Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8+ T cells.

Running head: Determinants of HIV-specific CD8+ T cell apoptosis

Constantinos Petrovas¹, Yvonne M. Mueller¹, Ioannis D. Dimitriou¹, Susan R. Altork¹, Anupam Banerjee¹, Peter Sklar², Karam C. Mounzer³, John D. Altman⁴, Peter D. Katsikis¹.

¹Department of Microbiology and Immunology and Institute for Molecular Medicine and Infectious Disease and ²Department of Medicine, Drexel University College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129 USA, ³Philadelphia FIGHT, Philadelphia, PA 19107 and ⁴Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30329, USA.

This work was supported in part by National Institutes of Health grants R01 AI46719, R01 AI52005 and R01 AI62437 to P.D.K.

Author contributions: C.P. and Y.M.M designed, performed and analyzed experiments and wrote the manuscript; I.D.D, S.R.A and A.B. participated in performing the experiments and collecting data; P.S. and K.C.M. contributed patients samples and participated in analyzing the clinical data; J.D.A. contributed to experimental design and reagents; P.D.K designed experiments and wrote the manuscript. All authors discussed the results and contributed to the manuscript writing.

Reprints: Dr. Peter D. Katsikis, Department of Microbiology and Immunology and Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129. Phone 215 991-8380, fax 215 848-2271, e-mail: peter.katsikis@drexelmed.edu.
Abstract

What governs the increased apoptosis-sensitivity of HIV-specific CD8+ T cells is poorly understood. Here, we examined the involvement of mitochondria in this apoptosis. Remarkably higher mitochondrial mass (MM) was found in HIV- compared to CMV-specific CD8+ T cells from HIV+ patients and this could not be attributed to their different differentiation status. MM$^{\text{High}}$ phenotype characterized those CD8+ T cells from HIV+ patients that are sensitive to spontaneous and CD95/Fas-induced apoptosis. CD38 expression did not correlate with high MM while Bcl-2 levels were significantly reduced in both CD38+ and CD38- HIV-specific CD8+ T cells. Although CD38+ HIV-specific CD8+ T cells were more susceptible to apoptosis, CD38 expression does not explain on its own the selective apoptosis-sensitivity of HIV-specific CD8+ T cells as CD38- HIV-specific CD8+ T cells were more apoptotic than CD38+ CMV-specific ones. Proapoptotic HIV-specific CD8+ T cells were CD38+Bcl-2$^{\text{Low}}$MM$^{\text{High}}$. Copolarization of mitochondria with CD95/Fas-capping, very early in CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells, suggests that mitochondria act as an amplification step for this apoptosis. Thus, an extensive mitochondrial network contributes to apoptosis-sensitivity of CD8+ T cells and when this occurs together with reduced levels of Bcl-2 and chronic activation determines the proapoptotic state of HIV-specific CD8+ T cells.
Introduction

CD8+ T cell response is a critical player for controlling HIV infection and AIDS progression. However, HIV-specific CD8+ T cells ultimately fail to control virus. Various mechanisms related either to HIV infected cells or to intrinsic defects in CD8+ T cells themselves have been proposed to explain this failure. Among others, apoptosis of HIV-specific CD8+ T cells has been suggested as a strategy employed by HIV to evade the immune system. What governs this apoptosis-sensitivity, however, remains to be elucidated.

CD8+ T cells from HIV infected patients are susceptible to spontaneous and CD95/Fas-induced apoptosis. We recently found HIV-specific CD8+ T cells to be highly sensitive to apoptosis while this is not the case for CMV-specific CD8+ T cells from HIV+ individuals. This sensitivity is associated with a remarkable downregulation of Bcl-2 and Bcl-xL anti-apoptotic molecules suggesting a role of mitochondria in this apoptotic process. Several studies have revealed a mitochondrial dysfunction in T cells during HIV infection. CD95/Fas cross-linking initiates a complex signaling process involving CD95/Fas-capping and formation of Death Inducing Signaling Complex (DISC), ultimately leading to activation of the executor caspase-3 directly by caspase-8 or through mitochondrial secreted pro-apoptotic factors. The cross-talk of these two pathways in apoptosis of primary T cells, particularly in CD8+ T cells from HIV+ patients, is currently unknown. Furthermore, no studies have addressed the role and impact of mitochondria in the apoptosis of HIV-specific CD8+ T cells.

HIV infection results in chronic activation of the immune system potentially contributing to T cell sensitization to apoptosis. Furthermore, HIV-specific CD8+ T cells were shown to be skewed toward a CD38+CD8+ phenotype while spontaneous and CD95/Fas-mediated apoptosis of CD38+CD8+ T cells was significantly higher in patients with high percentages of ex vivo CD38 expression on CD8+...
T cells. These data raise the question whether chronic activation is the mechanism priming HIV-specific CD8+ T cells to apoptosis and whether CD38 expression is a predictive factor for this process.

In this study we have investigated the involvement of mitochondria in the apoptosis-sensitivity of HIV-specific CD8+ T cells. We present data describing an extensive mitochondrial network selectively found in HIV-specific CD8+ T cells. Furthermore, MM is independent of the maturation and activation level of HIV-specific CD8+ T cells while Bcl-2 expression is regulated by multiple factors in addition to chronic activation. Thus, proapoptotic HIV-specific CD8+ T cells are characterized by increased MM and reduced Bcl-2 levels on a background of chronic activation as determined by CD38 expression.
Materials and methods

Donors. Peripheral blood was collected from HIV+ individuals (n= 40) following Drexel University Institutional Review Board approval and obtaining informed consent. All individuals were HIV positive for at least 1 year (range: 1-17), the median value of CD4 count was 468 cells/µl (range: 70-1178) and the viral load was 696 RNA copies/ml blood (range: <50-100,000), n=27 were asymptomatic and n=22 were on antiretroviral treatment. Control samples were obtained from HIV-negative age-matched healthy individuals (n=14).

Flow Cytometry. PBMC were freshly isolated by density centrifugation using Ficoll–Hypaque (Amersham Pharmacia Biotech, Sweden) from heparinized venous blood. Flow cytometry was performed as previously described.11 HIV- and CMV-specific CD8+ T cells were identified using tetramers of HLA class I A* 0201 loaded with either HIV-Gag p17 77-85 (SLYNTVATL), HIV-Pol 476-484 (ILKEPVHGV) or CMV p65 495-503 (NLVPMVATV) peptide and HLA class I A3 loaded with HIV-Nef 71-80 (QVPLRPMTYK) peptide, as previously described.20 The following antibody combinations were used: i) activation: anti-CD38-FITC/anti-CD8-PE-Cy5/HIV- or CMV-specific tetramer-APC ii) Bcl-2 and Bcl-xL expression: anti-CD38-FITC/anti-CD8-PE-Cy5/HIV- or CMV-specific tetramer-APC with Bcl-2-PE (BD Biosciences) or Bcl-xL-PE (Southern Biotechnology, Birmingham, AL) antibodies iii) apoptosis: anti-CD38-FITC/annexin V-PE/ anti-CD8-PE-Cy5/HIV- or CMV-specific tetramer-APC. Early and late apoptosis was analyzed using annexin V-Cy5.5 and Violet Live/Dead Fixable Dead Cell Stain (Invitrogen, Carlsbad, CA) together with CD8-PE-Texas Red and Gag-tetramer-APC after 6 hours culture in the presence or absence of plate bound anti-CD95 antibodies. All monoclonal antibodies were purchased from eBioscience (San Diego, CA) unless otherwise indicated. Samples were collected on a FACS-Calibur and FACSARia (BD Biosciences, San Jose, CA)
and data were analyzed using FlowJo software (Treestar, San Carlos, CA). Standardization and performance of the Bcl-2 and Bcl-xL intracellular stains was done as previously described.12

**Apoptosis studies.** Spontaneous, CD95/Fas-induced and treatment-specific apoptosis-sensitivity was determined by annexin V positivity as previously described.11

**Mitochondrial mass measurement.** Incubation of PBMC with 100nM of MitoTracker® Green FM (Molecular Probes, OR, USA) for 45 min at 37°C, 5% CO₂, was followed by surface staining using the following antibody combinations: anti-CD8-PE/anti-CD38-PE-Cy5/HIV- or CMV-specific tetramer-APC, anti-CD8-PE-Texas Red/anti-CD45RA-Pacific Blue/anti-CD62L-PE-Cy7/HIV- or CMV-specific tetramer-APC or anti-CD8-PE/anti-CD45RA-PE-Cy5/anti-CD62L-APC. Fixation with 1% paraformaldehyde or incubation on ice has no effect on Mitotracker staining. Samples were collected immediately after the assay was completed. For acridine orange 10-nonyl bromide (nonyl acridine orange-NAO, Molecular Probes) staining, cells were first stained with anti-CD3-APC/anti-CD8-Pacific Blue/HIV-specific tetramer-APC, washed once and incubated with NAO (100nM) for 15min at 37°C, 5% CO₂. Unfixed samples were immediately collected on a FACS-Aria (BD) operated in BSL-3 facility. Forward scatter (FSC) was used as a cell size index.

**Confocal Microscopy studies.** CD95/Fas-capping was induced in jurkat cells as previously described.15 Briefly, 0.5x10⁶ cells were incubated with CH-11 antibody (1µg/ml) for 1h in ice, transferred to 37°C for 2 min (controls: no heat treatment) and transferred again on ice. After incubation with secondary Rhodamine Red -X- conjugated goat anti-mouse IgM antibody (Jackson Immunoresearch Laboratories, West Grove, PA) cells were transferred by cytopsin onto poly-L-lysine coated slides (SIGMA-
ALDRICH, MO, USA) and visualized using a confocal microscopy (Leica TCS SP2, Leica Microsystems, Heidelberg, GmbH) equipped with a 63/1.4 oil-immersion objective lens (Leica). For colocalization studies the Z-stack feature of the software was used to obtain a library of images of various sections of cells, 3D images were acquired using Leica Confocal Software (Leica Microsystems) and Adobe Photoshop 6.0 software (Adobe Systems, San Jose, CA) was used to process them. A cell was considered as “capped” when the fluorescence condensed into less than 25% of the cell surface. For studies with primary human CD8+ T cells, 1 x 10^6 positively purified CD8+ T cells (Dynal ASA, Oslo, Norway) were incubated with 5µg/ml of CH-11 antibody in 100 µl media for 1 h at 37°C, transferred onto poly-L-lysine slides, fixed for 20 min with 4% PFA and processed as above. In co-staining experiments cells were permeabilized with PBS/Triton-X 100 (0.05%) for 5 min after fixation, incubated in PBS-Urea 5% for 10 min at 95°C, stained first with a monoclonal anti-porin antibody (Clone 20B12, Molecular Probes Inc., Eugene, OR) in PBS-FBS 2% for 1h at room temperature and then with secondary antibodies in PBS-FBS 2% for 30 min at room temperature (anti-mouse IgM-Rhodamine Red -X- for CD95/Fas and anti-mouse IgG-FITC for porin (Jackson Immunoresearch Laboratories, West Grove, PA)). To study HIV-specific CD8+ T cells, purified CD8+ T cells were first treated with anti-Fas antibody as above, stained with tetramer, fixed (1% PFA), sorted (FACS Aria, BD Biosciences) and transferred onto slides as above. The purity of sorted HIV-specific CD8+ T cells was >92%. To minimize the loss of cells, a second fixation step for 20 min with 4% PFA was performed. CD95/Fas and porin co-staining was carried out as described above.

**Statistical analysis.** Statistical analysis was performed using Student’s t-Test and regression analysis. P-values <0.05 were considered significant. The JMP statistical analysis program was used (SAS Institute Inc., Cary, NC).
Results

HIV-specific CD8+ T cells express high MM

Here, we sought to examine the possible involvement of mitochondria in apoptosis of HIV-specific CD8+ T cells. As a first step, we measured ex vivo the MM of freshly isolated T lymphocytes from HIV+ patients and healthy donors. We used a mitochondrial-specific dye (MitoTracker® Green FM)\textsuperscript{22,23} that binds mitochondrial membrane independently of their membrane potential and thus staining intensity has been considered an index of their mass.\textsuperscript{23-25}

When gating on the CD8+ T cells two distinct populations can be observed; one exhibiting high MM and another with low MM (Figure 1A). The percentage of HIV-specific CD8+ T cells expressing high MM (77±7.2%, n=15) was found to be significantly higher compared to CMV-specific (50±5.9%, n=13, p=0.0001) and total CD8+ T cells from HIV+ patients (48.5±2%, n=40, p<0.0001) independently of the HIV-epitopes examined (A2-gag, A2-pol, A3-nef). This difference was even higher when HIV-specific CD8+ T cells were compared to total CD8+ T cells from healthy donors (21.5±6.7%, n=14, p<0.0001) (Figure 1B). Furthermore, our analysis revealed a greatly increased Mean Fluorescence Intensity (MFI) of MM, an index of the MM per cell, in HIV-specific CD8+ T cells (MFI=353±20) compared to CMV-specific (MFI=244±29, p<0.005) and total CD8+ T cells from HIV+ individuals (MFI=212±13, p<0.0001) and healthy donors (Figure 1B). It should be noted that similar data were obtained when the MM was examined only in patients that exhibited both HIV- and CMV-specific CD8+ T cells. Again, the percentages of HIV-specific CD8+ T cells expressing high MM (77±3%, n=10) was found to be significantly higher compared to CMV-specific CD8+ T cells (44±7.8%, n=8, p<0.001). Similarly, a significantly higher level of MM was observed in HIV-specific (MFI=343±29) compared to CMV-specific CD8+ T cells (MFI=209±33, p<0.01). By using the FSC as a cell size index, no difference was found between the low and high MM populations in all groups tested (data not
shown). No correlation was found between MM and viral load, CD4 or CD8 counts while a non-significant trend was found between MM and disease duration (data not shown). No difference in MM was found between HIV-specific CD8+ T cells from patients under antiretroviral treatment (n=8) compared to those from untreated patients (n=7) (79±3.8 vs 76±4 % of MM$^{\text{High}}$ HIV-specific CD8+ T cells from treated and untreated HIV+ patients respectively). Significantly lower percentages of CD8+ T cells expressing high MM were found, however, in total CD8+ T cells from patients under antiretroviral treatment (n=22) compared to those without treatment (n=18) (44±2.5 vs 53±3.2 % of MM$^{\text{High}}$ CD8+ T cells from treated and untreated HIV+ patients respectively, p<0.04). Treated HIV+ patients however still had significantly higher levels compared to controls (44±2.5 vs 21.5±6.7 % of MM$^{\text{High}}$ CD8+ T cells from HIV+, n=22, and healthy donors, n=14, respectively, p<0.0001). Further studies are needed to clarify whether measurement of MM could be used as a prognostic factor for disease progression. When NAO was used to measure MM in unfixed cells, HIV-specific CD8+ T cells again had significantly increased MM compared to CD8+ T cells from healthy controls (supplementary figure 1). HIV-specific CD8+ T cells however in this assay where not higher than total CD8+ T cells from HIV+ patients. This is most likely due to the reduced sensitivity and range the NAO stain on unfixed cells has compared to mitotracker. The standard NAO assay requires ethanol fixation which however cannot be combined with tetramer stains. Despite the limitations of using NAO on unfixed cells, these studies with NAO confirm our basic observation with mitotracker that HIV-specific CD8+ T cells have increased MM. Our data revealed that an extensive mitochondrial network, potentially affecting their biology compared to other virus-specific CD8+ T cells from HIV+ patients, selectively characterizes HIV-specific CD8+ T cells.
**MM\textsuperscript{High} CD8+ T cells from HIV+ patients are sensitive to apoptosis**

Next, we sought to verify whether CD8+ T cells from HIV infected patients exhibiting MM\textsuperscript{High} phenotype are more sensitive to apoptosis compared to those that were MM\textsuperscript{Low}. Measurement of CD8+ T cell apoptosis, by using annexin V staining after overnight culture, revealed that the vast majority of CD8+ T cells undergoing spontaneous and CD95/Fas-induced apoptosis are of MM\textsuperscript{High} origin (Figure 2A). Indeed, MM\textsuperscript{High} CD8+ T cells were found to be more sensitive to spontaneous apoptosis (14.8±1.4% annexinV\(^+\), n=9) compared to MM\textsuperscript{Low} ones (3±0.4% annexinV\(^+\), n=9, p<0.0001) (Figure 2B). This difference was also found to be statistically significant in CD95/Fas-induced apoptosis (41.4±4% annexinV\(^+\), n=9 versus 8.2±1.7% annexinV\(^+\), n=9, for MM\textsuperscript{High} and MM\textsuperscript{Low} CD8+ T cells respectively, p<0.0001) (Figure 2B). Furthermore, treatment-specific CD95/Fas-induced apoptosis was found significantly higher in MM\textsuperscript{High} (26.6±3.2% annexinV\(^+\)) compared to MM\textsuperscript{Low} CD8+ T cells (5.1±1.3% annexinV\(^+\), p<0.0001) (Figure 2B). Such increased high mitochondrial mass was also found in early apoptotic cells after 6 hour anti-CD95 antibody treatment (supplementary figure 2). We found no difference in MM when early and late apoptotic Gag-specific and total CD8+ T cells were compared. Our data clearly demonstrate that increased MM is linked to apoptosis-sensitivity of CD8+ T cells from HIV+ patients.

**MM is independent of the differentiation level of HIV-specific CD8+ T cells**

Contrary to CMV-specific CD8+ T cells, HIV-specific CD8+ T cells exhibit a skewed maturation towards the preterminally differentiated (CD45RA-CCR7-CD62L-) effector memory compartment.\textsuperscript{11,26} Therefore, the observed differences in MM between the two virus-specific CD8+ T populations could be attributed, at least in part, to their different maturation level. We therefore directly investigated the levels of MM in relation to maturation status of virus-specific CD8+ T cells. Comparable percentages of
MM^{High} cells were found between the CD45RA-CD62L- (73.1±6%, n=7) and CD45RA+CD62L- (67.6±6.1%, n=7) memory compartments of HIV-specific CD8+ T cells (Figure 3A-B). CMV-specific CD8+ T cells, also had comparable percentages of MM^{High} cells in CD45RA-CD62L- (34.5±14.1, n=5) and CD45RA+CD62L- (31.9±14.5%, n=5) subsets. Therefore differences of MM between HIV-specific and CMV-specific CD8+ T cells from HIV+ patients can not be attributed to difference in their maturation status.

**MM does not correlate with CD38 expression on HIV-specific CD8+ T cells**

Next, we attempted to investigate whether the MM of HIV-specific CD8+ T cells associates with their activation status (expression of the CD38 surface marker). A significantly increased percentage of CD38+ cells was found in HIV-specific (31.9±5.2%, n=10), CMV-specific (39.9±3.1%, n=17) and total CD8+ T cell populations (32.6±2.9%, n=35) from HIV+ patients compared to control CD8+ T cells (13±1.4%, n=14, p<0.007) (Figure 4A). This is in agreement with previously published data^{6,27}, including our own studies.^11 When the cell size was considered no difference was found between CD38+CD8+ and CD38-CD8+ T cells in all group tested (data not shown). MM was then measured in CD38+ and CD38-CD8+ T cell populations. Similar numbers of MM^{High} CD8+ T cells was found to be expressed in both populations (89±2% vs 84±2.4%, n=4, 57±19% vs 44±18%, n=6, and 53±8% vs 44±10%, n=8 for CD38- and CD38+ HIV-, CMV-specific and total CD8+ T cells from HIV infected individuals respectively) (Figure 4B). Similarly, no difference was found when the percentage of CD38+CD8+ T cells was analyzed in the MM^{High} and MM^{Low} CD8+ T cells (data not shown).

Collectively, although our data reveal an increased activation status of virus-specific CD8+ T cells in HIV infection, the MM of these cells does not correlate with their activation status.
Expression of CD38 alone does not explain the selective apoptosis of HIV-specific CD8+ T cells

A significant correlation was observed between the ex vivo percentages of CD38+CD8+ T cells and spontaneous, CD95/Fas-induced and treatment-specific CD95/Fas-induced apoptosis of total CD8+ T cells isolated from HIV+ patients (Figure 5A), in agreement with previously published data.6 We further divided our population of HIV+ patients in low-CD38 and high-CD38 groups based on the median value of % CD8+ T cells expressing CD38 in all patients (median value 32%) as previously described.6 These two groups presumably represent patients with low and high levels of chronic non-antigen specific activation respectively. Comparable spontaneous apoptosis was observed in both patient groups for HIV- and CMV-specific CD8+ T cells (data not shown). Similar levels of CD95/Fas-induced apoptosis was found in HIV-specific CD8+ T cells (37.6±5.9 vs 36.4±6.6% annexin V+ for high CD38, n=10, and low CD38 group, n=8, respectively) while higher CD95/Fas-induced apoptosis was found in CMV-specific CD8+ T cells from the high CD38 (n=11) (21.3±4.2% annexin V+) compared to the low CD38 group (n=11) (13.9±3.1% annexin V+). Comparison of both virus-specific CD8+ T cells revealed significantly higher CD95/Fas-induced apoptosis in HIV- compared to CMV-specific CD8+ T cells in both high CD38 and low CD38 group (p<0.004). When the apoptosis-sensitivity of CD38+ compared to CD38- HIV-specific CD8+ T cells (Figure 5B-C) was analyzed no difference was found in spontaneous apoptosis of CD38+ compared to CD38- HIV-specific CD8+ T cells (Figure 5C). In contrast, CD38+ HIV-specific CD8+ T cells exhibited significantly higher CD95/Fas-induced apoptosis (57.9±6% annexin V+, n=6) compared to CD38- HIV-specific CD8+ T cells (37.2±6.6% annexin V+, p=0.04) and this was also true for specific CD95/Fas-induced apoptosis (Figure 5C). When CD38+ and CD38-CMV-specific CD8+ T cells were compared higher CD95/Fas-induced apoptosis-sensitivity was found (Figure 5C). Thus CD38 expression appears to confer increased apoptosis-sensitivity. However, spontaneous apoptosis was found to be moderately higher in CD38+ HIV-specific CD8+ T cells
(16.8±5.3% annexin V+) compared to CD38+ CMV-specific (9.5±3% annexin V+) and total CD38+CD8+ T cells (11.5±1.7% annexin V+, n=15) from HIV+ patients (Figure 5C). This difference was found to be remarkably higher when the CD95/Fas-induced apoptosis was investigated. CD38+ HIV-specific CD8+ T cells were characterized by higher sensitivity (57.9±6% annexin V+) compared to CD38+ CMV-specific (30.4±7.7% annexin V+, p<0.02) and total CD38+CD8+ T cells (26.2±3.7% annexin V+, p<0.0003) (Figure 5C). Finally, CD38- HIV-specific CD8+ T cells exhibit comparable levels of CD95/Fas-induced apoptosis (37.2±6.6% annexin V-, n=6) compared to CD38+ CMV-specific CD8+ T cells (30.4±7.7% annexin V+, n=7). Thus although CD38+ HIV-specific CD8+ T cells exhibit more apoptosis than CD38- HIV-specific CD8+ T cells, these later cells have comparable apoptosis to CD38+ CMV-specific CD8+ T cells. Therefore CD38 expression on virus-specific CD8+ T cells does not necessarily predict apoptosis-sensitivity. Our data indicate that in addition to CD38 expression, other factors also contribute to the selective sensitivity of HIV-specific CD8+ T cells to apoptosis.

**Bcl-2 expression in HIV-specific CD8+ T cells is not solely dependent on their activation level**

We examined the expression of the anti-apoptotic Bcl-2 and Bcl-xL molecules in relation to activation status of HIV-specific CD8+ T cells as these cells have markedly reduced levels of these molecules that may contribute to their apoptosis-sensitivity. Expression of the activation marker CD38 was found to be associated with downregulation of Bcl-2 in all populations tested (Figure 5D). In CD38+ cells lower expression of Bcl-2 was found in HIV-specific (MFI=169±33, n=8, p<0.001), CMV-specific (MFI=264±26, n=13, p<0.01) and total CD8+ T cells (MFI=275±30, n=30, p<0.005) from HIV+ patients compared to CD8+ T cells from healthy donors (MFI=404±42, n=9) (Figure 5D). Bcl-2 levels were significantly lower in CD38+ HIV-specific compared to CD38+ CMV-specific CD8+ T cells from HIV+ individuals (p<0.04) (Figure 5D). In CD38- cells CMV-specific (MFI=432±35) and total CD8+ T
cells (MFI=436±32) from HIV+ patients had Bcl-2 levels comparable to healthy CD8+ T cells (MFI=505±59). Bcl-2 expression, however, was considerably lower in CD38- HIV-specific CD8+ T cells (MFI=237±59) compared to CD38- CMV-specific (MFI=432±35, p<0.003) and total CD38- CD8+ T cells from HIV+ patients (MFI=436±32, p<0.007) and healthy donors (MFI=505±59, p<0.002) (Figure 5D). Analysis of the Bcl-xL expression revealed higher levels, although not statistically significant, of this molecule in CD38+ CMV-specific (MFI=70±10.7, n=4) compared to CD38+ HIV-specific CD8+ T cells (MFI=45±9.1, n=5). Therefore, Bcl-2 downregulation in HIV-specific CD8+ T cells may depend on activation as CD38+ cells have lower levels than CD38- cells, however these later cells still have lower levels than CD38+ CMV-specific CD8+ T cells suggesting that additional factors are involved in the regulation of Bcl-2 in HIV-specific CD8+ T cells.

**CD95/Fas and mitochondria co-polarization in early steps of CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells**

The active involvement of mitochondria in apoptosis of HIV-specific CD8+ T cells has not been yet investigated. To this end, we asked whether mitochondria localization is changed in early steps of CD95/Fas-induced apoptosis, indicative of their active role in this process.28,29 Jurkat cells were used as a positive control in order to set up the in vitro CD95/Fas-capping assay (Figure 6A). In untreated cells, a homogeneous surface staining was observed, while the anti-CD95/Fas treatment resulted in aggregation of CD95/Fas into less than 25-30% of the cell surface (Figure 6A). Next, a modified Fas-capping assay was performed in purified CD8+ T cells from HIV+ patients and healthy donors. Similarly to Jurkat cells, anti-Fas treatment induced aggregation of CD95/Fas receptor in CD8+ T cells from HIV+ patients (n=7) but not in those from healthy donors (n=4) (Figure 6B). CD95/Fas capping was detected after 30 to 60 min incubation with anti-Fas antibody (Figure 6B). Like in human
lymphoplastoid CD4+ T cells (CEM cell line), CD95/Fas capping in human primary CD8+ T cells from HIV+ patients was accompanied by the formation of uropod-like structures that protruding from the cell surface at various extents (Figure 6C). To investigate the localization of mitochondria under CD95/Fas capping conditions, a double-staining protocol was developed and applied after treatment of purified CD8+ T cells from HIV+ patients with anti-Fas antibody. Preliminary experiments were carried out in Jurkat cells by using either anti-Fas or anti-porin antibody alone in order to test the specificity of the staining (data not shown). Anti-porin staining revealed a cytoplasmic localization of mitochondria in form of clusters (Figure 7A). No effect was also observed on anti-Fas staining when cells were treated with urea or Triton-X 100 (data not shown). Untreated purified CD8+ T cells from HIV+ patients (n=3) exhibited a uniform distribution of CD95/Fas on the cell surface while mitochondria appeared as cytoplasmic clusters (Figure 7A). Upon anti-Fas treatment, a translocation-aggregation of mitochondria into the proximal area of CD95/Fas-capping was observed (Figure 7A). Most importantly, such colocalization between CD95/Fas capping and mitochondria was also observed when sorted HIV-specific CD8+ T cells were examined under CD95/Fas-capping conditions (Figure 7B). Taken together, our data point to an active involvement of mitochondria, possibly as a potent amplifier, in the very early steps of CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells.
Discussion

We report here that HIV-specific CD8+ T cells are characterized by considerably increased MM when compared to other virus-specific cells such as CMV-specific CD8+ T cells from HIV+ individuals. We used a mitochondria-specific dye that binds mitochondrial membrane independently of their membrane potential and thus is considered as an index of their MM.23-25 To the best of our knowledge, this is the first time to investigate this parameter in HIV-specific CD8+ T cells or primary human CD8+ T cells in general. MM was found to be significantly increased in HIV-specific CD8+ T cells while CMV-specific CD8+ T cells from HIV+ patients possess similar MM levels to total CD8+ T cells, indicating that the MM\textsuperscript{high} phenotype is not a general characteristic of virus-specific CD8+ T cells in HIV infection but specifically characterizes HIV-specific CD8+ T cells. The MM\textsuperscript{high} phenotype of HIV-specific CD8+ T cells could not be attributed to their known skewed CD45RA-CCR7-CD62L- memory phenotype 11,26 as similar levels of MM was found in both CD45RA-CD62L- and CD45RA+CD62L- in HIV- and CMV-specific CD8+ T cells indicating that this biological parameter is independent of their differentiation status. Using this flow cytometry-based assay, however, one cannot distinguish whether high MM corresponds to higher numbers of mitochondria or larger organelles, both situations which would result in higher staining. Further experiments such as electron microscopy studies are needed to clarify this issue.

Our data demonstrate that MM\textsuperscript{high} CD8+ T cells are sensitive to apoptosis directly linking mitochondria to the apoptosis-sensitivity of HIV-specific CD8+ T cells which are almost all MM\textsuperscript{High}. Mitochondria act as an amplification loop for CD95/Fas-induced apoptotic signals under certain experimental conditions.31,32 We hypothesize that under increased MM conditions, as a result of either more or larger organelles; this amplification loop is intensified, further enhancing the apoptosis-sensitivity of HIV-specific CD8+ T cells. It is of particular notice that MM is higher in HIV-specific
compared to CMV-specific CD8+ T cells from HIV+ patients, and this correlates with their increased apoptosis-sensitivity. Increased MM in HIV-specific CD8+ T cells compared to healthy CD8+ T cells was also found using NAO, a dye that binds cardiolipin and has been used as a marker of mitochondrial mass. Contrary to mitotracker, no difference was observed between HIV-specific and total CD8+ T cells from HIV+ donors using NAO. This may be due to the reduced sensitivity and range of the NAO stain when performed on unfixed cells since the standard NAO assay requires ethanol fixation. Unfortunately, ethanol fixation cannot be combined with tetramer stains. Increased production of reactive oxygen species, that has been described in T cells from HIV+ donors, could induce cardiolipin oxidization something that would influence NAO but not mitotracker staining. One can hypothesize that such a mechanism may be increased in HIV-specific CD8+ T cells resulting in less sensitive recognition of cardiolipin by NAO. Overall, despite the limitations of using NAO on unfixed cells, these studies with NAO confirm our basic observation with mitotracker that HIV-specific CD8+ T cells have increased MM. An important question yet to be addressed is whether this increased MM is associated with an altered functional state of these organelles i.e. defective regulation of cellular Ca++ homeostasis.

CD38 expression has been considered as a poor prognostic factor for HIV infected patients. We found a strong correlation between ex vivo expression of CD38 and in vitro spontaneous as well as CD95/Fas-induced apoptosis of total CD8+ T cells from HIV infected patients. Analysis of virus-specific populations revealed that both HIV- and CMV-specific CD8+ T cells express high ex vivo percentages of CD38+ cells, in agreement with previous studies. Whether this represents a generalized, bystander activation of the immune system or a virus-specific activation is an open question. However, CMV-specific CD8+ T cells, even from patients expressing high ex vivo percentages of CD38+CD8+ T cells, were characterized by moderate apoptosis-sensitivity compared to
HIV-specific CD8+ T cells, in agreement with our previous data.\textsuperscript{11} Furthermore, our data revealed that indeed the presence of CD38 favors CD95/Fas-induced apoptosis, as indicated by the increased sensitivity of CD38+ compared to CD38- HIV-specific CD8+ T cells. The presence of CD38 had no effect in spontaneous apoptosis, implying a specific interaction between this surface molecule and CD95/Fas-induced signaling. CD38+ HIV-specific CD8+ T cells, however, are characterized by significantly higher apoptosis-sensitivity compared to CD38+ CMV-specific and total CD38+ CD8+ T cells from HIV+ patients, challenging a potentially principal role of CD38 in this process. In this case one should expect comparable sensitivity among the CD38+ CD8+ T cell populations tested irrespective of virus-specificity. Therefore, CD38 expression cannot explain on its own the selective apoptosis-sensitivity of HIV- compared to CMV-specific CD8+ T cells from HIV infected individuals. CD38+ HIV-specific CD8+ T cells exhibited dramatically lower ex vivo levels of the anti-apoptotic factor Bcl-2 compared to CD38+ CMV-specific CD8+ T cells, indicating an additional selective defect of HIV-specific CD8+ T cells. Surprisingly, CD38- HIV-specific CD8+ T cells also had significantly downregulated ex vivo Bcl-2 levels, and this was not observed in CD38- CMV-specific CD8+ T cells. Thus CD38- HIV-specific CD8+ T cells have lower Bcl-2 and exhibit higher apoptosis compared to CD38- CMV-specific CD8+ T cells. These data indicate that although CD38 expression confers increased apoptosis-sensitivity to HIV-specific CD8+ T cells, it is not the sole factor controlling this death as CD38- HIV-specific CD8+ T cells also exhibit high apoptosis.

A critical issue in order to understand the molecular mechanism(s) governing the apoptosis-sensitivity of HIV-specific CD8+ T cells is whether the commitment to death takes place upstream or downstream of mitochondria, the main organelle where Bcl-2 family molecules exert their anti-apoptotic function.\textsuperscript{41} To this end, the role of mitochondria in early steps of CD95/Fas-induced apoptosis of HIV-specific and total CD8+ T cells from HIV+ individuals is unexplored. In vitro HIV studies based on
\(\Delta \Psi_m\) measurement may not be sufficient to definitely answer this question. A very early requisite step during CD95/Fas-induced apoptosis is the formation of CD95/Fas-capping.\(^{16}\) Therefore, early molecular events can be monitored under CD95/Fas-capping experimental conditions. Special effort was undertaken to develop an assay allowing us to detect such a capping in HIV-specific CD8+ T cells. Subsequently, a double-staining protocol was established for detection of mitochondrial localization, under capping conditions. Translocation-clustering of mitochondria upon death-receptor apoptosis induction has been previously described.\(^{28,29,42}\) Of note, this perinuclear accumulation precedes the release of cytochrome c and \(\Delta \Psi_m\) loss\(^{28}\) or production of mitochondrial reactive oxygen species (ROS),\(^{29}\) while it correlates with apoptosis-sensitivity.\(^{29}\) To the best of our knowledge, this is the first time to show the colocalization between CD95/Fas and mitochondria upon CD95/Fas-induction of apoptosis of primary HIV-specific and total CD8+ T cells from HIV infected patients. This colocalization further supports the active role of mitochondria as amplifiers of early CD95/Fas-induced signaling in these cells. Since T cell cytoplasm represents a thin layer around the nucleus we cannot however distinguish whether this mitochondrial translocation-clustering is perinuclear or proximal to cytoplasmic membrane, which may bring the mitochondria closer to the CD95/Fas receptor. What governs the translocation-clustering of mitochondria in CD8+ T cells is not known. Disruption of microtubules by nocodazole proved to be toxic itself for CD8+ T cells from HIV+ patients (data not shown) preventing further investigation of this process in the apoptosis of HIV-specific CD8+ T cells. An interesting question is whether this is also the case for CD4+ T cell depletion, the hallmark of HIV infection. Furthermore, longitudinal studies following the apoptosis-sensitivity along with changes related to mitochondria during the course of HIV infection could further shed light on the involvement of mitochondria in the biology and apoptosis of T cells.
Differences in MM of total CD8+ T cells or HIV-specific CD8+ T cells did not correlate with viral load, CD4 or CD8 counts although a trend was found between MM and disease duration (data not shown) and a small but significant increase in percentages of high MM CD8+ T cells was found in patients under antiretroviral treatment. This raises the intriguing question whether measurement of MM could be used as a prognostic factor for disease progression and further studies are needed to address this.

Overall our data show that HIV-specific CD8+ T cells are selectively characterized by extensive MM. Furthermore, expression of high MM is independent of their maturation and activation level. Interestingly, the remarkable downregulation of Bcl-2 was also found to be independent of CD38 expression in HIV-specific CD8+ T cells. CD38 expression although a correlate of apoptosis-sensitivity does not explain on its own the selective apoptosis of HIV-specific CD8+ T cells. We therefore suggest that the combination of extensive MM with low expression of anti-apoptotic factors on an activated background selectively primes HIV-specific CD8+ T cells to apoptosis. Thus, mitochondria seem to be critical regulators of HIV-specific CD8+ T apoptosis as their colocalization with CD95/Fas aggregates also suggest. Therapeutic interventions targeting these organelles may be considered for strategies aiming at immune system reconstitution in HIV infection.
Acknowledgements

The authors would like to thank Peter Pitsakis and the staff of the Partnership Comprehensive Care Practice of the HIV/AIDS Medicine Division of Drexel University College of Medicine for patient recruitment. The authors want to express their gratitude to Dr David Ambrozak at VRC, NIAID/NIH, for his help with the BSL-3 flow cytometry studies. The authors have no conflicting financial interests.
References


Legends

Figure 1. HIV-specific CD8+ T cells are selectively characterized by extensive MM. A, Representative flow cytometry showing ex vivo MM in HIV-specific and total CD8+ T cells from one HIV+ patient and a healthy donor. Cells were gated first for lymphocytes by forward and side light scatter and then for HIV-specific and total CD8+ T cells by tetramer and CD8 staining. B, Pooled data showing the percentage (%) of CD8+ T cells expressing high MM in total CD8+ T cells from healthy donors (□) (n=14), HIV+ patients (●) (n=40) and HIV-specific (△) (n=15) and CMV-specific (♦) CD8+ T cells from HIV+ patients (n=13) (upper panel). Horizontal lines depict mean values. Analysis of corresponding MFI values of Mitotracker staining is also shown (lower panel). Bars depict means ± SE. The p values were calculated using Student’s t test.

Figure 2. MM\textsuperscript{High} CD8+ T cells from HIV+ patients are highly sensitive to apoptosis. A, Representative plots showing the gating strategies for lymphocytes and histograms showing MM and annexin V positivity in total CD8+ T cells after culturing PBMC from an HIV+ patient for 14h in the absence or presence of anti-CD95/Fas antibody. Apoptosis was measured in MM\textsuperscript{High} and MM\textsuperscript{Low} CD8+ T cells by annexin V staining. B, Pooled data showing the percentage (%) of annexin V+ CD8+ T cells in MM\textsuperscript{High} and MM\textsuperscript{Low} CD8+ T cells from HIV+ individuals (n=9). Bars depict means ± SE. The p values were calculated using Student’s t test.

Figure 3. No relationship between differentiation status and MM levels in HIV- and CMV-specific CD8+ T cells from HIV+ patients. A, Representative flow cytometry showing MM and memory populations in HIV- and CMV-specific CD8+ T cells from an HIV+ patient. Memory populations were identified by CD45RA and CD62L staining. Histograms depict the MM levels in CD45RA-CD62L- and CD45RA+CD62L- memory subsets of HIV- and CMV-specific CD8+ T cells. B, Pooled data showing
the percentage of MM\textsuperscript{High} cells in CD45RA-CD62L- and CD45RA+CD62L- memory HIV- specific (n=7) and CMV-specific (n=5) CD8+ T cell populations.

Figure 4. MM is independent of the activation level of HIV-specific CD8+ T cells. A, Representative flow cytometry showing HIV- and CMV-specific CD8+ T cells from an HIV+ patient. Histograms depict ex vivo levels of CD38 in HIV-, CMV-specific and CD8+ T cells from a healthy donor (left panel). Pooled data showing the ex vivo percentages (%) of CD38+ cells in HIV-specific (□) (n=10), CMV-specific (■) (n=17) and total CD8+ T cells from HIV+ patients (♦) (n=35) and healthy donors (○) (n=14) (right panel). B, Representative flow cytometry showing ex vivo MM in CD38+ and CD38- HIV-specific CD8+ T cells from an HIV+ patient (left panel). Pooled data showing the ex vivo percentages (%) of MM\textsuperscript{High} cells in CD38+ and CD38- HIV-specific (n=4), CMV-specific (n=6) and total CD8+ T cells from HIV+ patients (n=8) and healthy individuals (n=4). Bars depict means ± SE (right panel). The p values were calculated using Student’s t test.

Figure 5. CD38 although a correlate of apoptosis does not explain on its own the selective apoptosis of HIV-specific CD8+ T cells. A, The correlation between the percentage (%) of spontaneous, anti-CD95/Fas-induced and treatment-specific CD8+ T cell apoptosis and ex vivo percentages (%) of CD38+ cells (upper left, middle, and right panels respectively) in total CD8+ T cells from HIV+ patients (n=21). B, Representative flow cytometry showing HIV-specific and CD8+ T cells from an HIV+ patient. Histograms depict CD38 levels and annexin V positivity in HIV-specific CD8+ T cells after culturing PBMC for 14h in the absence or presence of anti-CD95/Fas antibody. C) Pooled data presenting annexin V positivity in CD38+ and CD38- HIV-specific (n=6) and CMV-specific (n=7) CD8+ T cells from HIV+ patients. Open symbols represent CD38+ while closed ones represent CD38-CD8+ T cells. D, Pooled data showing the ex vivo MFI of Bcl-2 staining for CD38+ and CD38- HIV-
specific (▲, Δ) (n=8), CMV-specific (♦, ◊) (n=13) and total CD8+ T cells from HIV+ patients (●, ○) (n=30) and healthy donors (■, □) (n=9). Horizontal lines depict mean values. The p values were calculated using Student’s t test.

**Figure 6. Anti-CD95/Fas treatment induces CD95/Fas-capping in purified CD8+ T cells from HIV+ patients but not from healthy donors.** A, Confocal imaging analysis showing CD95/Fas distribution in untreated (left panel) or treated (right panel) Jurkat cells under CD95/Fas-capping conditions. Merged images (blue for DAPI and green for anti-CD95/Fas staining, respectively) of representative cells are shown at a single section (upper row) or 3D projection (lower row). B, CD95/Fas-distribution in purified CD8+ T cells from an HIV+ individual and a healthy donor under treatment with anti-CD95/Fas antibody for 5min or 1h at 37°. White arrows point at CD95/Fas-capping cells. Zoomed images of selected fields are also shown. C. Representative imaging showing the accumulation of CD95/Fas in uropod-like structures extending from the cell surface. Zoomed images of selected fields are also shown. These results are representative of CD8+ T cells from n=7 HIV+ patients and n=4 healthy donors.

**Figure 7. CD95/Fas and mitochondria co-polarization in early steps of CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells.** A, Purified CD8+ T cells from HIV+ individual were left untreated or treated with a mouse anti-CD95/Fas antibody for 1h min at 37°. Following fixation, a double staining protocol was performed. Localization of CD95/Fas and mitochondria was analyzed by confocal microscopy. Representative 3D images are shown from one out of three experiments performed. Untreated cells are shown on the left, right panels depict two cells showing co-polarization. B, Representative 3D confocal image showing CD95/Fas and mitochondria localization in sorted HIV-
specific CD8+ T cells treated with anti-CD95/Fas antibody. CD95/Fas-capping is accompanied with co-polarization of mitochondria (arrow).
Figure 1

A) Expression of MM in CD8+ T cells

- Total CD8+ T cells from uninfected controls
- Total CD8+ T cells from HIV-infected individuals
- HIV-specific CD8+ T cells from HIV-infected individuals
- CMV-specific CD8+ T cells from HIV-infected individuals

B) % of CD8 with high MM

- p < 0.0001
- p < 0.005

% of CD8:

- Gag-specific CD8+ T cells
- CD8+ T cells HIV+
- CD8+ T cells HIV-
Figure 2

A) | B)
---|---
Spontaneous apoptosis | Low MM | High MM
CD95/Fas-induced apoptosis | % of Annexin V+ CD8+ T cells

For personal use only.on April 16, 2017. For personal use only.
Figure 3

A) Gag-specific CD8+ T cells

B) CMV-specific CD8+ T cells

HIV-specific CD8+ T cells

CMV-specific CD8+ T cells

% of High MM CD8+ T cells

Cell numbers
Figure 4

A) Gag

B) Pol

Total CD8+ T cells from uninfected controls

Total CD8+ T cells from HIV-infected individuals

HIV-specific CD8+ T cells from HIV-infected individuals

CMV-specific CD8+ T cells from HIV-infected individuals

Healthy CD8+ T cells

CMV-specific CD8+ T cells

HIV-specific CD8+ T cells
Figure 5

A) Spontaneous Apoptosis

B) CD95/Fas-induced Apoptosis

C) Specific CD95/Fas-induced Apoptosis

D) HIV-specific CD8+ T cells vs. CMV-specific CD8+ T cells

For personal use only.
Figure 6

A) Jurkat cells
- Untreated
- anti-CD95/Fas treated

B) Anti-CD95/Fas treated (1h) purified CD8+ T cells from healthy donor
- DAPI
- Anti-Fas
- Merged

C) Anti-CD95/Fas treated (1h) purified CD8+ T cells from HIV+ patient
- DAPI
- Anti-Fas
- Merged

Anti-CD95/Fas treated (5 min) purified CD8+ T cells from HIV+ patient
- DAPI
- Anti-Fas
- Merged

Anti-CD95/Fas treated (1h) purified CD8+ T cells from HIV+ patient
- DAPI
- Anti-Fas
- Merged
Figure 7

A) Untreated CD8+ T cells

B) Anti-CD95/Fas treated CD8+ T cells

B) Anti-CD95/Fas treated HIV-specific CD8+ T cells
Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8+ T cells

Constantinos Petrovas, Yvonne M. Mueller, Ioannis D. Dimitriou, Susan R. Altork, Anupam Banerjee, Peter A. Sklar, Karam C. Mounzer, John D. Altman and Peter D Katsikis