Optimization of Conditioning for Marrow Transplantation from Unrelated Donors for Patients with Aplastic Anemia After Failure of Immunosuppressive Therapy

H. Joachim Deeg¹, Margaret O'Donnell², Jakub Tolar³, Rajni Agarwal⁴, Richard E. Harris⁵, Stephen A. Feig⁶, Mary C. Territo⁶, Robert H. Collins⁷, Peter A. McSweeney⁸, Edward A. Copelan⁹, Shakila P. Khan¹⁰, Ann Woolfrey¹, Barry Storer¹

¹Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA; ²City of Hope National Medical Center, Duarte, CA; ³University of Minnesota, Minneapolis, MN; ⁴Stanford University, Stanford, CA; ⁵Cincinnati Children's Hospital Medical Center, Cincinnati, OH; ⁶UCLA, Los Angeles, CA; ⁷University of Texas, Southwestern Medical Center, Dallas, TX; ⁸University of Colorado, Denver, CO; ⁹Ohio State University, Columbus, OH; ¹⁰Mayo Clinic, Rochester, MN.

Supported by grants HL36444 and CA15704 from the National Institutes of Health, DHHS, Bethesda, MD, and by the National Marrow Donor Program.

Keywords: aplastic anemia; volunteer donors; disease duration; total body irradiation; pulmonary toxicity

Running Title: Unrelated Donor Transplants for Patients with AA

Word Counts: Abstract – 197; Text – 3,705

Address correspondence to: H. Joachim Deeg, MD, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024; Telephone: 206-667-5985, Fax: 206-667-6124, E-mail: jdeeg@fhcrc.org.
AUTHORS’ CONTRIBUTIONS

H.J. Deeg Co-designed the study, wrote the protocol, coordinated patient accrual, analyzed results, and wrote the manuscript.

M. O'Donnell Provided critique for the protocol, enrolled patients, and provided constructive comments on the manuscript.

J. Tolar Enrolled patients and provided comments on the manuscript.

R. Agarwal-Hasmi Enrolled patients and provided comments on the manuscript.

R. Harris Provided critique for the protocol, enrolled patients, and provided constructive comments on the manuscript.

M. Territo Provided critique for the protocol, enrolled patients, and provided constructive comments on the manuscript.

S. Feig Provided critique for the protocol, enrolled patients, and provided constructive comments on the manuscript.

R.H. Collins Provided critique for the protocol, enrolled patients, and provided constructive comments on the manuscript.

P.A. McSweeney Enrolled patients and provided comments on the manuscript.

E.A. Copelan Enrolled patients and provided comments on the manuscript.

S. Khan Enrolled patients and provided comments on the manuscript.

A. Woolfrey Responsible for the donor search at FHCRC; verified all HLA data and the degree of matching and offered comments on the manuscript.

B. Storer Responsible for protocol design and modifications, carried out all analyses, and provided comments on the manuscript.
ABSTRACT

In 87 patients with aplastic anemia who failed to respond to immunosuppressive treatment, we determined the minimal dose of total body irradiation (TBI) required when added to antithymocyte globulin (ATG, 30 mg/kg x 3) plus cyclophosphamide (CY, 50 mg/kg x 4) to achieve engraftment of unrelated donor marrow. TBI was started at 3×200 cGy, to be escalated/de-escalated in steps of 200 cGy dependent upon graft failure/toxicity. Patients were 1.3-53.5 (median 18.6) years old. The interval from diagnosis to transplant was 3-328 (median 14.6) months. Donors were HLA-A, -B, –C, –DR, and -DQ identical for 62 patients, and nonidentical for one to three HLA loci at the antigen or allele level for 25. The dose-limiting toxicity was diffuse pulmonary injury. The optimum TBI dose was 1×200 cGy. Nine patients did not tolerate ATG and were prepared with CY+TBI. Graft failure occurred in 5% of patients. With a median follow-up of 7 years, 38 (61%) of 62 HLA-identical, and 10 (40%) of 25 HLA-nonidentical transplant recipients are surviving. The highest survival rate with HLA-identical transplants was observed at 200 cGy TBI. Thus, low-dose TBI/CY/ATG conditioning resulted in excellent outcome of unrelated transplants in multiply transfused patients with aplastic anemia.
INTRODUCTION

Approximately 85%-90% of patients with aplastic anemia who undergo transplantation with marrow from HLA genotypically identical siblings are cured.\(^1\) Patients without suitably HLA-matched related donors generally receive immunosuppressive therapy (IST) first and are transplanted only if IST fails. Results with transplantation from unrelated volunteer donors in these patients have been inferior to those achieved with HLA-identical siblings.\(^2,4\) Causes of failure have included a higher frequency of graft rejection, regimen-related toxicity (due to intensification of the conditioning regimens aimed at preventing rejection), and acute graft-versus-host disease (GVHD) than observed with HLA-identical sibling transplants.\(^2,3,5\)

We have reported early results of a trial in which patients who underwent marrow transplantation from unrelated donors were conditioned with antithymocyte globulin (ATG) and cyclophosphamide (CY), as used for sibling transplants,\(^1\) with the addition of de-escalating doses of total body irradiation (TBI). Best results were achieved with the addition of 200 cGy of TBI.\(^6\) Here we update results on the patients included in the original report and extend our experience to a larger number of patients transplanted from HLA-identical or HLA-mismatched donors.

PATIENTS AND METHODS

Patients

The study population consisted of 87 patients with severe aplastic anemia (excluding patients with Fanconi anemia or other constitutional causes of marrow failure) who, between February 1994 and April 2004, were transplanted with unrelated donor marrow at one of 17 centers in the United States, Germany or the United Kingdom; 75% of the patients were transplanted at the six
largest centers. Included were patients with aplastic anemia who had failed to respond to the best available immunosuppressive treatment within 75 days of initiation of therapy or who, following initial responses, became aplastic again. Patients did not have suitable HLA-identical family donors, and were 55 years of age or younger. Eighty-two donors were recruited through the National Marrow Donor Program (NMDP) (and were registered with the NMDP), and five through other registries. All patients were registered with the study coordinator at the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, WA, for TBI dose assignment. Patient characteristics are summarized in Table 1. Patients were 1.3-53.4 (median 18.6) years old; 61 were Caucasian, 13 Hispanic, 6 Asian, 5 African American, and 2 were of unknown ethnicity. All patients had been transfused with either red blood cells or platelet preparations or both, and all had received IST, growth factors, and other modalities of treatment for 1 to 11 (median 3) courses. Patients with recurrent marrow failure after IST were eligible for this protocol even if hematological parameters did not satisfy the criteria for severe aplastic anemia at the time of transplantation. Consent was provided by all patients according to the requirements of the Institutional Review Boards at the respective institutions.

Donor selection and marrow collection

Donor characteristics are listed in Table 1. Donors were unrelated volunteers 18 to 58 (median 36) years old; 34 were female and 51 male (in two cases gender information was not available). Donors were selected on the basis of the highest level of HLA typing available at the time of enrollment into the study. Additional typing was carried out retrospectively using cryopreserved cells from patients and donors. Those data were incorporated in the results as reported here. Sixty-two patients were HLA-A, -B, -C, -DR and -DQ identical with their donors based on oligonucleotide typing or DNA sequencing, and 25 patients were considered HLA-nonidentical with their donors. Nine patients showed single class I mismatches (antigen level in 6, allele level in 3), three had two class I mismatches (antigen level in 3, allele level in 1), six patients had
isolated allele level class II mismatches, four had class I + II mismatches (antigen level in 2 and allele level in 1), and one patient was HLA-DR and –DQ mismatched at the allele level. In two patients, HLA typing was incomplete (HLA-C and –DQ data missing), and they were considered HLA-nonidentical. HLA-identical and nonidentical patients were considered separately for TBI dose finding. One patient who had received 1 x 200 cGy of TBI was reassigned to the HLA-identical cohort on the basis of retrospective typing. Marrows were harvested according to the policies of the NMDP and brought to the transplant center by courier.

Transplant regimen
The protocol prescribed four doses of cyclophosphamide (CY), 50 mg/kg/day i.v. on 4 consecutive days, and three infusions of equine ATG (ATGAM®) at 30 mg/kg/day. CY and ATG were followed by TBI at a starting dose of 3 x 200 cGy (two fractions on one day, and one on the next day), followed by the infusion of donor marrow cells.6 Criteria for TBI dose escalation/de-escalation are described under “Study Design.” Patients who could not complete the ATG regimen, either because of anaphylactic or another severe adverse reactions to the initial dose of ATG, received alternatively CY, 60 mg/kg/day for 2 consecutive days (if the first dose of CY of 50 mg/kg had been given, the second CY dose consisted of 70 mg/kg), followed by TBI, 200 cGy twice a day for 3 consecutive days for cumulative doses of 1200 cGy, and donor marrow infusion (n=9, 7 transplanted from HLA-identical and 2 from HLA-nonidentical donors).

Engraftment
The day of engraftment was defined as the first of 3 consecutive days on which the neutrophil count exceeded 0.5×10^9/L.7 Patients who did not reach neutrophil counts of $>0.5 \times 10^9$/L for 3 consecutive days post-transplant were considered as having primary graft failure. Patients with initial engraftment in whom absolute neutrophil counts declined to $<0.5 \times 10^9$/L subsequently
were considered to have secondary graft failure (if they had survived for at least 21 days). None of the six patients who survived for less than 21 days had developed GVHD, and none was considered evaluable for engraftment. Marrow and peripheral blood cells were tested sequentially for chimerism using Y chromosome-specific cDNA probes in patients with donors of opposite sex or probes specific for polymorphic DNA sequences (for example, variable number tandem repeats [VNTR]).

GVHD

For GVHD prophylaxis, patients received methotrexate, 10 mg/m² on days 1, 3, 6 and 11 after the marrow infusion, and cyclosporine (CSP; Sandimmune), starting on day -1 at doses of 5 mg/kg per day i.v. as continuous infusion, decreased to 3 mg/kg/day i.v. on day +4, and switched to 12 mg/kg/day p.o. in two divided doses once oral medications were tolerated. CSP was continued daily, and beginning on day 50, given at gradually reduced doses until day 180 if the patient was free of GVHD. In patients with evidence of GVHD, CSP was continued as deemed necessary. Acute GVHD was graded based on findings in skin, liver and intestinal tract according to the modified Glucksberg criteria as described by Martin, et al.⁸,⁹ Chronic GVHD was assessed as limited (mild skin involvement only) or extensive disease as described previously.¹⁰

Data collection

Data were collected in forms designed specifically for this study, in addition to the standardized forms provided by the NMDP. Data collection included pretransplant information, peri-transplant events, and follow-up at 6-12 months intervals. Data were analyzed as of July 1, 2005.
Study design

This study was designed to develop and evaluate conditioning regimens for patients with severe aplastic anemia given marrow transplants from unrelated donors. The goal was to achieve sustained engraftment without encountering prohibitive toxicity. The probability of graft failure (and possibly treatment-related toxicity) was expected to be different among patients given HLA-identical or HLA-nonidentical grafts, and, hence, TBI dose finding was pursued separately for the two groups.

Patients were to be treated in groups of six, with TBI starting at $3 \times 200 \text{ cGy}$. If more than one patient was registered at a given time, and endpoints of toxicity or efficacy were not yet evaluable in preceding patients, the actual number of patients in a dose cohort could be greater than six. Possible doses for subsequent patients were 4×200, 5×200, 6×200, or alternatively, 2×200 or $1 \times 200 \text{ cGy}$. Guidelines were as follows: if two or more patients suffered unacceptable toxicity at a given dose, the next lower dose would be chosen as the final dose for testing. Details of the dose finding scheme have been described before. The properties of this scheme were evaluated by Monte Carlo simulation using various assumptions for the probabilities of prohibitive toxicity and engraftment failure. For the scenarios evaluated, this design had a high probability of choosing an acceptable dose level when one existed.

As reported previously, a single TBI fraction of 200 cGy was identified as the optimum dose for patients with HLA-matched donors. At this point, the protocol was modified to allow for a Phase II extension for accrual of additional patients transplanted from HLA-identical donors; dose finding for HLA-nonidentical transplants continued as per the original design. The Protocol modification was approved by the Institutional Review Boards.

Survival probabilities were estimated by the Kaplan-Meier method. Likelihood ratio tests from proportional hazards regression models were used to compared survival among groups of
patients. The frequencies of grades ≥3 toxicities and fatal regimen-related toxicities in TBI dose cohorts were compared using a t-test for trend.

RESULTS

Identification of donors

Sixty-two patients received transplants from HLA-identical donors, and 25 from HLA-nonidentical donors (Table 1). The search for an unrelated donor was initiated at the discretion of the referring physicians. The time from initiation of the search to the start of donor work-up was 5-4088 (median 77) days; the time to transplantation was 48-4110 (median 135) days. In 13 patients, the search time extended beyond one year.

Conditioning regimen

The conditioning regimens given to patients are summarized in Figure 1. Nine patients, seven transplanted from HLA-identical and two from HLA-nonidentical donors, could not receive ATG and were conditioned with CY, 120 mg/kg over 2 days, and TBI, 6 x 200 cGy, administered over 3 days.

Outcome

Outcomes are summarized in Table 2 separately for patients transplanted from HLA-identical and HLA-nonidentical donors, and those who were conditioned without ATG. The follow-up was 1.2-10.2 (median 7) years for both HLA-identical and HLA-nonidentical transplants.

Engraftment: Six patients, five transplanted from HLA-identical and one from HLA-nonidentical donors, died before day 21 and were considered not evaluable for engraftment.
Among the remaining 81 patients, two conditioned with ATG, CY and 200 cGy of TBI and transplanted from HLA-identical and nonidentical donors, respectively, failed to achieve sustained engraftment. Two additional patients, both conditioned with ATG, CY and 200 cGy of TBI and transplanted from HLA-nonidentical donors developed secondary graft failure in association with systemic CMV infections. The remaining 77 evaluable patients (95%) had sustained engraftment. There was no apparent difference in the tempo of hematologic recovery between patients who had received different doses of TBI.

Toxicity: Toxicities of grades ≥3 thought to be conditioning-related are summarized in Table 3. Clinically significant toxicity occurred in 18 (21%) of the 87 patients enrolled. There was no apparent difference between HLA-identical and HLA-nonidentical transplants. However, the incidence of grades ≥3 toxicities and fatal outcome decreased with de-escalation of the TBI dose (p=0.02 and p=0.002, respectively). Most frequently affected were the lungs, the most striking finding being diffuse alveolar damage, generally manifest at about 3 weeks post-transplant. This type of toxicity at the low doses of TBI administered, was unexpected. The histology, described previously, was remarkable for hyaline membranes in the terminal broncheoli. Overall, 9 of 18 grades ≥3 toxicities involved the lungs (Table 3), and 6 of these proved fatal (Table 4). Some patients experienced toxicity in more than one organ, most frequently kidneys, lungs, and liver. Clinically relevant mucositis and bladder toxicity were infrequent.

GVHD: Acute GVHD of grades II-IV occurred in 69% of patients with HLA-identical, and 77% with HLA-nonidentical donors. Chronic GVHD developed in 52% of evaluable patients transplanted from HLA-identical donors, and in 57% of patients transplanted from HLA-nonidentical donors. In eight patients transplanted from HLA-identical donors, acute or chronic GVHD was considered the primary cause of death. Among patients transplanted from HLA-
nonidentical donors, two died with GVHD, and two additional patients with steroid-refractory GVHD died with Epstein-Barr virus associated post-transplant lymphoproliferative disorders (PTLD).

Survival: As of July 2005, 48 of 87 patients (55%) were surviving, including 38 of 62 (61%) transplanted from HLA-identical, and 10 of 25 (40%) transplanted from HLA-nonidentical donors. Differences in survival between cohorts of patients conditioned with different doses of TBI were not significant. There was a suggestion, however, that the probability of survival among patients who received the CY/ATG/TBI regimen and were transplanted from HLA-identical donors increased as the TBI dose was decreased (Figure 2). While 5-year survival was 62% for patients transplanted within one year of diagnosis and 54% for patients with a longer interval from diagnosis to transplant, this difference was not significant (p=0.67). Younger patients (≤20 years) had a higher probability of survival than older patients (>20 years; p=0.05) (Figure 3A). This was particularly true for patients given TBI doses of 1 × 200 cGy (Figure 3B), regardless of the time interval since diagnosis (Figure 3B). Finally, among nine patients who did not receive ATG and were conditioned with lower doses of CY (120 mg/kg) and higher doses of TBI (6 x 200 cGy), five are surviving. Results were not appreciably affected by donor/patient CMV status or gender combination. All long-term surviving patients have normal hematologic parameters.

Causes of Death: Thirty-nine patients have died (Table 4). The mortality rate was higher after HLA-nonidentical (60%) than after HLA-identical transplants (39%); however, the causes of death were similar, the most frequent being organ toxicity and GVHD (see above). The one late death (>5 years) was related to chronic GVHD and pulmonary insufficiency.
DISCUSSION

Survival in patients with aplastic anemia transplanted from unrelated donors has been inferior to that achieved with HLA-identical sibling donors.4-6,11-13 Longer time from diagnosis to transplantation, the use of IST as initial therapy, and greater genetic differences between donors and patients, all may contribute. One cause of failure with unrelated donors has been lack of sustained engraftment with conditioning regimens that have been successful with sibling transplants.1,14 High-dose TBI regimens, however, have been associated with severe acute toxicity5,15 and the risk of secondary malignancies.16,17 Here, we show in a prospective trial that low doses of TBI added to a CY plus ATG regimen that has been successful in patients with aplastic anemia transplanted from HLA-identical sibling donors, is effective in achieving engraftment of unrelated donor marrow and in improving long-term survival to a level which, at least in young patients, approaches that of HLA-identical sibling transplants.

The primary objective of this prospective study, reduction of regimen-related toxicity and mortality without jeopardizing engraftment, was met for both HLA-identical and partially HLA-mismatched transplants. Engraftment was achieved with the lowest TBI dose of 200 cGy. Four of 81 evaluable patients (5%) experienced graft failure, one (2%) with HLA-identical, and three (11%) with HLA-nonidentical transplants. Among the latter, however, only one patient had primary rejection, whereas two patients manifested graft failure in the context of systemic CMV infections and ganciclovir treatment, without evidence of immunological graft rejection by recipient immune cells. While all graft failures occurred at the lowest TBI dose used, it is unlikely that CMV-associated graft failure was affected by the TBI dose. Nevertheless, results overall suggest that a dose of 200 cGy in combination with ATG plus CY was the minimum dose that allowed for sustained engraftment of unrelated marrow.14 A graft failure rate of 2\% for HLA-identical unrelated donor transplants compares favorably with other reports12 and is, in fact, not different from that observed with HLA-identical sibling transplants.1
While TBI dose de-escalation did not significantly increase the risk of graft failure and reduced the incidence of severe organ toxicity, differences between TBI dose levels were not significant, and the impact on survival was not as decisive as anticipated. One of the rationales for the design of the present TBI dose-finding trial had been earlier observations, which suggested that high dose TBI (1200 cGy) was poorly tolerated in patients with aplastic anemia. Since, on the other hand, a combination of ATG and CY provided insufficient immunosuppression for sustained engraftment of marrow from unrelated donors, we speculated that the addition of low doses of TBI might, firstly, allow for sustained engraftment, and, secondly, not cause unacceptable clinical toxicity. Still, pulmonary toxicity occurred in the present trial even at TBI doses as low as 400 or 200 cGy given in combination with ATG and CY. It is not clear which component of the regimen was responsible for the adverse pulmonary effects. Interactions between TBI and ATG are unlikely to blame in view of the fact that ATG is well tolerated in conjunction with high-dose TBI (and CY at doses of 120 mg/kg) in patients transplanted for malignant disorders. On the other hand, interactions between high-dose CY (200 mg/kg) and TBI or ATG may have to be considered. Circumstantial support for such a possibility comes from results in the nine patients conditioned with CY at doses of 120 mg/kg and high-dose TBI (6 × 200 cGy) without ATG who did not experience prohibitive acute pulmonary toxicity. In fact, 5 of 9 patients so treated survived, suggesting that the 10% survival observed historically (with HLA-identical sibling transplants for aplastic anemia) may have been due to the poor overall condition of those earlier patients. Nevertheless, potential late effects of high-dose irradiation, including the development of new malignancies, remains a concern. Others have suggested that unusual cytokine profiles in patients with aplastic anemia, in particular, high levels of pro-inflammatory cytokines such as interferon γ and tumor necrosis factor (TNF)α and high levels of IL-10 may contribute to transplant-related toxicity. However, considering the extensive transplant experience with HLA-identical sibling transplants in patients with aplastic anemia, it would seem surprising that the described adverse effects
should become manifest with increased frequency only in the present trial with unrelated donors.

The incidence of both acute and chronic GVHD in the present study was in the same range as in other recent trials, and while patient numbers may be too small for a definitive assessment, there was no indication that the GVHD incidence declined with decreasing TBI doses. New approaches to GVHD prevention and therapy are needed. Several trials in patients with aplastic anemia have used the anti-CD52 antibody alemtuzumab or rabbit ATG (Thymoglobulin) rather than equine ATG or in vitro T-cell depletion with TIOB9 or OKT3, and reported reductions in the incidence of acute GVHD to as low as 11%, albeit generally at the expense of an increased graft failure rate. It is possible, however, that the timing of ATG administration was important. While in the present study ATG was given on days -5 to -3, we and others have given Thymoglobulin in other trials on days -3 to -1. As a result, high concentrations of antibody were present in patient plasma at the time of donor cell infusion, conceivably sufficient to inactivate donor T lymphocytes, thereby leading to less GVHD.

Despite problems with GVHD, however, long-term survival in the present trial was comparable to that reported by Kojima, et al. in Japanese patients with aplastic anemia, in whom the frequency of GVHD has been lower than in North American patients. We observed an overall survival at 5 years of 61% among patients transplanted from HLA-identical, and 40% among those transplanted from HLA-nonidentical donors, reemphasizing the importance of selecting donors on the basis of the highest resolution of HLA typing possible, even though the GVHD incidence remained high. The survival rate of 61% with HLA-identical donors was comparable to that reported by Ades, et al. for HLA-identical sibling transplants following conditioning with CY and thoraco-abdominal irradiation. Patient age distribution in that study (55% were less than 20 years of age) was virtually identical to that in the present trial. As in the trial reported by Ades et al., survival in the present study was age-dependent, showing a 5-year probability of approximately 80% among patients 20 years of age or younger, who
were conditioned with the optimum TBI dose of 200 cGy. Younger age has also been shown to be a favorable factor for transplant outcome in earlier trials.4,12,35

In these young patients, in contradistinction to earlier reports,4,6 disease duration did not have a significant impact on transplant outcome. This observation may be related to earlier referral of patients with growing awareness of the success rate of transplantation.

The lowest TBI dose used here was identical to that currently employed in so-called non-myeloablative conditioning regimens.36,37 Those regimens often incorporate agents other than CY, for example, fludarabine, and are well tolerated as far as acute toxicity is concerned.38-40 Whether replacement of CY by fludarabine in the conditioning regimen, as proposed in a new trial for patients with aplastic anemia (BMT CTN protocol 0301) will reduce toxicity, remains to be determined.

In summary, the present TBI dose finding study has provided encouraging results in patients with aplastic anemia who had not responded to IST and were transplanted from unrelated donors. TBI dose de-escalation was effective in reducing transplant-related toxicity without jeopardizing engraftment. In young patients for whom HLA-identical donors were available, long-term survival approached that in patients transplanted from HLA-identical siblings. Conceivably, such patients should be transplanted even earlier in their disease course, without having received IST, to further improve transplant outcome. However, future studies must be aimed at providing more effective GVHD prophylaxis.

ACKNOWLEDGMENTS

The following transplant centers enrolled patients in this trial: Baylor University, Dallas, TX; Cincinnati Children’s Hospital, Cincinnati, OH; City of Hope National Medical Center, Duarte, CA; Emory University, Atlanta, GA; Fred Hutchinson Cancer Research Center, Seattle, WA; Heinrich-Heine University, Düsseldorf, Germany; Ohio State University, Columbus, OH; Oregon
Health & Science University, Portland, OR; Royal Hospital for Sick Children, University of Bristol, UK; Rush-Presbyterian Medical Center, Chicago, IL; Stanford University and Packard Children’s Hospital, Stanford, CA; Texas Children’s Hospital, Houston, TX; University of California, Los Angeles, CA (Pediatric and Adult Transplant Units); University of Colorado, Denver, CO; University of Minnesota, Minneapolis, MN; University of Utah, Salt Lake City, UT; Veterans Administration Hospital, Seattle, WA.

We thank Deborah Monroe, Sarah Ryan, Jennifer Freese, and John Sedgwick for data coordination, Dennis Confer, MD, and Marie Matlack at NMDP for providing information on donor searches and marrow cell dose, Effie Petersdorf, MD, for her suggestions regarding HLA-typing, Rainer Storb, MD, for critical comments regarding the manuscript, and Margaret Pepe, PhD, and Beth Muller, PhD, for their help with the original study design.

We thank Bonnie Larson and Helen Crawford for typing the manuscript.
REFERENCES

25. Deeg HJ, Storer B, Slattery JT, et al. Conditioning with targeted busulfan and
cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated

26. Deeg HJ, Spitzer TR, Cottler-Fox M, Cahill R, Pickle LW. Conditioning-related toxicity and
acute graft-versus-host disease in patients given methotrexate/cyclosporine prophylaxis.

27. Gupta V, Ball SE, Yi QL, et al. Favorable effect on acute and chronic graft-versus-host
disease with cyclophosphamide and in vivo anti-CD52 monoclonal antibodies for marrow
transplantation from HLA-identical sibling donors for acquired aplastic anemia. Biol Blood

thymocyte globulin for alternative donor transplants in acquired severe aplastic anemia: a

children with severe aplastic anemia: minimal GVHD and durable engraftment with partial T

30. Deeg HJ, Storer BE, Boeckh M, et al. Reduced incidence of acute and chronic graft-versus-
host disease with the addition of thymoglobulin to a targeted busulfan/cyclophosphamide

disease prophylaxis in transplants from unrelated donors: 2 randomized studies from

Table 1. Patient and Donor Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>87</td>
</tr>
<tr>
<td>Age (yrs), range (median)</td>
<td>1.3 – 53.4 (18.6)</td>
</tr>
<tr>
<td><20 yrs</td>
<td>47</td>
</tr>
<tr>
<td>≥20 yrs</td>
<td>40</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>50 / 37</td>
</tr>
<tr>
<td>Ethnic origin</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>61</td>
</tr>
<tr>
<td>Hispanic</td>
<td>13</td>
</tr>
<tr>
<td>African American</td>
<td>5</td>
</tr>
<tr>
<td>Asian</td>
<td>6</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
</tr>
<tr>
<td>Disease duration (ms), range (median)</td>
<td>3–328 (14.6)</td>
</tr>
<tr>
<td>Pretransplant therapy</td>
<td></td>
</tr>
<tr>
<td>Transfusions</td>
<td>87</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>87</td>
</tr>
<tr>
<td>No. of courses 1 – 11 (median)†</td>
<td></td>
</tr>
<tr>
<td>Donor age (ys), range (median)</td>
<td>18 – 58 (36)</td>
</tr>
<tr>
<td>Donor gender (M/F)†</td>
<td>51 / 34</td>
</tr>
<tr>
<td>Donor† / Patient gender combination</td>
<td></td>
</tr>
<tr>
<td>F → F</td>
<td>21</td>
</tr>
<tr>
<td>F → M</td>
<td>13</td>
</tr>
</tbody>
</table>
M → M 35
M → F 16

CMV Status

D⁺ – P⁺ 21
D⁺ – P⁻ 32
D⁻ – P⁻ 15
D⁻ – P⁺ 5
Other† 14

Donor / Patient HLA compatibility

Identical 62
Nonidentical 25

Marrow cell dose (x 10⁸/kg), range (median) 0.006–15.6 (3.1)

*Single agent or combination regimens, with or without hemopoietic growth factors.
†Unavailable in 2.
‡ In 3 patients the test was indeterminate; in the remaining 11 patients the data were not available.

Abbreviations: F = female; M = male; P = patient; D = donor.
Table 2: *Transplant outcome*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HLA-identical (n=62)</th>
<th>HLA-nonidentical (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up (years), median (range)</td>
<td>7 (1.2–10.2)</td>
<td></td>
</tr>
<tr>
<td>Early deaths (<day 21)</td>
<td>5 (8)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Sustained engraftment</td>
<td>56 / 57 (99)</td>
<td>22 / 25 (88)</td>
</tr>
<tr>
<td>GVHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute (grades II-IV)</td>
<td>40 / 57 (70)</td>
<td>18 / 24 (75)</td>
</tr>
<tr>
<td>Chronic*</td>
<td>25 / 48 (52)</td>
<td>12 / 21 (57)</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>38 / 62 (61)</td>
<td>11 / 25 (44)</td>
</tr>
<tr>
<td>Survival by Regimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY + ATG + TBI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3 x 200 cGy</td>
<td>4 / 8 (50)</td>
<td>2 / 6 (33)</td>
</tr>
<tr>
<td>- 2 x 200 cGy</td>
<td>6 / 12 (50)</td>
<td>3 / 6 (50)</td>
</tr>
<tr>
<td>- 1 x 200 cGy</td>
<td>23 / 35 (66)</td>
<td>5 / 11 (45)</td>
</tr>
<tr>
<td>CY + TBI (6 x 200)</td>
<td>5 / 7 (71)</td>
<td>0 / 2 (0)</td>
</tr>
</tbody>
</table>

Chronic GVHD requiring therapy
Table 3. Toxicity by conditioning regimen

<table>
<thead>
<tr>
<th>Conditioning Regimen</th>
<th>ATG (3 x 30) / CY (4 x 50) / TBI</th>
<th>CY (2 x 60) / TBI</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[No. of pts with grade ≥3 toxicity (fatal) / total no. of pts.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>5 (5) / 14</td>
<td>6 (5) / 18</td>
<td>5 (2) / 46</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Renal</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oral mucosa</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CNS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multi-organ failure</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hematologic (TTP)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

ATG = anti-thymocyte globulin; CY = cyclophosphamide; TBI = total body irradiation, 3, 2 or 1 × 200 cGy when combined with ATG/CY, or 6 × 200 cGy when combined with CY only; CNS = central nervous system; MOF = multi-organ failure; TTP = thrombotic thrombocytopenic purpura; pts = patients.

* Severity grade 4 in any organ system or ≥grade 3 for pulmonary, oral mucosa (stomatitis), renal or hepatic toxicity.41

The frequency of toxicities in each column do not add up to the total (overall) as an individual patient may have had more than one organ toxicity.
Table 4. Causes of death

<table>
<thead>
<tr>
<th>Causes of Death</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HLA-identical</td>
</tr>
<tr>
<td>Diffuse alveolar damage</td>
<td>4</td>
</tr>
<tr>
<td>Systemic viral infections</td>
<td>0</td>
</tr>
<tr>
<td>Systemic fungal infections</td>
<td>2</td>
</tr>
<tr>
<td>Multi-organ failure</td>
<td>4</td>
</tr>
<tr>
<td>TTP</td>
<td>2</td>
</tr>
<tr>
<td>Acute GVHD and associated problems</td>
<td>4</td>
</tr>
<tr>
<td>Chronic GVHD</td>
<td>5</td>
</tr>
<tr>
<td>Complications from second transplant</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous†</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

(39%) (60%)

CNS = central nervous system; GVHD = graft-versus-host disease; PTLD = post-transplant lymphoproliferative disorder; TTP = thrombotic, thrombocytopenic purpura.

* Both patients developed post-transplant lymphoproliferative disorders following extensive treatment for acute GVHD.

† One each from asphyxia due to aspiration, CNS hemorrhage, secondary graft failure, and suicide.
Figure 1: Actual conditioning regimen given. Among the 87 patients transplanted, 78 (55 from HLA-identical and 23 from HLA-nonidentical donors) were conditioned with CY + ATG + TBI at the doses shown. Nine patients (7 from HLA-identical and 2 from HLA-nonidentical donors) were unable to receive ATG and were conditioned with CY and TBI only.
Figure 2: Survival by TBI dose in patients who were able to receive ATG. Shown separately are patients with HLA-identical (A) and HLA-nonidentical donors (B). Results with TBI doses of 400 cGy and 600 cGy were pooled.
Figure 3: Impact of patient age on survival among patients conditioned with CY/ATG/TBI and transplanted from HLA-identical donors. (A) Five-year survival among 33 patients ≤20 years of age was 73% compared to 46% among 22 patients >20 years of age (p=0.05). (B) Among patients conditioned with 200 cGy of TBI, the survival figures were 78% and 50% for patients ≤20 and >20 years old, respectively. (C) Survival among 23 patients 20 years of age or younger, conditioned with 200 cGy of TBI, with disease duration ≤1 year (70%) or >1 year (85%).
Optimization of Conditioning for Marrow Transplantation from Unrelated Donors for Patients with Aplastic Anemia After Failure of Immunosuppressive Therapy

H Joachim Deeg, Margaret O'Donnell, Jakub Tolar, Rajni Agarwal, Richard E. Harris, Stephen Feig, Mary C. Territo, Robert H. Collins, Peter A. McSweeney, Edward A. Copelan, Shakila P. Khan, Ann Woolfrey and Barry Storer