Prognostic Significance of Bcl-6 Protein Expression in DLBCL Treated with CHOP or R-CHOP: A Prospective Correlative Study

Jane N. Winter
Edie A. Weller
Sandra J. Horning
Maryla Krajewska
Daina Variakojis
Thomas M. Habermann
Richard I. Fisher
Paul J. Kurtin
William R. Macon
Mukesh Chhanabhai
Raymond E. Felgar
Eric D. Hsi
L. Jeffrey Medeiros
James K. Weick
John C. Reed
Randy D. Gascoyne

1Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
2Dana Farber Cancer Institute, Boston, MA
3Stanford University, Stanford, CA
4Burnham Institute for Medical Research, La Jolla, CA
5Mayo Clinic College of Medicine, Rochester, MN
6James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY
7British Columbia Cancer Agency, Vancouver, Canada
8Cleveland Clinic, Cleveland, OH
9MD Anderson Cancer Center, Houston, TX
10Hematology Oncology Associates of the Palm Beaches, Lake Worth, FL
This study was conducted by the Eastern Cooperative Oncology Group (Robert L. Comis, M.D., Chair) and was supported by grants CA23318, CA66636, CA32291, CA38926, CA32102, CA04919, CA11083, CA13650, CA17145, and CA21115 from the Public Health Service, the National Cancer Institute, National Institutes of Health and the Department of Health and Human Services and Genentech. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute.

Presented at the American Society of Hematology 45th annual meeting, San Diego, CA, December 2003.
Correspondence to: Jane N. Winter, M.D., Division of Hematology/Oncology, 676 No. St. Clair St., Suite 850, Chicago, IL 60611; j-winter@northwestern.edu

Running title: Bcl-6 in DLBCL Treated with CHOP vs. R-CHOP

CLINICAL TRIALS AND OBSERVATIONS
Word Count: 5136

Individual Contributions of Authors:
Winter: designed study and supervised all aspects of the research and analysis, wrote manuscript
Weller: performed all statistical analyses, assisted in writing of manuscript
Horning: assisted in design of study, analysis of data, and writing of manuscript, ECOG Lymphoma Chair
Krajewska: assisted in design of study, supervised all immunohistochemical staining
Variakojis, Kurtin, Macon, Chhanabhai, Felgar, Hsi, Medeiros: responsible for verifying histology and scoring immunohistochemical stains
Habermann, Weick: Chair and co-chair of the clinical trial, assisted in writing of manuscript
Fisher: assisted in analysis of data and writing of manuscript, SWOG Lymphoma Chair
Reed: assisted in design of trial, provided the anti-bcl-2 reagent, supervised immunohistochemical staining, assisted in writing of manuscript
Gascoyne: supervised and participated in pathology review and immunohistochemical scoring; assisted in analysis of data and in writing of manuscript.
ABSTRACT

Bcl-6 protein expression, a marker of germinal center origin, has been associated with a favorable prognosis in diffuse large B-cell lymphoma (DLBCL). To determine the prognostic significance of this marker when rituximab (R) was added to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy, we prospectively studied bcl-6 protein expression by immunohistochemical staining of 199 paraffin-embedded specimens from patients enrolled on the US Intergroup phase III trial comparing R-CHOP to CHOP with or without maintenance R. In bcl-6 negative patients, failure-free and overall survival (FFS, OS) was prolonged for those treated with R-CHOP alone compared to CHOP alone (2-year FFS 76% vs. 9%, p=0.00007; 2-year OS 79% vs. 17%, p=0.0003). In contrast, no differences in FFS and OS were detected between treatment arms for bcl-6-positive cases. In the multivariate analysis, treatment arm (CHOP vs. R-CHOP) was the major determinant of both FFS (p=0.0004) and OS (p=0.00004) for the bcl-6-negative subset, whereas International Prognostic Index risk group was the only significant predictor of outcome among bcl-6-positive cases. Bcl-2 protein expression was not predictive of outcome in either group. In this study, we observed a reduction in treatment failures and death with the addition of R to CHOP in bcl-6 negative DLBCL cases only. Our finding that bcl-6-positive cases did not benefit from the addition of R to CHOP requires independent confirmation.
Introduction

Bcl-6 protein expression, a marker of germinal center derivation, has been identified as one of the strongest predictors of outcome in the diffuse, large B-cell lymphomas (DLBCL).1 Multiple immunohistochemical studies and analysis using quantitative RT-PCR have shown that bcl-6 protein expression alone or in combination with other germinal center markers predicts for a favorable outcome in DLBCL.2-4 Using DNA microarray techniques, a distinct gene expression profile has been associated with germinal center origin and with longer survival than other forms of DLBCL.5,6 Germinal center origin is a prognostic factor that is independent of the clinically based International Prognostic Index (IPI) risk groups.7 Nearly all studies of prognostic indicators in DLBCL, including the IPI, are based on clinical outcome following treatment with an anthracycline-containing multiagent regimen such as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). New strategies, such as the addition of rituximab (R) to combinations such as CHOP, may be associated with different biologic or clinical prognostic indicators compared to conventional chemotherapy.

In an effort to improve outcomes in patients over the age of sixty with DLBCL, the U.S. Intergroup conducted a prospective phase III trial comparing CHOP to R-CHOP, and maintenance R (MR) to observation (OBS) from February 1998 through July 2001.8 A companion trial investigating potential biologic markers of prognosis, including bcl-6 protein expression, accrued cases concomitantly. The overall objectives of the laboratory study were (1) to identify prognostic indicators in patients aged 60 or older with DLBCL, (2) to determine if biomarkers such as bcl-6 retain their prognostic significance in the context of treatment that includes R, and (3) to assess the predictive value of biologic markers in patients receiving CHOP and R-CHOP. We found that the
addition of R to CHOP eliminated the prognostic significance of bcl-6 protein expression. Our analysis shows an improved outcome in the bcl-6 negative cases treated with R-CHOP, but not among bcl-6 positive DLBCL patients who have a relatively favorable outcome when treated with conventional CHOP chemotherapy.

Patients and methods

Eligibility

ECOG or SWOG patients enrolled on the U.S. Intergroup trial (E4494, C9793, S4494) comparing CHOP versus R-CHOP, with a second randomization to maintenance R (MR) versus observation (OBS), were eligible for this prospective study if adequate paraffin-embedded biopsy tissue or unstained slides were submitted. A tissue diagnosis of untreated DLBCL confirmed by central review and classified according to the World Health Organization criteria was required. Cases with any confirmed follicular architecture were not eligible for study. In all cases, a B-cell phenotype was documented by immunohistochemistry or flow cytometry using an anti-CD20 antibody. Transformed lymphomas and HIV-associated lymphomas were excluded from this trial. All participants signed informed consent documents approved by the institutional review board at each participating site. This analysis includes all cases for which material was submitted for bcl-6 staining.

Clinical trial

In this Intergroup trial, patients 60 years of age or older were stratified by the number of IPI risk factors and randomized to treatment with 6-8 cycles of CHOP chemotherapy with or without R as previously described. Induction R was administered at a dose of 375 mg/m² days –7, and –3, and 48-72 hours before the third, fifth, and seventh cycles.
Complete or partial responders (n = 415) were again stratified according to their initial IPI scores and randomized to either OBS or MR administered weekly for 4 consecutive weeks every six months for a total of four cycles.

Immunohistochemical studies

Five micron sections for routine staining with hematoxylin and eosin were obtained from each tissue specimen to demonstrate the presence of lymphoma within the material to be studied. Immunohistochemical staining of five micron tissue sections was performed as previously described using heat-induced antigen retrieval. Sections were deparaffinized, dehydrated and stained with either immune sera or commercially provided monoclonal antibody. Polyclonal antiser (AR-1) raised in rabbits against synthetic peptides corresponding to amino acids 41-54 of the human bcl-2 protein were used to evaluate bcl-2 expression. Expression of the germinal center related protein bcl-6 was evaluated using the commercially available reagent from DakoCytomation.

Pathology review

To confirm a diagnosis of DLBCL and to exclude cases with follicular components, all cases underwent tertiary review by at least two members of the seven member panel of expert hematopathologists. In the event of discordant opinions, a consensus review by the panel or a third reviewer determined eligibility. Immunohistochemical stains were also reviewed by at least two members of the panel, and disagreements settled by review by the panel or a third reviewer. Cases were scored as entirely negative, 1-9%, 10-20%, 21-50% and greater than 50% positive. Two cut-points were investigated for
each marker. For purposes of this analysis, cases in which greater than fifty percent of lymphoma cells stained with anti-bcl-2 were called “bcl-2 positive” consistent with the published literature.2,11 For bcl-6, any definitive staining of large, neoplastic cells was considered positive.

Statistical plan

Patient characteristics were compared between groups using the Fisher exact test and Wilcoxon rank-sum test. Failure free survival (FFS) was defined as the time from randomization to relapse, non-protocol treatment, or death. Overall survival (OS) was measured from randomization to death from any cause. FFS and OS were estimated using the Kaplan and Meier method.12 The prognostic value of biomarkers for response (CR+PR), FFS and OS was evaluated for all patients and by induction and maintenance therapy using univariate (Fisher’s exact test, log-rank) and multivariate (Cox proportional hazard regression models) analyses. The multivariate analysis controlled for the effect of the IPI (low/low-intermediate vs high intermediate/high) and bcl-2 status. Similar methods were used to compare the outcomes for CHOP versus R-CHOP by bcl-6 expression to evaluate the predictive value of the markers. Adjustments were made for the evaluation of multiple markers and cut-points in the univariate analyses with p-values less than or equal to 0.0055 considered statistically significant (n=9).13 For analyses with small numbers of patients, non-significance may result from limited power, especially for those who did not express bcl-6. All p-values were based on two-sided tests.
Analysis of the association between bcl-6 expression and FFS/OS was complicated by a significant interaction between induction therapy and MR (HR=2.10, 95% confidence interval (CI) [1.01,4.36], p=0.05) in that MR improved the outcome after CHOP but not after R-CHOP. To compare induction treatments without the confounding effect of maintenance, analyses cannot simply exclude all MR patients because the proportion of non-responders relative to the whole population would be higher and therefore underestimate FFS and OS. As in our report of the Intergroup trial, an unbiased estimate was achieved by applying an approach (weighted Cox regression) that approximately doubled the information for patients randomized to observation. As previously described for weighted Cox regression, the robust variance estimator provides a proper estimate of the variance of the relative risk estimate in this setting and can be implemented using the S-Plus function coxph. The concept of using a weighted analysis to remove the bias that can result from analyzing only a subset of the patients in two-stage randomized designs is consistent with previously proposed methods for the missing data problem. The results from the weighted Cox regression are denoted in this paper as the analyses removing the effect of MR.
Results

Bcl-6 protein expression and baseline characteristics

The Intergroup clinical trial accrued 632 patients including 544 with complete IPI data. Of the 387 cases from the participating cooperative groups (ECOG and SWOG), 211 were eligible for this prospective correlative study. All had a confirmed diagnosis of DLBCL with adequate material for study, provided consent for this correlative study, and had satisfied the eligibility criteria of the Intergroup protocol. Insufficient material was the major reason for exclusions; either material was not submitted for this correlative trial or was insufficient when reviewed by our pathology panel. Twelve additional cases were excluded because staining for bcl-6 was not interpretable leaving 199 patients in the final analysis. Bcl-6 was scored positive in 154 (77%) of the 199 cases. In 45% of cases, more than half of the large neoplastic cells stained positively for bcl-6. A minority (16%) of cases stained for bcl-6 in 20% or less of the malignant lymphocytes.

Patient characteristics in this correlative study were representative of the larger Intergroup clinical trial population (Table 1). The only difference was that a somewhat greater proportion of patients in the laboratory study population had stage III-IV disease relative to the larger group (80% vs 74%, p=0.05). When the bcl-6-positive and bcl-6-negative subgroups were compared, no differences were detected in the distribution of patient characteristics including IPI score (63% vs 64% HI/High IPI, p=0.9; 55% vs 58% HI/High age-adjusted IPI, p=0.4), performance status (15% vs 13% with PS>1, p=0.9), stage of disease (81% vs 78% with stage III-IV disease, p=0.7), lactate dehydrogenase (LDH; 60% vs 71% with elevated LDH, p=0.2), and number of extranodal sites (31% vs 24% with >1 extranodal site involved, p=0.5)
Similar percentages of patients in the CHOP (74%) and R-CHOP (80%) arms were bcl-6 positive. Patient characteristics including IPI scores were balanced between the treatment arms (Table 1). Similarly, no significant differences in patient characteristics were observed according to treatment with R-CHOP or CHOP by bcl-6 status. Although a higher, but not statistically significant, percentage of bcl-6-negative patients treated with CHOP had HI/H IPI scores relative to those treated with R-CHOP, the age-adjusted IPI scores were distributed equally.

Bcl-6 expression and clinical outcome

With a median follow-up of 3.4 years, the estimated clinical outcomes at 2 years favored bcl-6-positive patients. The 2 year FFS estimates (+ standard errors) were 63% ± 4% for bcl-6-positive versus 54% ± 8% for bcl-6-negative patients (p=0.05). For OS, the estimates were 74% ± 4% for bcl-6-positive versus 58% ± 7% for bcl-6-negative patients (p=0.04). Overall response rates (CR/PR) were not different according to bcl-6-positive and bcl-6-negative status (79% vs 82%, p=0.68).

Table 2 shows outcome according to bcl-6 expression and induction treatment with CHOP and R-CHOP. Response rates, according to bcl-6-positive and bcl-6-negative status, were similar within the CHOP subgroup (75% vs 79%, p=0.8) and within the R-CHOP subgroup (81% vs 86%, p=0.8). In contrast, the prognostic value of bcl-6 expression for FFS and OS differed by induction treatment. For patients treated with CHOP, the 2-year estimated FFS and OS were superior for bcl-6-positive patients relative to bcl-6-negative patients (FFS: 61% vs. 38%, p=0.004; and OS: 73% vs 42%,
For patients who received R-CHOP, the 2-year estimates for FFS and OS were not influenced by bcl-6 status (FFS: 64% vs 75%, p=0.6; OS: 74% vs 76%, p=0.7).

We conducted a secondary analysis (see Methods) to eliminate the beneficial effect of maintenance rituximab after CHOP observed in the Intergroup clinical trial. The differences in prognostic significance of bcl-6 status according to treatment were even more pronounced when maintenance rituximab patients were excluded (Table 2, Figure 1). When outcomes for bcl-6-positive and bcl-6-negative cases were compared, significantly longer FFS (54% vs 9%, p=0.00001) and OS (77% vs 17%, p=0.000004) were observed for bcl-6 positive patients who received CHOP, whereas neither FFS (58% vs 76%, p=0.2) nor OS (71% vs 79%, p=0.2) were influenced by bcl-6 status among patients treated with R-CHOP.

Bcl-2 expression was also determined in this correlative laboratory study. Consistent with the literature, 59% of the 189 cases that were analyzed for bcl-2 were scored as positive (>50% malignant lymphocytes). Comparing bcl-2-positive and bcl-2-negative subgroups, there were marginal differences in the percentages of patients with elevated LDH (57% vs 72%; p=0.05), HI/High IPI (60% vs 72%; p=0.09) and HI/High age-adjusted IPI (51% vs 64%; p=0.07). In patients treated with CHOP or R-CHOP, no significant differences in patient characteristics were observed when analyzed according to bcl-2 status, with the exception of a marginally higher percentage of bcl-2 negative patients with elevated LDH among the group treated with CHOP compared to R-CHOP (82% vs. 64%, p=0.1). More specifically, comparing patients treated with CHOP and R-CHOP according to bcl-2 positive and negative status, respectively, there were no differences for the following patient characteristics: median age (p=0.9; p=0.9), stage III-IV (p=0.9; p=0.9), performance status >1 (p=0.2; p=0.8), more than one extranodal site
and bone marrow involvement (p=0.9; p=0.8). Similarly, comparing patients treated with CHOP and R-CHOP, respectively, there were no differences in distribution across IPI risk groups as follows: HI/High IPI (bcl-2-positive: 57% vs 61%, p=0.7; bcl-2-negative: 79% vs 67%, p=0.3), and HI/High Age-adjusted IPI (bcl-2-positive: 46% vs 54%, p=0.5; bcl-2-negative: 73% vs 58%, p=0.2). No differences in response rates (p=0.9), FFS (p=0.3) or OS (p=0.9) were noted according to bcl-2 expression. Similarly, when analyzed according to treatment arm there were no differences in objective response rates between bcl-2-positive and bcl-2-negative cases (CHOP, p=0.6; R-CHOP, p=0.9). Bcl-2 status did not influence FFS or OS according to treatment arm whether the analysis included or excluded the maintenance rituximab patients (FFS: CHOP, p=0.9 and 0.9, with and without MR, respectively, R-CHOP, p=0.1 and 0.2, respectively; OS: CHOP, p=0.4 and 0.6, respectively, R-CHOP, p=0.3 and 0.3, respectively). Nonetheless, bcl-2 expression was included in the multivariate analyses based on observations in other studies.

Table 3 shows the relative risk (RR) estimates from the multivariate analysis by treatment. A significant interaction between bcl-6 expression and treatment was observed after adjusting for IPI and bcl-2 expression (FFS p=0.001, OS p=0.00007). Among patients treated with CHOP, bcl-6 status was the major determinant of FFS (RR=0.2, p=0.000003) and death (RR=0.2, p=0.000002). In contrast, for R-CHOP patients, bcl-6 status was not a determinant of outcome, whereas IPI significantly influenced the risks for FFS (RR=7.1, p=0.0008) and OS (RR=26, p=0.002).

To investigate the predictive value of bcl-6 protein expression, we looked at outcomes for bcl-6 positive and bcl-6 negative cases according to induction therapy as described. Bcl-6 positive patients had similar outcomes after CHOP compared to R-CHOP (p=0.7
for FFS and p=0.4 for OS) whereas bcl-6-negative patients had significantly inferior outcomes with CHOP alone (p=0.02 for FFS and p=0.03 for OS). When maintenance R patients were excluded using the weighted analysis, there was no difference in outcomes between induction arms for bcl-6-positive cases (p=0.8 for FFS and p=0.1 for OS). In contrast, the effect of adding R to induction therapy for bcl-6-negative cases was more pronounced in the weighted analysis excluding maintenance R patients (Figure 2). For bcl-6-negative patients, estimated 2 year FFS was 9% ± 6% after CHOP compared to 76% ± 9% after R-CHOP, p=0.00007 and OS was 17% ± 8% after CHOP compared to 79% ± 8%, after R-CHOP, p=0.00003. In sum, the adverse effect of bcl-6-negative status for patients treated with CHOP was not seen with R-CHOP, suggesting that rituximab prevented treatment failures in this subgroup.

Because this study was stratified by IPI and not by bcl-6 status, a multivariate analysis was also performed to evaluate the effect of treatment controlling for bcl-6 expression, bcl-2 expression and IPI. Relative risk estimates are shown in Table 4 by bcl-6 status. Among bcl-6-positive patients, the estimated relative risks for FFS and OS do not differ (p=0.68 and 0.11, respectively) by treatment but IPI is highly significant (p=0.004 and 0.002, respectively). Among bcl-6-negative patients, the risks of failure (RR=0.1, p=0.0004) and death (RR=0.1, p=0.00004) are significantly lower for R-CHOP patients.

Outcomes in this study according to the second randomization (maintenance rituximab versus observation) and bcl-6 expression were also evaluated but the power to detect differences was limited by small numbers with just 14 maintenance rituximab and 20 observation patients in the bcl-6-negative subgroup (Table 5). At two years from maintenance randomization, no differences were observed in either FFS or OS according to bcl-6 status in either the maintenance rituximab or observation subgroups.
When further evaluated by induction treatment, significant differences according to bcl-6 status were detected in these analyses with limited power only among the cases treated with CHOP followed by observation. In patients treated with CHOP and then randomized to observation, bcl-6-negative status (n=8) conferred an inferior estimated FFS (p<0.0001) and OS (p<0.0001) compared to bcl-6 positive cases (n=22).
Discussion

Consistent with prior reports, we found that bcl-6 protein expression is a powerful predictor of outcome in patients with DLBCL treated with CHOP chemotherapy. In contrast, bcl-6 status was not a prognostic marker among patients treated with R-CHOP in this U.S. Intergroup trial. The addition of R to conventional CHOP chemotherapy, either as induction or maintenance, has now been shown to improve outcome in patients with DLBCL. Our findings suggest that this improvement in outcome may be primarily due to the beneficial effect of R added to CHOP in the bcl-6 negative subset of DLBCL.

The Bcl-6 proto-oncogene encodes a transcriptional repressor that is required for germinal center formation. Emerging data suggest that the normal function of Bcl-6 in germinal center B-cells (GCB) is to facilitate somatic hypermutation, a process that generates antibody diversity and increases antigen affinity by suppression of p53-mediated apoptosis in response to double-stranded DNA breakage. Down-regulation of Bcl-6 may be necessary for normal GCB to differentiate to memory B cells or plasma cells. Constitutive expression of Bcl-6 as a result of translocation, mutation or other mechanisms may contribute to lymphomagenesis through maturation arrest and a pathological expansion of GCB.

Several groups have reported that bcl-6 protein expression alone or in combination with other germinal center markers predicts for a favorable outcome in DLBCL treated with anthracycline-containing chemotherapy. The frequency of bcl-6 positive cases differs in reported series; the frequency in this trial (77%) is higher than that reported previously by Hans et al. (56%) and is more consistent with the frequency reported by Colomo et al.
(72%) and Lossos et al. (63%).1,3,27 Such differences may represent the underlying patient population as well as technical factors related to staining, interpretation and scoring of positive results. The apparently less favorable outcome of bcl-6 negative patients treated with CHOP in our series, when compared to those of Lossos and Hans, can be explained by the more advanced age of our patients and the greater percentage of cases with advanced stage and high-intermediate or high risk disease by the IPI. Unlike previous studies investigating the prognostic significance of bcl-6 protein expression, the current analysis was a planned prospective study performed in older patients participating in a large study of standard chemotherapy with or without R. In the context of the U.S. Intergroup trial, bcl-6 positive and negative cases had similar outcomes if R was incorporated into the treatment regimen. This finding underscores the need to reevaluate previously established prognostic markers in the setting of new therapies.

Gene expression profiling results are consistent with the immunohistochemical studies identifying bcl-6 as a prognostic factor.5,6,28 Using DNA microarray techniques to examine the expression of thousands of genes, investigators have recently distinguished at least two molecularly distinct subgroups of DLBCL - one which appears to be derived from germinal center B-cells (GCB) and another which has characteristics of activated peripheral blood B-cells (ABC).5,6 Relative to ABC cases, GCB lymphomas treated with chemotherapy have favorable outcomes independent of IPI risk groups. The GCB signature is based on the expression of a large number of key genes including \textit{Bcl-6}.6 In a subsequent study, a panel of just six genes including \textit{BCL-6} was sufficient to assign prognosis in patients treated with standard chemotherapy.4 However, it is important to recognize that bcl-6 protein expression alone does not identify a DLBCL as GCB-like.3 In the study of Hans et al., an algorithm for GCB-like and non-GCB-like subgroups of
DLBCL was based on protein expression of bcl-6, CD10 and MUM-1. Not all bcl-6 positive cases were assigned to the GCB-like category.

Consistent with our results, bcl-6 expression, but not bcl-2 expression, was prognostic in the Hans series. However, other studies have reported the prognostic significance of bcl-2 in DLBCL. While different cutpoints have been employed for defining bcl-2 positivity in prior trials, the percentage of positive cases (45-66%) reported in most of the literature is similar to ours (59%). Of interest, the Groupe d’Etude des Lymphomes de l’Adulte (GELA) reported that bcl-2 expression was prognostic in DLBCL patients treated with CHOP but not with R-CHOP. If so, the fact that bcl-2 lacked prognostic significance in patients treated with CHOP in our study could be related to sample size (the majority of patients received R as induction and/or maintenance) or to the use of a polyclonal antibody reagent rather than the monoclonal antibody employed by the GELA group, although both antibody reagents are directed against residues 41-54 of the human bcl-2 protein.

The multivariate analysis of prognostic factors presented in Tables 3 and 4 highlights the continued importance of the IPI scoring system. The data indicate that although bcl-6 protein expression subsumes the significance of IPI in patients treated with CHOP, IPI is the dominant variable predictive of outcome after R-CHOP (Table 3) and the most important variable among bcl-6 positive cases (Table 4). These findings indicate that important heterogeneity, for which IPI is a surrogate, remains to be understood in DLBCL. In addition to molecular signatures based on cell of origin (GC vs ABC), robust gene expression profiles associated with host immune response and other features have been recently identified underscoring the complexity of pathogenesis in DLBCL while
defining possible new treatment targets. The results of the current study indicate that patients with higher IPI risk scores require new therapeutic initiatives. Attention to both gene expression patterns and IPI scores in the evaluation of novel therapies is therefore justified.

The mechanism by which the addition of R to CHOP improved outcomes selectively in the bcl-6 negative cases is unknown but may represent a direct cytotoxic effect of R alone (antibody-dependent cellular cytotoxicity, complement-mediated cytotoxicity and induction of apoptosis) or an as yet uncharacterized effect of either R alone or in combination with CHOP on cell survival mechanisms unique to bcl-6-negative DLBCL. Genes in the NFkB pathway are over-expressed in ABC-like DLBCL and inhibitors of NFkB are preferentially effective in ABC-like cell lines. Jazirehi and colleagues reported that R inhibits the constitutive NFkB signaling pathway in selected NHL B-cell lines, leading to increased sensitivity to chemotherapy. Perturbation of other pathways such as the ERK1/2 pathway by rituximab may lead to the down-regulation of Bcl-XL and enhanced sensitivity to chemotherapy as suggested by preclinical work in B-cell lines.

Our study results demonstrate why it is imperative that prognostic indicators or models be reevaluated in the context of each new therapeutic strategy. If confirmed, our findings could lead to the selective use of R with CHOP in only the bcl-6 negative subset of DLBCL, based on standardized assessment of bcl-6 expression. In the future, different therapeutic strategies may be designed to specifically target bcl-6-positive and negative DLBCL based upon differences in their underlying cell survival mechanisms and sensitivity to chemotherapy and now R. For example, some bcl-6-positive, GCB-like lymphomas are thought to result from deregulated expression of Bcl-6 and may be amenable to inhibitors of histone deacetylase or more specific Bcl-6 interference...
whereas NFkB inhibitors may be selectively active in ABC-like lymphomas.37,39,40 The heterogeneity of DLBCL continues to challenge laboratory and clinical investigators. Prospective correlative studies paired with large informative datasets from clinical trials provide valuable resources to further tailor and increase the efficacy of DLBCL treatment.

Acknowledgements

We thank Kristen Burton, Ollistine Jude, and Martin Bast, Ph.D., for administrative assistance and Ren-Wei Guo and Adekunle Raji and the staff of the ECOG Pathology Coordinating Office for technical assistance. In addition, we are grateful to the investigators, nurses and data managers of ECOG and SWOG for their participation.

References

8. Habermann TM, Weller EA, Morrison VA, et al. Phase III Trial of Rituximab-CHOP (R-CHOP) vs. CHOP with a second randomization to

Table 1. Patient characteristics according to bcl-6 expression and treatment.

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Intergroup Trial</th>
<th>Study Population*</th>
<th>Study Population</th>
<th>p</th>
<th>Study Population</th>
<th>bcl-6-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bcl-6+</td>
<td>R-CHOP</td>
<td></td>
<td>bcl-6-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>CHOP (n=92)</td>
<td>R-CHOP (n=107)</td>
<td></td>
<td>CHOP (n=68)</td>
<td>R-CHOP (n=86)</td>
</tr>
<tr>
<td>Males</td>
<td>272 (50%)</td>
<td>43 (47%)</td>
<td>56 (52%)</td>
<td></td>
<td>32 (47%)</td>
<td>49 (57%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>70 (60-92)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>Median age, y (range)</td>
<td>70 (60-92)</td>
<td>71 (61-87)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>321 (59%)</td>
<td>59 (64%)</td>
<td>65 (61%)</td>
<td></td>
<td>50 (58%)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>70 (60-92)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>Stage III-IV</td>
<td>403 (74%)</td>
<td>74 (80%)</td>
<td>85 (79%)</td>
<td></td>
<td>70 (81%)</td>
<td>20 (83%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>71 (61-87)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>ECOG PS >1</td>
<td>78 (14%)</td>
<td>11 (12%)</td>
<td>18 (17%)</td>
<td></td>
<td>14 (16%)</td>
<td>2 (8%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>70 (60-92)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>Number of Extranolord Sites >1</td>
<td>162 (30%)</td>
<td>27 (29%)</td>
<td>32 (30%)</td>
<td></td>
<td>29 (34%)</td>
<td>8 (33%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>71 (61-87)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>BM Involvement</td>
<td>111(20%)</td>
<td>18 (20%)</td>
<td>19 (18%)</td>
<td></td>
<td>15 (17%)</td>
<td>6 (25%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>70 (60-92)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>HI/High IPI</td>
<td>327 (60%)</td>
<td>59 (64%)</td>
<td>67 (63%)</td>
<td></td>
<td>55 (64%)</td>
<td>17 (71%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>71 (61-87)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
<tr>
<td>HI/High Age-adjusted IPI</td>
<td>280 (51%)</td>
<td>51 (55%)</td>
<td>59 (55%)</td>
<td></td>
<td>47 (55%)</td>
<td>14 (58%)</td>
</tr>
<tr>
<td></td>
<td>(n=544)</td>
<td>71 (61-87)</td>
<td>71 (61-87)</td>
<td></td>
<td>70 (60-85)</td>
<td>68 (61-82)</td>
</tr>
</tbody>
</table>

*p>0.4 for all comparisons, CHOP vs. R-CHOP.
Table 2. Univariate analysis of clinical outcome for the study population (n=199) according to bcl-6 expression and induction treatment*

<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>CHOP</th>
<th>R-CHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bcl-6+ (n=68)</td>
<td>bcl-6- (n=24)</td>
</tr>
<tr>
<td>Objective Response (CR+PR)</td>
<td>51 (75%)</td>
<td>19 (79%)</td>
</tr>
<tr>
<td>2-year survival including MR†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFS (%)</td>
<td>61 ± 6</td>
<td>38 ± 10</td>
</tr>
<tr>
<td>OS (%)</td>
<td>73 ± 5</td>
<td>42 ± 10</td>
</tr>
<tr>
<td>2-year survival removing effect of MR‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFS (%)</td>
<td>54 ± 6</td>
<td>9 ± 6</td>
</tr>
<tr>
<td>OS (%)</td>
<td>77 ± 5</td>
<td>17 ± 8</td>
</tr>
</tbody>
</table>

*Median follow-up among all patients is 3.4 years.
†Analysis includes patients who were randomized to receive maintenance rituximab (MR). Value is 2-year estimated percent ± the standard error of the 2-year estimate.
‡ Analysis removes the effect of MR on induction comparison and obtains an unbiased effect of induction treatment. Value is 2-year estimated percent ± the standard error for the 2-year estimate.
§p-values are from Fisher’s exact test for objective response rate and log-rank test for FFS and OS.
Table 3. Relative risk estimates for bcl-6+ versus bcl-6- expression by induction treatment adjusting for IPI and bcl-2 expression*

<table>
<thead>
<tr>
<th></th>
<th>CHOP</th>
<th>R-CHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative Risk</td>
<td>95% CI</td>
</tr>
<tr>
<td>FFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bcl-6+</td>
<td>0.2</td>
<td>(0.1, 0.4)</td>
</tr>
<tr>
<td>HI/High IPI</td>
<td>1.7</td>
<td>(0.8, 3.5)</td>
</tr>
<tr>
<td>Bcl-2+</td>
<td>1.0</td>
<td>(0.5, 2.0)</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bcl-6+</td>
<td>0.2</td>
<td>(0.1, 0.3)</td>
</tr>
<tr>
<td>HI/High IPI</td>
<td>2.4</td>
<td>(1.0, 5.7)</td>
</tr>
<tr>
<td>Bcl-2+</td>
<td>0.7</td>
<td>(0.3, 1.5)</td>
</tr>
</tbody>
</table>

*Analysis removes the effect of MR to obtain unbiased estimate of induction treatment effect.
Table 4. Relative risk estimates for CHOP versus R-CHOP by bcl-6 expression adjusting for IPI and bcl-2 expression*

<table>
<thead>
<tr>
<th></th>
<th>bcl-6+</th>
<th>bcl-6-</th>
<th></th>
<th>bcl-6+</th>
<th>bcl-6-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative Risk</td>
<td>95% CI</td>
<td>p</td>
<td>Relative Risk</td>
<td>95% CI</td>
</tr>
<tr>
<td>FFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-CHOP</td>
<td>1.1</td>
<td>(0.6, 2.2)</td>
<td>0.68</td>
<td>0.1</td>
<td>(0.05, 0.4)</td>
</tr>
<tr>
<td>HI/High IPI</td>
<td>3.6</td>
<td>(1.5, 8.6)</td>
<td>0.004</td>
<td>3.3</td>
<td>(1.1, 10.5)</td>
</tr>
<tr>
<td>bcl-2 +</td>
<td>1.6</td>
<td>(0.9, 2.9)</td>
<td>0.15</td>
<td>1.4</td>
<td>(0.4, 4.5)</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-CHOP</td>
<td>1.9</td>
<td>(0.9, 3.9)</td>
<td>0.11</td>
<td>0.1</td>
<td>(0.05, 0.3)</td>
</tr>
<tr>
<td>HI/High IPI</td>
<td>8.0</td>
<td>(2.2, 28.7)</td>
<td>0.002</td>
<td>5.9</td>
<td>(1.1, 32.5)</td>
</tr>
<tr>
<td>bcl-2 +</td>
<td>1.5</td>
<td>(0.7, 2.9)</td>
<td>0.27</td>
<td>1.0</td>
<td>(0.4, 2.5)</td>
</tr>
</tbody>
</table>

*Analysis removes the effect of MR to obtain unbiased estimate of induction treatment effect.
Table 5. Two year failure free survival according to treatment group among responding patients who are bcl-6-positive and bcl-6-negative.

<table>
<thead>
<tr>
<th>Induction and Maintenance Therapy</th>
<th>bcl-6+</th>
<th>bcl-6-</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>2-year FFS (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>R-CHOP+MR</td>
<td>33</td>
<td>82 (67.96)</td>
<td>5</td>
</tr>
<tr>
<td>CHOP+MR</td>
<td>25</td>
<td>76 (59.93)</td>
<td>9</td>
</tr>
<tr>
<td>R-CHOP+OBS</td>
<td>27</td>
<td>65 (47.84)</td>
<td>12</td>
</tr>
<tr>
<td>CHOP+OBS</td>
<td>22</td>
<td>64 (44.84)</td>
<td>8</td>
</tr>
</tbody>
</table>
Figure Legends

1. Failure-free survival (1a, b) and overall survival (1c,d) according to bcl-6 expression for cases treated on R-CHOP and CHOP induction arms. Analysis excludes patients who were randomized to receive maintenance rituximab (MR).

2. Failure-free survival (2a,b) and overall survival (2c,d) according to induction treatment for bcl-6-positive and bcl-6-negative cases. Analysis excludes patients who were randomized to receive maintenance rituximab (MR).
Figure 1
Figure 2
Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.