
Tanyel Kiziltepe1, Teru Hideshima1, Kenji Ishitsuka1, Enrique M. Ocio1, Noopur Raje1, Laurence Catley1, Chun-Qi Li2, Laura J. Trudel2, Hiroshi Yasui1, Sonia Vallet1, Jeffery L. Kutok3, Dharminder Chauhan1, Constantine S. Mitsiades1, Joseph E. Saavedra4, Gerald N. Wogan2, Larry K. Keefer5, Paul J. Shami6, and Kenneth C. Anderson1.

1Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115

2Biological Engineering Division and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

3Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115

4SAIC-Frederick, MD 21702

5Laboratory of Comparative Carcinogenesis, NCI-NIH, Frederick, MD 21702

6Division of Medical Oncology, University of Utah and Salt Lake City, Utah 84112

\textbf{Running title:} JS-K induces DNA double strand breaks and causes apoptosis in MM cells.

\textbf{Key words:} JS-K, myeloma, nitric oxide, apoptosis, DNA damage.
Financial support: This work was supported by: Yearley Family Research Fellowship (TK); NIH grants RO-1 A50947, PO-1 CA78373, SPORE P50 CA100707, a Doris Duke Distinguished Clinical Research Scientist Award (KCA); Multiple Myeloma Research Foundation (MMRF) Senior Research Award (DC); NCI Contract N01-CO12400 with SAIC Frederick, Inc. (JES); the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (LKK); The Myeloma Research Fund; and The Lobow Myeloma Fund.

Correspondence and Reprints: Kenneth C. Anderson, MD, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115; e-mail: kenneth_anderson@dfci.harvard.edu; Tanyel Kiziltepe, PhD, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115; e-mail: tanyel_kiziltepe@dfci.harvard.edu
Abstract:

Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO') following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient derived MM cells. JS-K induced apoptosis in MM cells which was associated with PARP, caspase 8, and caspase 9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; Bcl-2 phosphorylation; as well as cyt c, AIF and EndoG release. Moreover, JS-K overcame the survival advantages conferred by IL-6 and IGF-1, or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K induced cytotoxicity was mediated via NO' in MM cells. Furthermore, JS-K induced DNA double strand breaks and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated JNK in MM cells; conversely inhibition of JNK markedly decreased JS-K-induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K-induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.
Introduction

Multiple myeloma (MM) is a B-cell malignancy characterized by proliferation of monoclonal plasma cells in the bone marrow (BM). Despite the recent emergence of novel therapies including bortezomib 1,2, thalidomide 3,4 and lenalidomide 5, it remains incurable due to the development of drug resistance $^{5-7}$. Among the factors that lead to this resistance are defects in apoptotic signaling pathways and overexpression of the multidrug resistance protein (MRP) pumps which enhance drug efflux 8. In addition, the BM microenvironment confers drug resistance in MM via (1) secretion of cytokines such as interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1), which mediate survival signals in MM cells $^{9-11}$; as well as (2) direct interaction with MM cells, which results in cell adhesion–mediated drug resistance 12,13. Despite recent progress, MM remains incurable and new therapeutic agents with novel mechanism of actions are urgently needed.

JS-K (O^2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a diazeniumdiolate class of pro-drug designed to release nitric oxide (NO') when metabolized by glutathione S-transferases (GSTs) (Fig.1A) 14. GSTs are enzymes that catalyze the conjugation of xenobiotics with glutathione (GSH), thereby facilitating their subsequent efflux through MRP pumps 15. GSTs are frequently over-expressed in a broad spectrum of tumors 16,17. In the context of conventional chemotherapy, this provides tumor cells with a selective survival advantage over normal cells by enhancing drug efflux and thus decreasing therapeutic efficacy. In contrast, since JS-K uniquely requires GST for its optimal activity, it can potentially turn GST overexpression to the tumor’s disadvantage by generating relatively high intracellular
concentrations of cytotoxic NO specifically within tumor cells. Importantly, JS-K has recently been shown to inhibit tumor growth in both in vitro and in vivo models of human prostate cancer and human leukemia. Importantly, GSTs are overexpressed in 10-70% of MM patients at diagnosis, and in 30% at relapse. In addition, our recent study comparing gene expression profiles of patient MM cells with normal plasma cells from a genetically identical twin, we observed that GST was over-expressed by 7 fold in MM cells. Furthermore, in our high resolution genomic and expression profiling of primary tumor cells from 67 MM patients and plasma cells from 12 healthy donors, 33 and 39% of the MM cells overexpressed GSTP1 and GSTM1, respectively, when compared with plasma cell controls. To date, however, the biological effects of JS-K on MM cells have not been characterized.

The purpose of the present study is to investigate the cytotoxicity of JS-K in human MM cells and to characterize the biochemical and cellular mechanisms by which JS-K induces tumor cell death. These studies provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.

Materials and Methods

JS-K [O^2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and inhibitors.

JS-K was synthesized as described previously. Stock solutions of JS-K (5mM) were prepared in DMSO and stored at -20°C. The stock solutions were further diluted in RPMI for cell culture experiments. JNK Inhibitor II, z-VAD-fmk, N-acetyl-L-cysteine, and sulfasalazine were purchased from Calbiochem. Cobalamin and Cibacron Blue were
purchased from Sigma-Aldrich. NO’ indicator DAF-FM Diacetate was purchased from Molecular Probes.

Cell culture and reagents.

Dex-sensitive (MM.1S) and resistant (MM.1R) human MM cell lines were kindly provided by Dr. Steven Rosen (Northwestern University, Chicago, IL). RPMI-8226 was obtained from American Type Culture Collection (Rockville, MD). Doxorubicin-resistant (RPMI-Dox40) and melphalan-resistant (RPMI-LR5) cells were kindly provided by Dr. William Dalton (H. Lee Moffitt Cancer Center, Tampa, FL). The OPM1 and OPM2 cell lines were obtained from Dr Lief Bergsagel (Mayo Clinic, Scottsdale, Az). All MM cell lines were cultured in RPMI 1640 media (Sigma) containing 10% fetal bovine serum (FBS), 2 mM l-glutamine (Gibco), 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco). Blood samples collected from healthy volunteers were processed by Ficoll Hpaque gradient to obtain PBMCs, which were cultured in RPMI 1640 media containing 20% FBS. Patient MM and BM cells were obtained from BM samples after informed consent was obtained per the Declaration of Helsinki and approval by the Institutional Review Board of the Dana Farber Cancer Institute (Boston, MA). BM mononuclear cells were separated using Ficoll Hpaque density sedimentation, and plasma cells were purified (>95% CD138+) by positive selection with anti-CD138 magnetic activated cell separation microbeads (Miltenyi).

Growth inhibition and proliferation assays.

To evaluate the growth inhibitory effect of JS-K on MM cells, peripheral blood mononuclear cells (PBMCs), and bone marrow stromal cells (BMSCs), a colorimetric MTT assay (Chemicon) was performed, as described previously. Briefly, cells were
incubated in 96-well plates in the presence of increasing concentrations of JS-K (or vehicle control) for 48 h. MTT was added to the cultures during the last 4 h of incubation. This was followed by the addition of isopropanol containing 0.04 N HCl to the wells and measurement of absorbance at a wavelength of 570 nm, with a reference wavelength of 630 nm.

To measure proliferation of MM cells and BMSCs, the rate of DNA synthesis was measured as described previously. Briefly, cells were incubated in 96-well plates with increasing concentrations of JS-K for 48 h. During the last 8 h of incubation, cells were pulsed with $[^3]$Hthymidine (0.5 µCi/well) and then harvested onto glass filters with an automatic cell harvester. Radioactivity was counted using the LKB Betaplate scintillation counter (Wallac).

To evaluate the effects of growth factors, 10 ng/mL recombinant IL-6 (R&D Systems) or 50 ng/mL IGF-1 (R&D Systems) was added to the wells with increasing concentrations of JS-K. To evaluate the effects of BMSCs on MM cell proliferation, BMSCs were incubated in 96-well culture plates (approximately 5000-10000 BMSCs/well) for 24 h. The medium was washed off and MM cells were added to the wells (2.5 x 10^4 cells/well) with increasing concentrations of JS-K. Proliferation of MM cells was measured after 48 h as described above.

Western blotting.

MM cells were cultured with the indicated concentrations of JS-K for the specified times, harvested, washed, and lysed using lysis buffer (radioimmunoprecipitation assay buffer, 2 mmol/L Na$_3$VO$_4$, 5 mmol/L NaF, 1 mmol/L phenylmethyl sulfonyl fluoride, 5 mg/mL leupeptin, and 5 mg/mL aprotinin). Cell lysates
were subjected to SDS-PAGE; transferred to polyvinylidene difluoride membrane; and immunoblotted with antibodies for poly(ADP-ribose) polymerase, caspase 8, caspase 9, caspase 3, caspase 7, Bcl-2, phospho(ser70)-Bcl-2, Bcl-xl, Bax, Bak, Mcl-1, AIF, EndoG (Axxora), phospho (ser20)-p53, p53, phospho(Ser317)-Chk1, Chk1, phospho(Thr68)-Chk2, Chk2, phospho(Thr183/Tyr185)-JNK, JNK (Santa Cruz Biotechnology), phospho(Ser139)-H2AX, H2AX (Upstate Biotechnologies), and actin (Santa Cruz). All the antibodies were purchased from Cell Signaling unless otherwise indicated.

Flow cytometry.

For detection of apoptotic cells, cell surface staining was performed with FITC-labeled anti-Annexin V antibody and PI (BD Pharmingen). For detection of surface CD95 levels, cells were stained with anti-CD95 antibody (Becton Coulter). Isotype-matched antibodies were used as negative controls. For detection of intracellular NO− generation, cells were first treated with JS-K and then incubated with 5 μM DAF-FM diacetate for 30 minutes. Forty thousand stained cells were analyzed by a FACScan flow cytometer (Becton-Dickinson).

Neutral single-cell gel electrophoresis (Comet Assay).

Neutral comet assays were performed using the Trevigen Comet Assay kit to assess JS-K-induced DNA double-strand breaks. Cells at 1 x 10^5/mL were combined with molten LMAgarose (at 37°C) at a ratio of 1 to 10, and 50 μl were immediately pipetted onto a CometSlide. The slides were kept at 4°C for 10 min, lysed for 1 h in prechilled lysis buffer [2.5 M sodium chloride/100 mM EDTA (pH 10)/10 mM Tris base/1% sodium lauryl sarcosinate/0.01% Triton X-100], and then electrophoresed at 30 V for 20 min. After staining with SYBY Green, cells were photographed using a Nikon E800.
fluorescence microscope and analyzed with the Komet 4.2 Single Cell Gel Electrophoresis Analysis (Kinetic Imaging Limited, Liverpool, U.K.). Olive tail moment, defined as the product of percentage DNA in the tail and displacement between the position of the mean centers of mass in the heads and tails, was determined for at least 40 cells per sample.

Immunocytochemistry.

Cytospin of JS-K treated cells were prepared on glass slides and fixed with 50% methanol/ 50% acetone at -20°C. The slides were blocked with 5% FBS at 37°C, and then incubated with primary antibody for 1 h and FITC-labeled secondary antibody for 30 min. Coverslips were then mounted on the glass slides with VectaShield antifade/DAPI and analyzed by Nikon E800 fluorescence microscope.

Isobologram analysis

For combination studies of JS-K with bortezomib, MTT assay data was converted into values representing the fraction of growth affected (FA) and analyzed using CalcuSyn software (Biosoft, Ferguson, MO) to yield Combination Index (CI) values based on the Chou-Talalay method.

Xenograft murine model.

NIH III mice (5 to 6 weeks old) were purchased from Charles River Laboratories (Wilmington, MA). All animal studies were conducted according to protocols approved by the Animal Ethics Committee of the Dana-Farber Cancer Institute. The mice were inoculated subcutaneously in the right flank with 3 x 10^7 OPM1 MM cells in 100 µL RPMI 1640 and 100 µL Matrigel basement membrane matrix (Becton Dickinson). When tumors were palpable, 9 mice were assigned into the treatment group receiving 4 µmol/kg...
JS-K intravenously (three times per week) and 8 mice into the control group receiving vehicle alone. Caliper measurements of the longest perpendicular tumor diameters were performed every alternate day to estimate the tumor volume using the following formula representing the 3-dimensional volume of an ellipse: $\frac{4}{3} \times \left(\frac{\text{width}}{2}\right)^2 \times \left(\frac{\text{length}}{2}\right)$. Animals were sacrificed when tumors reached 2 cm or if the mice appeared moribund. Survival was evaluated from the first day of treatment until death. Tumor growth was evaluated using caliper measurements from the first day of treatment until day of first sacrifice, which was day 21 for control, and day 43 for the treatment groups.

For the *ex vivo* analysis of tumors, tumors were excised at the time of sacrifice, 4 h after the last drug injection, processed, and analyzed for propidium iodide staining, TUNEL assay, and immunohistochemistry for activated caspase-3 as described previously. Images were captured with a LEICA DM IL microscope connected to the LEICA DFC300 FX camera.

Results

JS-K is cytotoxic to MM cell lines and patient MM cells.

The structure and reaction scheme of JS-K is shown in Fig. 1A. The cytotoxic effects of JS-K on growth of conventional therapy sensitive MM cell lines (MM.1S, RPMI8226, OPM1 and OPM2) were determined using MTT assay. JS-K was significantly cytotoxic in all three cell lines tested, with IC$_{50}$ of 0.3-1.2 μM at 48 h (Fig. 1B). In addition, JS-K was effective even in cell lines resistant to conventional chemotherapy including dexamethasone-resistant MM.1R, doxorubicin-resistant RPMI-Dox40, and the melphalan-resistant RPMI-LR5, with IC$_{50}$ of 0.3-0.9 μM at 48 h (Fig. 1C).
JS-K was also cytotoxic in multidrug-resistant patient MM cells, with IC_{50} of 2-2.5 µM at 72 h (Fig.1D). Most importantly, JS-K (upto 2.5µM) was not cytotoxic to normal donor PBMCs, with <20% cytotoxicity at 5 µM, a dose which was toxic to the majority of the patient MM cells (Fig.1D). In addition, no significant cytotoxicity of JS-K, at these doses, was observed in BMSCs isolated from patients (Fig.1D). These data demonstrate that JS-K has selective cytotoxicity in MM cells.

JS-K induces apoptosis associated with PARP, caspase 8 and caspase 9 cleavage.

To determine if JS-K induces apoptosis, MM.1S, OPM1 and RPMI-8226 cells were treated with JS-K at their IC_{50} values (0.6 µM, 0.3 µM and 1.2 µM, respectively), and then analyzed by flow cytometry for the early apoptotic marker Annexin V. JS-K treatment (24 and 48 h) significantly increased the proportion of cells that were positive for Annexin V in three different MM cell lines (Fig.2A). We further characterized apoptosis triggered by JS-K by examining cleavage of PARP as well as caspases 8 and 9 in MM.1S cells. MM.1S cells were exposed to JS-K at the indicated doses and periods of time, and cell lysates were then examined by western blotting. Both the time course (Fig. 2B, left panel), and dose response experiments (Fig. 2B, right panel) showed that JS-K induced significant PARP, and caspase 8, and caspase 9 cleavage. Finally, to confirm the role played by caspases in JS-K-induced apoptosis, MM.1S cells were pre-treated with the pan-caspase inhibitor z-VAD-fmk and then treated with JS-K (0-2.5 µM) for 48 h. Z-VAD-fmk significantly, but only partially, inhibited JS-K-induced cell death (Fig. 2C). Based on these results, we conclude that JS-K-induced apoptosis is, at least in part, mediated by caspases.
Both the extrinsic and intrinsic apoptotic pathway proteins are modulated during JS-K-induced apoptosis.

To further characterize apoptosis induced by JS-K, we examined how the extrinsic and intrinsic apoptotic pathway proteins are modulated by JS-K. Caspase 8 activation (Fig. 2B) suggests involvement of the death receptor pathways in apoptosis. Consistent with caspase 8 activation, flow cytometry experiments revealed that surface expression of Fas was also upregulated in MM.1S cells during JS-K-induced apoptosis. Specifically, exposure to JS-K (0.6 µM) triggered an increase in the surface density of Fas at 12 h, which peaked (~2 fold) at 24 h (Fig. 2D, left panel). Additionally, the ratio of cells expressing surface Fas relative to isotype control antibody increased by ~3 fold (from 14% to 40%) after 24 h treatment with JS-K (0.6 µM) (Fig. 2D, right panel). These results confirm involvement of the death receptor pathway in JS-K-induced apoptosis.

Induction of caspase 9 cleavage by JS-K (Fig. 2B) suggested involvement of the mitochondrial apoptotic pathway. Therefore, we next explored the effects of JS-K on Bcl-2 family members. Although no significant changes were detected in expression of the pro-apoptotic family member Bax, nor the anti-apoptotic members Bcl-2 and Bcl-xl, a moderate increase in pro-apoptotic Bak levels and significant cleavage of the anti-apoptotic Mcl-1 were detected after JS-K treatment (0.6 and 1.2 µM) (Fig. 2E). In addition, JS-K caused significant phosphorylation of Bcl-2 at serine 70 (Fig. 2E), which has previously been shown to inhibit the anti-apoptotic effects of Bcl-2 23. Given that apoptotic control depends on the fine balance between the pro-apoptotic and anti-apoptotic Bcl-2 family members, these changes triggered by JS-K may be sufficient to cause a shift towards apoptosis in MM cells. Moreover, mitochondrial cytochrome c (cyt
c), apoptosis inducing factor (AIF), and endonuclease G (EndoG) were released into the cytosol during JS-K (1.2 µM)-induced apoptosis (Fig. 2F), confirming involvement of the mitochondrial pathway. Importantly, AIF and EndoG are mediators of the caspase independent apoptotic pathway. These results, coupled with the fact that the pan-caspase inhibitor z-VAD-fmk (100 µM) only partially inhibited JS-K-induced cell death (Fig. 2C), suggest that JS-K-induced apoptosis involves both caspase dependent and independent pathways in MM cells.

JS-K overcomes the growth and survival advantages conferred by IL-6, IGF-1 and patient-derived BMSCs.

MM cells are predominantly localized in the BM microenvironment, where interactions between tumor cells and BMSC trigger the production of cytokines such as IL-6 and IGF-1. These cytokines, through autocrine and paracrine mechanisms, provide growth and survival signals to MM cells and confer protection against drug-induced apoptosis. Therefore, we next examined whether JS-K could overcome the growth and survival advantages conferred by IL-6 or IGF-1, using DNA thymidine incorporation assay. As can be seen in Fig. 3A and 3B, exogenous IL-6 (10 ng/ml) and IGF-1 (50 ng/ml) triggered a ~2 and ~1.3-fold increase in MM.1S cell growth, respectively. Importantly, even in the presence of IL-6 and IGF-1, JS-K inhibited growth of MM cells in a dose dependent fashion. To examine the effects of JS-K on MM cells in the BM microenvironment MM.1S cells were next co-cultured with patient-derived BMSC, and then were treated with increasing doses of JS-K. Although co-culture of MM.1S cells with BMSC increased (~ 2.5 fold) MM.1S cell growth, as detected by DNA thymidine incorporation, JS-K inhibited this response in a dose-dependent manner (Fig. 3C). In
contrast, JS-K treatment was not toxic to BMSCs as detected by MTT assay (Fig. 1D), indicating that JS-K is selective against MM cells. Taken together, these results indicate that JS-K overcomes the growth and survival advantages conferred by IL-6, IGF-1, and BMSC in MM cells.

JS-K induced cytotoxicity is mediated via NO• in MM cells.

As shown in Fig.1A, JS-K is a pro-drug that releases NO’, intracellularly, when it reacts with glutathione under catalysis of GSTs. As a result of this reaction, several other compounds (besides NO’) are also formed. These include 4-carbethoxy-piperazine/NO, N-carbethoxy-piperazine and dinitrophenyl-glutathione (DNP-SG) (Fig. 1A) 14. To delineate the basis of JS-K induced cytotoxicity in MM cells, we first determined whether these additional compounds formed besides NO’ had any cytotoxic effects in MM cells. For this, MM cells were cultured with each of these compounds under identical conditions with JS-K. As seen in Fig.4A, 4-carbethoxy-piperazine/NO (which acts as a GST-independent, extracellular NO’ generator), N-carbethoxy-piperazine, and DNP-SG were not cytotoxic in MM cells at concentrations (up to 5 µM) at which JS-K was cytotoxic. In addition, the control compound Chloro-dinitrobenzene (CDNB), which reacts with GSTs and GSH in the same manner as JS-K but does not release NO’ 14, was not cytotoxic to MM cells at doses up to 5 µM (Fig. 4A). Altogether, these results suggest that the cytotoxicity of JS-K was mediated via NO’, but not via the additional reaction products formed. Next, we confirmed the intracellular release of NO’ from JS-K in MM cells by using flow cytometry and the NO’ indicator DAF-FM diacetate, a non fluorescent reagent which fluoresces upon reaction with NO’. Significant NO’ release was detectable in MM.1S cells within only a few hours of JS-K exposure. As can be seen in the histogram
plot shown in Fig.4B, cells expressing detectable levels of NO’ increased by ~3 fold (17% to 52%) after 4h of JS-K treatment (2.5 µM). Importantly, NO’ release by JS-K was significantly inhibited by GST inhibitors Cibacron Blue (by ~66%) and Sulfasalazine (by ~36%), suggesting that the NO’ release by JS-K, is at least in part, mediated by GSTs (Fig. 4C). It is noteworthy that intracellular NO’ release was not detected with the exogenous addition of the control compounds 4-carbethoxy-piperazine, N-carbethoxy-piperazine, DNP-SG, and CDNB (data not shown). Most importantly, the cytotoxic effect after 24h of JS-K exposure (2.5 µM) was significantly inhibited by NO’ scavengers cobalamin (by ~56%) and N-acetyl-L-cysteine (by ~75%) (Fig. 4D). Together, these data suggest that the cytotoxicity of JS-K in MM cells is mediated by NO’.

JS-K induces DNA DSB and activates DNA damage response pathways.

DSB are the most cytotoxic DNA lesions which lead to apoptosis of mammalian cells. NO’ has previously been shown to cause DNA DSBs in mammalian cells. Given that JS-K is a NO’ generating prodrug, we hypothesized that JS-K induces DNA DSB in MM cells. We therefore next assayed for direct evidence of DSB formation using the neutral comet assay. MM.1S cells were treated with increasing concentrations of JS-K, and comet tails were analyzed for DSB formation and quantification. JS-K induced significant DSB formation even at low doses (0.6 µM) and short time intervals (2.5 h) (Fig. 5A). Since apoptosis was not observed during the first 8 h of JS-K exposure at these doses, the formation of DSB was not due to internucleosomal DNA cleavage in the apoptotic process.

It has recently been established that an early specific cellular responses to DSB in mammalian cells includes phosphorylation of the histone protein H2AX at Ser139 (γ-
Moreover, the respective foci formation by γ-H2AX is one of the essential steps for signaling DNA damage responses after DSB. We next examined whether JS-K induced H2AX phosphorylation and respective foci formation in MM cells. As shown in Fig. 5B, immunocytochemical analysis in MM.1S cells showed that JS-K induces significant H2AX phosphorylation at Ser 139 and respective foci formation as early as 2 h after JS-K exposure. Phosphorylation of H2AX and organization of γ-H2AX into discrete foci not only indicates that JS-K causes DSB formation, but also shows that DNA damage response pathways are activated in MM cells. A multitude of other proteins have been identified as mediators of DNA damage responses, including the checkpoint kinases (i.e., Chk1, Chk2) and p53. To further explore the activation of DNA damage responses induced by JS-K, we next assayed for activation of Chk1, Chk2 and p53 proteins by western blotting. As seen in Fig. 5C, western blot analysis confirmed that JS-K induced significant H2AX-phosphorylation at early time points, without significant changes in total H2AX protein levels. Western Blot analysis further revealed that JS-K, at early time points (0-4 h), induced significant phosphorylation of Chk2 (Thr68), without significant change in Chk1 phosphorylation or in the total protein levels of Chk1, Chk2 or p53. Ser20 of p53 has previously been shown to be a substrate of Chk2, and we detected significant phosphorylation of p53 at ser20 as early as 2 h after JS-K exposure. Taken together, these results indicate that JS-K induces DNA DSB and activates DNA damage response pathways early, prior to the initiation of apoptotic events. Importantly, phosphorylation of H2AX was significantly inhibited by the NO’ scavenger cobalamin, indicating that JS-K induced DNA damage responses are also mediated via NO’ (Fig. 5D).
Low dose Bortezomib sensitizes MM cells to JS-K.

It has previously been shown that bortezomib induces cleavage of DNA-PK, an important DNA DSB repair enzyme. Having shown that JS-K induces DSBs, we hypothesized that treatment of MM cells with bortezomib would enhance JS-K-induced cytotoxicity by inhibiting the repair of cytotoxic DSBs induced by JS-K. To examine this, MM cells were treated with low doses of bortezomib for 8 h, which was followed by JS-K treatment. As seen in Fig. 5E, low doses of bortezomib significantly enhanced JS-K-induced cytotoxicity. Based on the Isobologram analysis, the CI values were \(\leq 0.907 \) for all combinations shown (Supplemental Table 1), suggesting that low doses of bortezomib are synergistic with JS-K. These results provide the framework for combination trials of JS-K with bortezomib to increase therapeutic efficacy.

JS-K-induced apoptosis is mediated via JNK pathway.

The c-Jun NH\(_2\)- terminal kinase (JNK) pathway has been shown to be activated by various genotoxic stresses. Most importantly, apoptosis induced by various DSB generating agents, including topoisomerase inhibitors and \(\gamma \)-radiation is mediated via the JNK pathway in mammalian cells. Therefore, we next determined whether JNK was activated by JS-K in MM cells; and conversely, whether MM cells were protected from apoptosis by JNK inhibition. Our results show that JS-K induced significant JNK activation in MM.1S cells early after exposure to JS-K (0.6 \(\mu \)M) (Fig. 6A). Notably, significant rescue from cell death was observed when MM.1S cells were treated with JNK Inhibitor II prior to JS-K treatment. As shown in Fig. 6B, 20 \(\mu \)M JNK inhibitor II reduced MM cell death by \(~50\%\) (from 41\% to 22\%). No cytotoxic effects of JNK inhibitor II on MM.1S cells were detected at the doses used. These results suggest that
JNK functions as a pro-apoptotic effector kinase in JS-K-induced apoptosis in MM cells, and that JS-K mediated apoptosis is, at least in part, mediated by the JNK pathway.

JS-K inhibits tumor growth in a mouse xenograft model of MM.

Having shown the signaling mechanisms mediating the anti-MM effects of JS-K in vitro, we next determined whether JS-K mediates *in vivo* anti–human MM cell activity using a human xenograft mouse model. Previous studies have shown that JS-K can be administered intravenously in mouse models, three times per week, without any significant toxicity, including systemic hypotension, up to 4µmol/kg \(^{14}\). This concentration corresponds to expected peak blood levels of 17 µM \(^{14}\), which is well above the IC\(_{50}\) values we observed in MM cells *in vitro*. Therefore, this dose, frequency and route of administration were used for a 9 week period in our studies to assess anti-MM activity.

JS-K significantly reduced human MM cell growth in the treatment group (9 mice) when compared with control animals (8 mice) treated with vehicle only (Fig. 7A). Using Kaplan-Meier curves and log-rank analysis, the mean overall survival (OS) was 28 days (95% CI) in the control cohort versus 62 days (95% CI) in the treatment group. Statistically significant prolongation in mean OS compared with control mice was observed in the treated animals (*P* = .0013; Fig. 7B). Furthermore, these results underestimate the survival advantage of JS-K, since 4 treated mice (50%) were sacrificed on days 52-63, before the tumors reached 2cm, in order to further examine molecular events *ex vivo*. These mice had small tumors well controlled by JS-K. Finally, *ex vivo* analysis of tumors excised from mice showed significantly increased apoptosis in the JS-K-treated versus control cohorts, evidenced by propidium iodide staining (Fig. 7C), TUNEL assay (Fig. 7D), and immunohistochemistry for activated caspase-3 (Fig. 7E). It
is noteworthy that treatment with either vehicle or JS-K did not affect body weight. Taken together, these results demonstrate that JS-K inhibits tumor growth by inducing MM cell apoptosis \textit{in vivo}, and significantly prolongs host survival.

Discussion

MM is currently an incurable hematologic malignancy, and novel biologically-based treatment strategies that can overcome conventional drug resistance are urgently needed. In this report, we demonstrate that JS-K, a GST-activated generator of NO+, induces significant cytotoxicity in both conventional therapy sensitive and resistant MM cell lines, as well as multidrug-resistant patient MM cells, with an IC\textsubscript{50} of 0.3-2.5 \textmu M. Importantly, we observed no significant cytotoxicity of JS-K on PBMCs or BMSCs at these concentrations, which suggests selective cytotoxicity of JS-K on MM cells. In support of this, we showed that JS-K has significant efficacy in a mouse xenograft of MM without significant toxicity.

JS-K is a potent generator of NO+. NO+-induced apoptosis is complex, involving both the extrinsic and intrinsic apoptotic pathways, as well as the caspase dependent and independent pathways50,51. Consistent with this paradigm, we show that JS-K modulates both the intrinsic and extrinsic apoptotic pathway proteins in MM, as evidenced by changes in the expression of Bcl-2 family members, as well as the death receptor Fas/CD95. In addition, although JS-K triggers caspase activation and z-VAD-fmk significantly inhibits JS-K-induced cell death, it also induces release of AIF and EndoG, mediators of caspase independent apoptotic pathway, into the cytosol. These data therefore suggest involvement of both extrinsic and intrinsic apoptotic cascades, as well
as both caspase dependent and independent pathways. Given the genetic and molecular heterogeneity of MM, this ability of JS-K to induce apoptosis via several different pathways may enhance its ability to overcome drug resistance resulting from defects in certain apoptotic pathways.

It has previously been shown that the BM microenvironment confers drug resistance in MM cells \(^{52,53}\). Although the BM microenvironment consists of many components that may contribute to drug resistance, two mechanisms have been well established. First, cytokines such as IL-6 and IGF-1 are present in the BM milieu and induce Janus kinase 2/STAT3 and/or PI3-K/Akt signaling, which in turn mediates anti-apoptosis and resistance to conventional and novel therapies \(^{10,11,25,53}\). Secondly, adhesion of MM cells to BMSC confers cell adhesion-mediated drug resistance \(^{13}\). This is mediated by induction of \(p27^{\text{Kip1}}\) and activation of NF-kappa B family transcription factors \(^{12}\). Accordingly, biologically-based treatments targeting not only MM cells, but also MM cell-BM interactions may be required to overcome drug resistance. Importantly, in this study neither IL-6, IGF-1, nor adherence of MM cells to BMSCs abrogated JS-K-induced cytotoxicity, suggesting that JS-K can overcome BM microenvironment-induced drug resistance.

JS-K is a novel, targeted agent designed to release cytotoxic levels of intracellular NO\(^{\cdot}\) when metabolized by GSTs. As shown here, it is cytotoxic to MM cells through NO generation, followed by DNA double strand break formation. As such, its mechanisms of action are novel and unique as compared to currently available classes of anti-MM agents. Several other NO\(^{\cdot}\) generators were shown to induce DNA DSBs in mammalian cells \(^{33-36}\). However, in most cases these compounds generated NO\(^{\cdot}\) extracellularly, and
significant NO’ is scavenged by the extracellular milieu, thereby decreasing the effective NO’ concentration reaching DNA. Given that JS-K releases NO’ intracellularly, we anticipated JS-K to be a very potent generator of DNA DSB. Our results supported this hypothesis, since JS-K induced significant DSB formation in MM cells as early as 2.5 h. Furthermore, in our studies, we show that NO generation by JS-K is, at least in part, dependent on GSTs. Although a variety of other DNA damaging agents including melphalan, cyclophosphamide, carmustine, and doxorubicin are currently used to treat MM, these agents were not designed to specifically target tumor cells. Therefore JS-K, with its unique GST-based targeted design, may induce selective tumor cell cytotoxicity. Factors that may impinge on the sensitivity of the myeloma cells to JS-K include GST and GSH levels in the cells, as well as the levels of the antioxidant enzymes such as superoxide dismutases, glutathione peroxidases and catalases. For example, RPMI-8266 cell line has relatively lower levels of GSTs than the other MM cell lines (data not shown), which may account, at least in part, for the plateau observed in the viability of RPMI-8266 cells at 40% despite increasing doses of JS-K (Fig.1B). Ongoing studies are delineating the mechanisms of sensitivity versus resistance of MM cells to JS-K.

The DNA damage responses to DSB involve the PIKK family member sensor proteins ATM and ATR. A multitude of DNA repair and checkpoint proteins have been identified as downstream substrates of ATM/ATR including H2AX and the effector kinases Chk2 and Chk1. In this study, we showed that JS-K not only induces DSB in MM cells, but also upregulates DNA damage responses. Specifically, we show that JS-K induces significant H2AX phosphorylation and foci formation, which is one of the most specific responses to DSB formation in cells. In addition, we show that JS-K induces
Chk2 phosphorylation and downstream ser20 phosphorylation of p53, which is a specific substrate of Chk2. These results suggest that the Chk2 pathway is involved in JS-K-induced DNA damage responses. Chk2, in addition to its cell cycle check point effects, can also induce apoptosis via p53, E2F1, and PML. Although the exact role played by Chk2 during JS-K-induced apoptosis remains under investigation, our results suggest that the Chk2 pathway is an important mediator of DNA damage responses induced by JS-K in MM cells.

Besides Chk1 and Chk2, JNK also functions as an effector kinase that transduces DNA damage signals for various anti-cancer drugs targeting genomic DNA. Our results show significant protection against JS-K-induced tumor cell death conferred by pretreatment with JNK Inhibitor II. Importantly, although IL-6 is known to inhibit MM cell apoptosis by inhibiting the JNK/SAPK pathway, we showed that neither exogenous addition of IL-6 nor tumor cell adherence to BMSCs were able to overcome JS-K-induced apoptosis in MM cells. These data suggest that JNK is a pro-apoptotic effector kinase for JS-K, and further confirm that JS-K can overcome the protective effects of cytokines and the BM milieu.

Our results therefore demonstrate for the first time that JS-K, a GST based generator of intracellular NO, induces cytotoxicity in MM cells via formation of DNA DSBs. Importantly, JS-K is synergistic with bortezomib, and overcomes the protective effects of IL-6, IGF-1, and BMSCs. In addition, its complex and multiple apoptotic mechanisms further enhance its ability to overcome conventional drug resistance. Finally, JS-K is well tolerated and inhibits tumor cell growth in a MM xenograft mouse model via induction of apoptosis. Together, these results provide the preclinical rationale for the
clinical evaluation of JS-K, alone and in combination with other agents, to improve patient outcome in MM.

Acknowledgements
We thank Nikhil Munshi, Paul Richardson, Klaus Podar, Yu-Tzu Tai, Rory Coffey, Janice Jin and Shweta Chhetri for their contributions. We thank Bevin Engelward for the critical reading of the manuscript and support.

Author’s contributions
TK designed, performed, and analyzed research and wrote the manuscript. TH, KI and NR participated in the design and interpretation of data. EMO and LC helped design and perform in vivo experiments. CQL, LT and GNW contributed to the comet assay. HY and SV contributed to data generation. JLK performed and helped analyze immunohistology experiments. DC, CM participated in design of the study. JES, LKK and PS performed the synthesis and purification of JS-K, contributed to the design of the study. KCA participated in design, coordination and performance of the study, assisted in writing the manuscript and funded the study.
References

Legends

Fig.1. JS-K induces cytotoxicity in MM cells, but not in PBMCs and BMSCs. A. JS-K reacts with GSH under the catalysis of GST enzymes. This reaction yields the intermediate JS-K Meisenheimer Complex, which disintegrates into 4-Carbethoxy-PIPERAZI/NO and dinitrophenyl-glutathione (DNP-SG). Under physiological conditions 4-Carbethoxy-PIPERAZI/NO spontaneously generates NO'. B. Conventional therapy sensitive MM.1S (♦), OPM1 (●), OPM2 (▲) and RPMI-8226 (■) MM cell lines were cultured in the presence of JS-K for 48 h. C. Conventional therapy resistant cell lines MM.1R (♦), (Dex resistant), RPMI-Dox40 (●) (Dox resistant) and RPMI-LR5 (■) (Mel resistant) were cultured in the presence or absence of JS-K for 48 h. D. MM cells from 3 patients (solid lines, ■, ●, ♦), PBMCs derived from 2 healthy subjects (dashed lines; ●,▲) and BMSCs isolated from 2 patients (dashed lines; ○, △) were cultured with JS-K for 72 h. In all cases cell viability was assessed by MTT assay, and data represent means ± SD of triplicate cultures. The final DMSO concentration in the cultures was ≤ 0.1%, which was found to be non-toxic (results not shown).

Fig.2. JS-K induces apoptosis in MM cells associated with the extrinsic and intrinsic apoptotic pathways. A. MM.1S (□) and RPMI-8226 (■) and OPM1 (□) cells were treated with JS-K at their IC50 values (0.6 µM, 1.2 µM and 0.3 µM, respectively) for 0-48 h, and apoptosis was then assessed by flow cytometry following Annexin V staining. Data represent means ± SD of triplicate experiments. B. Cleavage of PARP and the initiator caspases 8 and 9 were determined by western blotting of MM.1S cells treated with 0.6 µM JS-K for 0-36 h (left panel), or with 0-1.2 µM JS-K for 24 h (right panel). C. MM.1S
cells were treated with JS-K (0-2.5 µM) for 48 h, with (■) or without (□) pretreatment by z-VAD-fmk (100 µM). Cell death was assessed by flow cytometry after PI staining. Data represent means ± SD of triplicate experiments. *p<0.01, as compared with no z-VAD-fmk pretreatment. D. MM.1S cells were treated with 0.6 µM JS-K for 0-24 h and cell surface CD95/Fas expression was then assessed by flow cytometry. Fold increase of mean surface CD95/Fas expression induced by JS-K is plotted relative to untreated control (left panel). Data represent means ± SD of triplicate experiments. *p<0.01. The histogram plot shows the percentage of cells positive for cell surface CD95/Fas at 0 h and 24 h after JS-K exposure (right panel). E, F. MM.1S cells were treated with JS-K (0-1.2 µM) for 24 h, followed by immunoblotting for Bcl-2 family proteins (E) or release of mitochondrial proteins into the cytosol (F).

Fig.3. JS-K overcomes the protective effects of IL-6, IGF-1, and adherence to patient BMSCs. MM.1S cells were treated for 48 h with JS-K (0-2.4 µM), in the absence (□) or presence (■) of IL-6 (10 ng/mL) (A) or IGF-1 (50 ng/mL) (B); and without (□) or with BMSCs derived from MM patient-1(■) and -2 (□) (C). DNA synthesis was determined by measuring [3H]-thymidine incorporation during the last 8 h of 48-h cultures. Data represent means ± SD of triplicate experiments.

Fig.4. JS-K induced cytotoxicity is mediated via NO+. A. MM.1S cells were cultured with 0-5 µM of JS-K (♦), 4-carbethoxy-piperazi/NO (○), N-carbethoxy-piperazine (▲), DNP-SG (△) or CDNB (■) for 48 h. Cell viability was assessed by MTT assay, and data represent means ± SD of triplicate cultures. The final DMSO concentration in the cultures
was ≤ 0.1%, which was found to be non-toxic (results not shown). B. MM.1S cells were treated with JS-K (2.5 µM), and then intracellular NO’ was detected by flow cytometry using the NO’ indicator DAF-FM diacetate. The histogram plot shows the percentage of cells that have detectable levels of NO’ at 1, 2 and 4 h. C. MM.1S cells were cultured with JS-K (2.5 µM) for 4 h after 1 h pre-incubation with GST inhibitors Cibacron Blue (20 µM), or sulfasalazine (50 µM). Percentage of NO’ positive cells were then assayed by flow cytometry. Data represents mean ± SD of triplicate experiments. *p<0.01, as compared with JS-K (2.5 µM) only control. D. MM.1S cells were cultured with JS-K (2.5 µM) for 24 h after 2 h pre-incubation with NO’ scavengers cobalamin (50 µM) or NAC (100 µM). Cell death was assayed by flow cytometry after PI staining. Data represents mean ± SD of triplicate cultures. *p<0.01, as compared with JS-K only control.

Fig.5. JS-K induces DNA double strand breaks, and activates DNA damage response pathways. A. MM.1S cells were treated with JS-K (0-2.5 µM) for 2.5 h, and then assayed for formation of double strand breaks by the neutral comet assay. Representative images of the comet tails are shown (left) and the olive tail moments are plotted (right). To calculate the olive tail moments, at least 40 cells per sample were analyzed. Data represents the mean ± SD of three independent experiments. *p<0.05, as compared with non-treated control. B,C. MM.1S cells were dosed with 2.5 µM JS-K for 0-4 h. Representative images for the immunocytochemistry assay performed with anti-phospho(ser139)-H2AX antibody is shown (B). Phosphorylation of the DNA damage response proteins H2AX (Ser139), Chk1 (Ser317), Chk2 (Thr68), p53 (Ser20) was assessed by western blotting (C). Representative western blots (left panel), and % mean
quantitative densitometric values ± SD from two or three independent experiments (right panel) are shown. *p<0.05 and **p<0.01, as compared with 0 h control. D. MM.1S cells were cultured with JS-K (0-2.5 µM) for 2 h, after 1h pre-incubation with cobalamin (50 µM). Phosphorylation of H2AX was assayed by western blotting. Representative western blots and % mean quantitative densitometric values ± SD from two independent experiments are shown. *p<0.01, as compared with no cobalamin control. E. Low doses of bortezomib sensitize MM cells to JS-K. MM.1S cells were treated with bortezomib (0, 1, 2, 3 nM) for 8 h, which was followed by JS-K treatment (0, 0.3, 0.6 µM). Cell viability was detected by MTT assay (48 h). Data represents the mean ± SD of three independent experiments.

Fig.6. JS-K-induced apoptosis is mediated via JNK pathway. A. JS-K induces phosphorylation of JNK in MM.1S cells. MM.1S cells were exposed to 0.6 µM JS-K for 0-4 h, and then whole-cell lysates were subjected to Western Blotting with anti-phospho(Thr183/Tyr185)-JNK antibody. Reblotting with anti-JNK antibody confirmed equal loading. Representative western blots (left panel), and % mean quantitative densitometric values ± SD from three independent experiments (right panel) are shown. *p<0.01, as compared with 0 h control. B. MM.1S cells were cultured with (or without) JS-K (0.6 µM) for 48 h after 2 h pre-incubation with JNK inhibitor II (0, 10, 20 µM). Cells were then assayed for apoptosis by Annexin V/ PI staining. Data represents mean ± SD of triplicate experiments. *p<0.01, as compared with no JNK inhibitor II, JS-K (0.6 µM) control.
Fig. 7. JS-K inhibits human MM cell growth in vivo. NIH III mice were inoculated subcutaneously in the flank with 3×10^7 OPM1 cells. When tumors became palpable, JS-K (4µmol/kg; n=9) or vehicle (n=8) was administered intravenously three times per week. A. JS-K significantly inhibits MM tumor growth compared with the controls. Tumor volumes are represented as means ± SE. B. JS-K markedly increases survival of the host. Survival was evaluated using Kaplan-Meier curves and log-rank analysis. JS-K significantly increased survival ($P = .0013$) compared with the control group. C,D,E. JS-K induces apoptosis in vivo. Mice were sacrificed 4 h after the last treatment, and tumors were excised for propidium iodide (C), TUNEL (D), or activated caspase-3 (E) analysis. Representative images captured at 40X/0.60 are shown.
Fig. 1, Kiziltepe et al.
Fig. 3, Kiziltepe et al.
Fig. 4, Kiziltepe et al.

A

Cell Viability (%)

0 20 40 60 80 100
0 1 2 3 4 5
Compound Indicated (μM)

- CDNP
- DNP-5G
- 4-Carboxy-PIPERAZI/NO
- N-Carboxy-Piperaline
- JS-K

B

NO•+ve

52%
42%
30%
17%

4 h
2 h
1 h
0 h
Green fluorescence

C

Cells NO•+ve (%)

JS-K (2.5 μM)
Cibacron Blue (20 μM)
Sufasazline (50 μM)

+ + +

D

Cell Death (%)

JS-K (2.5 μM)
Cobalamin (50 μM)
NAC (100 μM)

+ + +
Fig. 5, Kiziltepe et al.
Fig. 6, Kiziltepe et al.
Fig. 7, Kiziltepe et al.
JS-K, a GST-activated nitric oxide generator, induces DNA double strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.

Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC 20036.
Copyright 2011 by The American Society of Hematology; all rights reserved.

http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests
Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints
Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints
Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml