Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors

Meili Zhang¹, Zhengsheng Yao¹, Zhuo Zhang¹, Kayhan Garmestani¹, Carolyn K. Goldman¹, Jeffrey V. Ravetch³, John Janik¹, Martin W. Brechbiel² and Thomas A. Waldmann¹.

¹Metabolism Branch, ²Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 and ³Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021

Running title: FcR not required for anti-CD30 antitumor efficacy
Key words: Fcγ receptor, immunotherapy, monoclonal antibody, CD30, ALCL lymphoma

Corresponding author:
Thomas A Waldmann
Metabolism Branch, NCI, NIH
Bldg 10, Room 4N115
10 Center Drive
Bethesda, MD 20892-1374
Tel: 301-496-6656; Fax: 301-496-9956
E-mail: tawald@helix.nih.gov

Author contributions
M. Zhang, designed and performed the research, analysed the data, and wrote the paper;
Z. Yao, performed the research, reviewed and revised the paper;
Z. Zhang, performed the research;
K. Garmestani, performed the research;
C. K. Goldman, contributed to design of the research, reviewed and revised the paper;
J. V. Ravetch, provided SCID/NOD Fcγ⁻/⁻ mice, reviewed and revised the paper;
J. Janik, contributed to the design of the research, reviewed and revised the paper;
M. W. Brechbiel, contributed to design of the research, reviewed and revised the paper;
T. A. Waldmann, designed the research and wrote the paper.

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Copyright © 2006 American Society of Hematology
Abstract

CD30 is a member of the tumor necrosis factor receptor family. Overexpression of CD30 on some neoplasms versus its limited expression on normal tissues makes this receptor a promising target for antibody-based therapy. Anaplastic large cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin’s lymphomas characterized by the strong expression of CD30. We investigated the therapeutic efficacy of HeFi-1, a mouse IgG1 monoclonal antibody, which recognizes the ligand-binding site on CD30, and humanized anti-Tac antibody (daclizumab), which recognizes CD25, in a murine model of human ALCL. The ALCL model was established by intravenous injection of karpas299 cells into nonobese diabetic/severe combined immunodeficient (SCID/NOD) wild type or SCID/NOD Fc receptor common γ chain deficient (FcRγ−/−) mice. HeFi-1, given at 100 µg weekly for 4 weeks, significantly prolonged survival of the ALCL bearing SCID/NOD wild type and SCID/NOD FcRγ−/− mice (p<0.01) as compared with the control groups. In vitro studies showed that HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit the cell proliferation. We demonstrated that the expression of FcRγ on polymorphonuclear leukocytes and monocytes was not required for HeFi-1 mediated tumor growth inhibition in vivo, although it was required for daclizumab.
Introduction

CD30 is a member of the tumor necrosis factor receptor family, which includes TNF-R1, TNF-R2, Fas-R, CD40, CD27 and TRAIL-R. Increased expression of CD30 is observed on some neoplasms including Hodgkin’s disease, anaplastic large cell lymphoma (ALCL), mediastinal B-cell lymphoma, embryonal carcinoma, seminoma and mesothelioma. In contrast, its expression in normal tissues is limited to activated T-cells, activated B-cells, select thymocytes, and some vascular beds. This expression on neoplasmas versus its limited expression on normal tissues makes it a promising target for antibody-based therapy.

HeFi-1 is a murine IgG1, which recognizes the ligand-binding site on CD30. Anaplastic large cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin’s lymphomas characterized by the strong expression of CD30 and a frequent involvement of the t(2;5) chromosomal translocation. Despite responsiveness to chemotherapy, approximately one-third of the patients with ALCL die regardless of intensive chemotherapy. Thus, alternative clinical approaches need to be developed. Anti-CD30 antibody-based immunotherapy has been investigated in vitro and in vivo. CD30 mediated signal transduction is capable of promoting cell proliferation and cell survival as well as antiproliferative effects and cell death depending on cell type and co-stimulatory effects. CD30 activation was reported to induce cell growth inhibition and apoptosis with some but not all ALCL cells. In particular, the treatment of ALCL-derived cell lines, karpas299 and Michel, with two antibodies (M44, HeFi-1), that recognize the ligand-binding site of CD30 led to a significant reduction of cell viability.
Preclinical studies showed that overall survival and disease-free survival of SCID mice bearing extensive metastases of karpas299 were significantly enhanced by anti-CD30 treatment.12

In the present study, we investigated the efficacy of HeFi-1 in a murine model of human ALCL. We were particularly interested in the mechanism underlying the inhibition of the tumor growth mediated by HeFi-1 on ALCL. The anti-CD30 monoclonal antibody, HeFi-1, unlike the anti-CD25 antibody, showed the therapeutic efficacy in an ALCL model in both nonobese diabetic/severe combined immunodeficient (SCID/NOD) wild type and SCID/NOD Fc receptor common γ chain deficient (FcRγ/-) mice, suggesting that expression of the receptor FcRγIII is not required for the effective action of this antibody in this mouse lymphoma model.
Materials and Methods

Monoclonal antibodies

HeFi-1, which is a mouse IgG1 directed toward the ligand-binding site on CD30, was provided by the Biological Response Modifiers Program, National Cancer Institute-Frederick Cancer Research Center. The humanized anti-Tac antibody (daclizumab), which recognizes CD25 (IL-2Rα), was obtained from Hoffmann-La Roche (Nutley, NJ). Murine anti-Tac (MAT), which recognizes the same epitope as daclizumab does, was produced as described previously.15,16 B3, a mouse IgG1 reacting with a carbohydrate epitope found on the Lex and the polyfucosylated-Lex antigens,17 was used as an isotype-matched control antibody that did not bind to karpas299 cells.

Tumor cell line and mouse model

Karpas299, a human anaplastic large cell lymphoma (ALCL) cell line, expresses both CD30 and CD25 on the cell surfaces. Karpas299 cells were maintained in RPMI 1640 (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated fetal bovine serum (Gemini Bio-Products, Woodland, CA), 100 U/mL penicillin and 100 μg/mL streptomycin in an atmosphere containing 5% CO2. Nonobese diabetic/severe combined immunodeficient (SCID/NOD) mice were purchased from Jackson Laboratories (Bar Harbor, ME) and SCID/NOD Fc receptor common γ chain deficient (FcRγ−/−) mice were generated in the laboratory of Jeffrey Ravetch (Rockefeller University, NY). The ALCL model was established by intravenous (i.v.) injection of 1x 10⁷ of karpas299 cells (200 µL) into SCID/NOD wild type or SCID/NOD FcRγ−/− mice. The therapy experiments were performed on the ALCL lymphoma bearing mice at day 7 after karpas299 cell injection.
All of the mice used in this study were 8-10 week-old, and the ages of the mice in the different groups in the same experiment were matched. All animal experiments were performed in accordance with National Institutes of Health Animal Care and Use Committee guidelines.

Expression of CD30 and CD25 on karpas299 cell surfaces

The expression of CD30 and CD25 on karpas299 cell surfaces was analyzed by flow cytometry. Aliquots of 1x10^6 karpas299 cells were incubated with the primary antibody, HeFi-1 or MAT or isotype control antibodies (1 µg/100 µL) on ice for 30 min. The cells were washed and then stained with a FITC-labeled goat anti-mouse IgG antibody (SouthernBiotech). After washing, the cells were analyzed for the expression of CD30 and CD25 using a FACScan flow cytometry (Becton Dickinson, San Jose, CA).

Immunoreactivity of radiolabeled HeFi-1 and daclizumab

Conjugation of HeFi-1 and daclizumab to CHX-A” was performed as previously described.\(^\text{18}\) HeFi-1-CHX-A”, daclizumab-CHX-A” and B3-CHX-A” were labeled with \(^{111}\text{In}\) at specific activities of 74-111 kBq/µg as described previously.\(^\text{19}\) For the immunoreactivity experiment, \(^{111}\text{In}-\text{HeFi-1}, \(^{111}\text{In}-\text{daclizumab or }^{111}\text{In-B3}\) (10ng/100µL) was incubated with an increasing number of karpas299 cells (1x10^4-5x10^6) with or without unlabeled HeFi-1 or daclizumab (25µg/tube) inhibition at 4°C for 1 hour. After centrifugation, the supernatant was aspirated and the radioactivity bound to the cells was quantitated in a γ counter (Wallac, Turku, Finland).
Proliferation assay

Karpas299 cells were resuspended at a concentration of 1×10^5 cells/mL. Aliquots of 1×10^4 cells were seeded in 96-well culture plates and incubated with medium alone or with antibodies at a concentration of 20 μg/mL at 37$^\circ$C. The cells were pulsed after 18 or 42 hours of culture for 6 hours with 1 μCi (0.037 MBq) $[^3]$H]thymidine. Then, the cells were harvested with a 96-well harvester (Tomtec, Hamden, CT) and counted in a β counter (Wallac, Turku, Finland). The assay was performed in triplicate on 3 occasions.

Cell cycle analysis

Karpas299 cells were collected and washed with PBS containing 1% bovine serum albumin (PBS/BSA) and 0.02% sodium azide after incubation with medium alone or with antibodies (20 μg/mL) for 48 hours in 6-well culture plates (4x105 cells/4 mL/well). The cells were fixed with 70% ethanol on ice for 20 minutes. The cells then were incubated with 100 μL (50 μg/mL) of DNase-free RNase (Roche Applied Science, Indianapolis, IN) at 37$^\circ$C for 30 minutes and stained with 300 μL (50 μg/mL) propidium iodide (Roche Applied Science). The DNA content was measured by a FACScan flow cytometer (Becton Dickinson, San Jose, CA) and the cell cycle analysis was performed using Modfit software (Verity, Topsham, ME).

Therapy study

For the evaluation of therapeutic efficacy of the anti-CD30 antibody, HeFi-1, and the anti-CD25 antibody, daclizumab, groups of karpas299 lymphoma bearing SCID/NOD wild type mice were injected with 100 μg of HeFi-1, daclizumab, or 200 μL of PBS i.v.
weekly for 4 weeks. To define the mechanism of action of the antibodies, the second therapeutic study was performed in karpas299 bearing SCID/NOD wild type and SCID/NOD FcRγ−/− mice using the same dose schedule as that used in the first experiment. Throughout the experiment, the tumor progression was monitored by body weight and/or Kaplan Meier analysis of survival of the karpas299 bearing mice. We repeated the therapeutic study once using HeFi-1 and daclizumab at the same dose schedule and with the same tumor model in both SCID/NOD wild type and SCID/NOD FcRγ−/− mice.

Measurement of the ALCL lymphoma growth

The growth of the ALCL lymphoma was confirmed by pathologic examination (Pathology Laboratory, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD). It was reported that there were elevated serum sIL-2Rα levels in patients with ALCL and the sIL-2Rα levels correlated well with serum soluble CD30 which were associated with a worse outcome. Karpas299 cells are CD25 positive and serum sIL-2Rα levels of the karpas299 bearing mice may serve as a surrogate marker of the tumor burden. Measurements of the serum concentrations of sIL-2Rα and/or soluble human β-2-microglobulin (β2μ) were performed using an enzyme-linked immunosorbent assay (ELISA). The ELISA kits were purchased from R&D System (Minneapolis, MN). The ELISAs were performed as indicated in the manufacturer’s kit inserts. The body weight and/or survival of the karpas299 lymphoma bearing mice were monitored throughout the experiments.
Statistical analysis

The serum levels of sIL-2Rα and the body weight of the karpas299 lymphoma bearing mice were analyzed at different time points for the different treatment groups using the Student’s t-test for unpaired data. Statistical significance of differences in survival of the mice in different groups was determined by the log-rank test using StatView program (Abacus Concepts Inc., Berkeley, CA).
Results

Immunoreactivity of radiolabeled HeFi-1 and daclizumab

HeFi-1 and daclizumab target distinct receptors, CD30 and CD25, respectively, that are expressed on the karpas299 cell surfaces (Fig. 1A). Both 111In-HeFi-1 and 111In-daclizumab bound to karpas299 cells specifically with a maximum binding of more than 90% of the added radiolabeled antibody (Fig. 1B).

Antiproliferation effect of HeFi-1

Karpas299 cells were treated with medium alone or with the antibodies at a concentration of 20 μg/mL for 48 hours. HeFi-1 inhibited the proliferation of the cells by 40% when compared with cells treated with medium alone or the isotype control, B3 antibody, whereas daclizumab did not inhibit the proliferation of the cells (Fig. 2A).

HeFi-1 mediated cell cycle arrest

To examine which mechanism plays a major role in inhibiting the proliferation of karpas299 cells, the cells were treated with the antibodies for 48 hours and then apoptosis and cell cycle analyses were performed. HeFi-1 inhibited the cell growth mainly by causing cell cycle arrest at G1 phase (Fig. 2B). In contrast, daclizumab did not show any affect on the cell cycle (Fig. 2B).

ALCL Lymphoma model

SCID/NOD mice were used to establish this model because the mice lack functional B, T, and NK cells. After i.v. injection of 1×10^7 karpas299 cells, the animals began to die
around 4 weeks and all of the karpas299 bearing mice succumbed to the lymphoma within 2 months (Fig.3A). Autopsy showed that numerous tumor nodules developed around the neck and head, as well as some in the peritoneal cavity and some of the mice developed tumors in eyes and cranium. Pathologic examination showed that there was widespread tissue distribution of the lymphoma including bone marrow, lymph nodes, brain, kidney, eye, as well as cranium. The body weight of the karpas299 lymphoma bearing mice decreased with disease progression (Fig.3B). Although the serum levels of sIL-2Rα and β2μ were not detectable at an early stage of disease, these increased over time (Fig. 3C) and reached levels of 25,000-300,000 pm/mL and 1-10 ng/mL, respectively, immediately before death (Fig.3D).

Therapeutic study with HeFi-1 and daclizumab

In the therapeutic study, HeFi-1 or daclizumab was injected i.v. weekly for 4 weeks at a dose of 100 μg. Therapeutic effects in SCID/NOD wild type mice bearing karpas299 lymphoma were demonstrated by their effects on the serum levels of sIL-2Rα (Fig.4A), a surrogate tumor marker which was indicative of the tumor load of karpas299 lymphoma in the murine model and by the survival of the lymphoma bearing mice (Fig.4B). When compared with the serum concentration of sIL-2Rα in the control group, on day 21 after therapy, there was a reduction of sIL-2Rα levels in the daclizumab treatment group, although it did not achieve statistical significance (Fig.4A). In addition, there was a significant reduction of sIL-2Rα levels in the HeFi-1 treatment group (Fig.4A, p<0.001). Furthermore, there was a significant prolongation of the survival of the mice in the treatment groups receiving ether HeFi-1 or daclizumab when compared with that in the
control group (Fig. 4B, p<0.05). The mean survival duration of the control group was 37.2 days whereas it was prolonged to 42.9 days in the daclizumab group and 50.5 days in the HeFi-1 group (Fig. 4B).

FcRγ expression is required for effective action of daclizumab, but not for that of HeFi-1

Both HeFi-1 and daclizumab demonstrated therapeutic efficacy in the karpas299 lymphoma model, although HeFi-1 was more effective than daclizumab (Fig. 4A & 4B). To define the mechanism of action of the antibodies, another therapeutic study was performed in the karpas299 bearing SCID/NOD wild type and SCID/NOD FcRγ−/− mice to determine whether Fc-dependent cellular cytotoxicity is involved in the mechanism of the tumor killing by HeFi-1 and daclizumab. The therapeutic efficacy of daclizumab in the lymphoma bearing SCID/NOD wild type mice was repeated. Daclizumab, given i.v. weekly for 4 weeks at a dose of 100 μg, prolonged the survival of the karpas299 lymphoma bearing SCID/NOD wild type mice significantly as compared with the control group (Fig. 5A, p<0.01). The mean survival duration of the control group was 26.2 days whereas it was prolonged to 34.4 days in the daclizumab group. However, the daclizumab, given at the same dose schedule as that in the karpas299 lymphoma bearing SCID/NOD wild type mice, did not show any therapeutic efficacy in SCID/NOD FcRγ−/− mice bearing the same quantity of the karpas299 cells. There were no statistical differences in the survival and the body weight of the mice observed between the daclizumab treatment group and the control group in SCID/NOD FcRγ−/− mice bearing karpas299 lymphoma (Fig. 5B & 6B). In contrast, HeFi-1 showed therapeutic efficacy in
both SCID/NOD wild type and SCID/NOD FcRγ−/− mice bearing karpas299 lymphoma as seen by the survival (Fig. 5A & 5B) and the body weight (Fig.6A & 6B)). There were significant differences of the body weight between the HeFi-1 treatment group and the control group in both SCID/NOD wild type and SCID/NOD FcRγ−/− mice bearing karpas299 lymphoma (Fig.6A & 6B, p<0.001). Furthermore, there were significant prolongations of survival of both SCID/NOD wild type and SCID/NOD FcRγ−/− mice bearing karpas299 lymphoma in HeFi-1 treatment groups when compared with those in the control groups (Fig.5A & 5B, p<0.01). The mean survival durations of the control groups were 26.2 and 26.1 days in SCID/NOD wild type and SCID/NOD FcRγ−/− mice, respectively, whereas they were prolonged to 40.9 and 33.4 days in the HeFi-1 treatment groups. Similar results were observed in a repeat therapeutic study. The results of a pharmacokinetic study (data not shown) that indicated comparable monoclonal antibody survivals in both SCID/NOD wild type and SCID/NOD FcRγ−/− mice excluded a contribution, provided by different concentrations of the antibodies in the blood to any different therapeutic efficacies observed with SCID/NOD wild type mice as compared to SCID/NOD FcRγ−/− mice. Thus, FcRγ expression is required for effective action of daclizumab, but not for that of HeFi-1 in this ALCL model.
Discussion

Passive immunotherapies using monoclonal antibodies have manifested great success with 19 therapeutic monoclonal antibodies approved by the FDA including 8 directed toward the treatment of cancer.21-23 A diverse array of strategies and cellular targets of antibody action have been employed in patients with cancer.24-26 Cellular targets of monoclonal antibody action include the tumor cells themselves, tumor vasculature as well as an array of host negative immunoregulatory cellular elements (checkpoints). The mechanisms of action of antibodies directed toward the tumor cells themselves include activation of death pathways within the tumor cells, complement mediated cell killing, antibody mediated delivery of cytotoxic agents to the tumor cells as well as antibody dependent cellular cytotoxicity (ADCC).

The present study was focused on the mechanism underlying the inhibition of the tumor cell growth mediated by the anti-CD30 monoclonal antibody, HeFi-1, in a murine model of ALCL. A major focus of the study was on the requirement for the expression of the FcR\textsubscript{γIII} receptor. ADCC mediated target cell killing requiring the expression of FcR\textsubscript{γIII} that involves the redirection of host cytotoxic mononuclear cells to the tumor plays a major role in the action of many monoclonal antibodies in murine tumor model systems.27-31 In particular, Clynes, Ravetch and coworkers using FcR\textsubscript{γ\textasciitilde} mice, that do not express FcR\textsubscript{γIII}, the stimulatory Fc receptor, demonstrated that the efficacy of an antibody directed toward malignant melanoma cells was greatly diminished in such Fc receptor deficient mice.27 Similarly, they showed that FcR\textsubscript{γIII} is required for the optimal actions of trastuzumab in the treatment of a HER-2/neu expressing breast tumor and of
rituximab in the treatment of a CD20 expressing B-cell lymphoma in murine models.28 Recently, they defined another common γ chain-dependent activating Fc receptor, FcγRIV to which murine IgG2a and IgG2b bound with intermediate affinity.32 In contrast, murine IgG1 did not bind to this receptor. Human IgG1 preferentially bound to mouse FcγRIV, in addition to binding to mouse FcγRIII, accounting for its FcγR-dependent action in vivo.32 We have demonstrated the requirement for FcγR expression in the action of the CD25 directed monoclonal antibodies daclizumab, murine anti-Tac and 7G7/B6, the CD52 directed monoclonal antibody CAMPATH-I and the CD2 directed monoclonal antibody MEDI-507, in a murine model of human adult T-cell leukemia.29-31 In contrast, Clynes, Ravetch and coworkers demonstrated that the disruption of the gene that encodes the inhibitory FcRIIγB-Ig binding receptor substantially enhanced antitumor activity.28 In contrast to these observations with other monoclonal antibodies, active therapy of the karpas299 ALCL model mediated by the anti-CD30 monoclonal antibody, HeFi-1 did not require FcRγIII expression. In particular, we demonstrated significant inhibition of tumor growth as monitored by the survival of karpas299 ALCL bearing mice in both SCID/NOD wild type and SCID/NOD FcR$\gamma$$^{-/-}$ mice. These results taken in conjunction with our observation in vitro of a direct antiproliferative and anti-cell cycle progression action supports the view that the anti-CD30 monoclonal antibody observed with karpas299 ALCL cells represented a direct action on the tumor cells themselves.

In previous studies as well as the present study, HeFi-1 was effective in the treatment of mice bearing the karpas299 ALCL.12 However, quite diverse responses have been noted with other anti-CD30 antibodies and with other tumor cell lines.10,12-14 Effective therapy
has been limited to anti-CD30 monoclonal antibodies such as HeFi-1 that interact with the CD30 ligand binding site10-12 and was not observed with the antibodies such as Ber-H2 that interact with a non-binding site of CD30.12 Furthermore, monoclonal antibodies, which recognize the ligand-binding site on CD30, have been ineffective in the therapy of certain other CD30 expressing tumors especially those of Hodgkin’s disease.10 Since HeFi-1 action on karpas299 cells did not require the expression of FcR\textsubscript{γIII}, an alternate direct action on the tumor cells must be sought. There is considerable controversy in the literature concerning the mechanism of action of anti-CD30 antibodies with the focus on either apoptotic cell death of ALCL cells or alternatively on an inhibition of cell cycle progression. Duckett and coworkers reported that anti-CD30 treatment leads to the apoptotic cell death of karpas299 cells.10,33 By way of background they indicated that TNF acting through TNF-R1 can either induce apoptosis through the action of FADD or alternatively promote survival through TNF receptor associated factor (TRAF) recruitment and NF-kB induction. They provide evidence indicating that CD30 directed therapy of ALCL cells led to the selective reduction of TRAF-2 and the impairment of the ability of these cells to activate the prosurvival NF-kB. In contrast, Hodgkin’s disease cells which constitutively express NF-kB in the nucleus were not susceptible to anti-CD30 induced apoptosis but could be sensitized following inhibition of NF-kB.10 These studies suggested that NF-kB plays a determining role in the sensitivity or resistance of lymphoma cells to CD30 induced apoptosis.10

Tian and coworkers also indicated that anti-tumor effects of unconjugated HeFi-1 involved apoptosis of the target ALCL cells.12 However, Schneider and coworkers provide an alternative perspective.14 They reported that the activation of CD30 did not
lead to the cleavage of pro-Caspase-3 and that in all examined cells and cell lines cell
death was not mediated by anti-CD30. However in the cell lines where growth was
inhibited, this restrained cell growth was accompanied by the expression of the cell cycle
inhibitor p21WAF1/CIP1 and that the P38 MAP kinase was involved in the anti-CD30
mediated events.14 The discrepancies between studies may reflect differences in the
antibodies used or in the sublines of the CD30-positive cells examined and reflect the
more general pleiotropic effects of CD30 activation. Taken as a whole, the studies
suggest that in select cases unmodified anti-CD30 monoclonal antibodies might provide
effective therapy for patients especially in those with CD30 expressing ALCL.

Nevertheless, in the majority of cases especially those with Hodgkin’s lymphoma such an
approach would not be effective. In such cases, alternative strategies would be required to
take advantage of the contrasting expressions of CD30 between an array of tumor cells
where it is strongly expressed and normal tissues where expression is limited. Such CD30
directed approaches include monoclonal antibody single-chain Fv-toxin conjugates as
well as anti-CD30 monoclonal antibodies armed with radionuclides.1,34-36

In conclusion, in the present study it was demonstrated that the agonist action of the anti-
CD30 monoclonal antibody, HeFi-1, inhibited the growth of karpas299 cells in vitro and
in vivo unlike the anti-CD25 monoclonal antibody, daclizumab, which inhibited the
growth of karpas299 cells only in vivo. Furthermore, we demonstrated the therapeutic
efficacy of daclizumab only in the karpas299 bearing SCID/NOD wild type mice not in
the karpas299 bearing SCID/NOD FcR\gamma−/− mice, results comparable to those of the
antibody in the MET-I (an adult T-cell leukemia) model system.29 However, we
demonstrated the therapeutic efficacy of HeFi-1 in the ALCL model in both SCID/NOD wild type and SCID/NOD FcRγγ-/- mice suggesting that in contrast to an array of other monoclonal antibodies in murine tumor model systems,27-31 the expression of the receptor FcRγIII was not required for the effective action of HeFi-1 in this mouse ALCL model.
Figure legends

Figure 1. **Expression of CD30 and CD25 on karpas299 cell surfaces evaluated by flow cytometric analysis (A) and immunoreactivities of 111In-HeFi-1 and 111In-daclizumab with karpas299 cells (B).** Karpas299 cells strongly express both CD30 and CD25 on the cell surfaces. Both 111In-HeFi-1 and 111In-daclizumab bound to karpas299 cells specifically with maximum binding percentage more than 90%. 111In-B3 did not bind to karpas299 cells. Both experiments were repeated once.

Figure 2. **The effect of HeFi-1 and daclizumab on the proliferation and cell cycle of karpas299 cells in vitro.** (A). Karpas299 cells were incubated with medium alone or with antibodies (20 μg/mL) at 37°C for 42 hours, and pulsed with 1 μCi (0.037 MBq) $[^3]$H]thymidine for 6 hours. Then, the cells were harvested and counted. The data represent mean±SD of triplicates and are representative of 3 experiments. HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit the proliferation. (B). The cells were harvested for flow cytometric analysis after incubating with medium alone or with antibodies (20 μg/mL) for 48 hours. Percentage of apoptotic cells with sub-G1 DNA content (M1 phase) was indicated in the histograms, and the percentages of cells in different phases of cell cycle were analyzed using Modfit software. Similar results were obtained in 3 independent experiments. HeFi-1 caused cell cycle arrest as defined by the reduced percentage of the cells in S phase and the increased percentage in G1 phase when compared with those of the cells treated with medium alone or B3 antibody. The daclizumab did not show induction of apoptosis and cell cycle arrest.
Figure 3. **Measurement of karpas299 lymphoma growth in SCID/NOD wild type mice** (n=30). (A). Kaplan-Meier survival plot of SCID/NOD wild type mice bearing the karpas299 lymphoma. (B). Changes of the body weight of the mice (individual). (C). Average levels of serum sIL-2Rα and β2μ of the mice. (D). Individual serum sIL-2Rα, and β2μ levels immediately before death. After the i.v. infusion of 1×10^7 karpas299 cells, the mice began to die at around 4 weeks and all of the karpas299 bearing mice succumbed to the lymphoma within two months. The body weight decreased, with a few exceptions in animals which developed big subcutaneous tumors, and serum sIL-2Rα and β2μ concentrations increased as the disease progressed in the mice. The sIL-2Rα reached levels of 25,000 to 300,000 pg/mL and the β2μ reached levels of 1 to 10 ng/mL immediately before death.

Figure 4. **Therapeutic study of karpas299 lymphoma bearing SCID/NOD wild type mice with HeFi-1 and daclizumab** (n=10). (A). Serum sIL-2Rα levels in different groups at day 21 after treatment. (B). Kaplan-Meier survival plot of the mice. The animals treated with HeFi-1 at a dose of 100 μg weekly for 4 weeks had decreased serum values of sIL-2Rα (p<0.01) and prolonged survival (p<0.01) when compared with the mice in the control group. Daclizumab treatment also prolonged the survival of the mice as compared with that in the control group (p<0.05) and reduced the serum concentration of sIL-2Rα, although the difference in serum sIL-2Rα levels between daclizumab treatment group and the control group was not statistically significant at day 21.
Figure 5. Kaplan-Meier survival plot of karpas299 lymphoma bearing SCID/NOD wild type and SCID/NOD FcRγ−/− mice treated with HeFi-1 and daclizumab. (A). SCID/NOD wild type mice (n=15). (B) SCID/NOD FcRγ−/− mice (n=10-12). Treatment with daclizumab prolonged the survival of karpas299 lymphoma bearing SCID/NOD wild type mice significantly when compared with the control group (p<0.01). However, the therapeutic efficacy of daclizumab was lost in karpas299 lymphoma bearing SCID/NOD FcRγ−/− mice. In contrast, HeFi-1 showed a similar therapeutic efficacy in SCID/NOD wild type as compared to SCID/NOD FcRγ−/− mice bearing the karpas299 lymphoma. The lymphoma bearing mice in HeFi-1 treatment groups had a significantly prolonged survival when compared with the mice in the control groups (p<0.01).

Figure 6. Average changes of the body weight of karpas299 lymphoma bearing SCID/NOD wild type and SCID/NOD FcRγ−/− mice during the course of the treatment. (A). SCID/NOD wild type mice (n=15). (B). SCID/NOD FcRγ−/− mice (n=10-12). The body weight of both SCID/NOD wild type and SCID/NOD FcRγ−/− mice bearing karpas299 lymphoma in the control groups decreased rapidly after two weeks from the start of the experiment. HeFi-1 treatment delayed the decrease of the body weight of both SCID/NOD wild type and SCID/NOD FcRγ−/− mice. The daclizumab treatment slowed down the decrease of body weight of SCID/NOD wild type mice, but did not show this effect in SCID/NOD FcRγ−/− mice. *p<0.05, **p<0.01.
Reference

Figure 1

A

B

For personal use only.on October 28, 2017. By guest www.bloodjournal.org From
Figure 2

A

![Bar chart showing CPM for control, B3, HeFi, and daclizumab groups.](chart.png)
Figure 2

B

DNA Content

Counts

Control

G1 37%
S 53%
G2 10%

HeFi-1

G1 60%
S 30%
G2 10%

B3

G1 37%
S 51%
G2 12%

daclizumab

G1 37%
S 52%
G2 11%
Figure 3

A

B

C

D

Days after inoculation

No of mice surviving

% of initial body weight

% of initial body weight

sIL-2R (pg/mL)

sIL-2R (pg/mL)

Days after inoculation

sIL-2Rα

β2μ

Days after inoculation

β2μ (μg/mL)

β2μ (μg/mL)

Days after inoculation

sIL-2Rα

β2μ
Figure 4

A

![Bar graph showing sIL-2Rα (pg/ml) for Control, HeFi-1, and daclizumab groups.]

B

![Line graph showing the number of mice surviving over days after inoculation for Control, HeFi-1, and daclizumab groups.]

Figure 5

A

B
Figure 6

A

B
Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors

Meili Zhang, Zhengsheng Yao, Zhuo Zhang, Kayhan Garmestani, Carolyn K Goldman, Jeffrey V Ravetch, John Janik, Martin W Brechbiel and Thomas A Waldmann