis and visualized with Stain-All. HA monomer was loaded in lane 4. (B) Monocytes were cultured for 18 h in the presence of 10 (open bars), 25 (shaded bars), or 50 (solid bars) µg/ml of the different HA preparations. Levels of TNF-α and IL-10 in the medium were determined by ELISA. (C and D) Cells were cultured for 6 days in medium alone (solid lines) or with 50 µg/ml INT-HA from 60-min digestion (dashed lines). Thereafter, Mφ were left untreated (Med) or were stimulated with LPS or IFN-γ for 18 h. Expression of cell surface markers and release of cytokines were determined as described in Figure 1. Data given are means ± SE (bars; n = 4); **p < 0.01, compared with Mφ cultured in medium alone.

Figure 5. The role of HA in TSN-induced monocyte dysfunction. (A) Human monocytes were left untreated (open bars) or were pretreated with INT-HA (shaded bars) or TSN from U251 (solid bars) cells for 10 h, and the cells were then washed and recultured in medium alone or with INT-HA or the indicated TSN for 18 h. (B) Monocytes were preincubated for 4 h in medium alone (open bars) or with 10 µg/ml CD44-blocking Ab (solid bars) or control mAb (IgG1, shaded bars), after which they were left untreated (Med) or stimulated with 15% TSN or 50µg/ml INT-HA for 18 h. (C) Cells were preincubated for 4 h in medium alone (open bars) or with 100 µg/ml Pep-1 (solid bars) or control peptide (shaded bars) and then stimulated with TSN or INT-HA for 18 h. Levels of TNF-α and IL-10 in the culture
supernatants were determined by ELISA, and the illustrated values represent the mean ± SE of 4 separate experiments; *p < 0.05 and **p < 0.01, compared with monocytes preincubated in medium alone.

Figure 6. Silencing of HAS2 in tumor cells attenuated their ability to cause dysfunction of monocytes/Mϕ. (A) Expression of HAS family in cells from different cells. The levels of mRNA for HAS2 and HAS3 were determined by RT-PCR using specific primers. The HPRT gene (Hprt) was served as an internal control. (B) RT-PCR analysis showing that the level of HAS2 was dramatically reduced in stably transfected pSi-HAS2-U251 and pSi-HAS2-SK-Hep-1 clones, as compared to the parental and mock-transfected cells. The HPRT gene served as an internal control. (C) Western blot analysis demonstrating that the expression of HAS2 protein was markedly reduced in both of the stably pSi-HAS2-transfected clones. The blots were stripped and reprobed with anti-actin to confirm equal protein loading. (D) Silencing of HAS2 attenuated the ability of the tumor cells to activate monocytes. Monocytes were cultured with TSN from parental, mock-transfected, or pSi-HAS2-transfected cells for 18 h, and the release of TNF-α from the monocytes was determined by ELISA. (E) Monocytes were cultured with TSN from the indicated tumor cells for 7 days, and the Mϕ were subsequently stimulated with 10 ng/ml LPS for 18 h. Values represent the mean ± SE of four separate experiments; p < 0.05 and ** p < 0.01 indicate significantly different from parental and mock cells.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6