The FIP1L1-PDGFRα Fusion Gene Cooperates with IL-5 to Induce Murine Hypereosinophilic Syndrome (HES)/Chronic Eosinophilic Leukemia (CEL)-like Disease

Running title: FIP1L1-PDGFRα-induced HES/CEL

Yoshiyuki Yamada1, Marc E. Rothenberg1, Andrew W. Lee2, Hiroko Saito Akei1, Eric B. Brandt1, David A. Williams2 and Jose A. Cancelas2,3

1Division of Allergy and Immunology, 2Division of Experimental Hematology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati OH, U.S.A., Cincinnati OH, U.S.A.

Supported by Akita Medical School Fund for International Cooperation and Exchange (Y.Y.), Japan Allergy Foundation Fund for International Cooperation and Exchange (Y.Y.), American Heart Association Ohio Valley Affiliate Postdoctoral Fellowship (Y.Y.), Campaign Urging Research for Eosinophilic Disease (C.U.R.E.D, M.E.R.), Leukemia & Lymphoma Society Translational Research Grant (D.A.W., J.A.C.), National Blood Foundation (J.A.C.), and NIH grants 1P01HL69974 and 1R01DK062757 (D.A.W.).

Correspondence to:

Dr. Jose A. Cancelas
Division of Experimental Hematology
Cincinnati Children’s Hospital Medical Center, MLC 7013
3333 Burnet Avenue Cincinnati, OH, 45229-3039
Phone: 513-558-1324
Fax: 513-558-1522
E-mail Jose.Cancelas@cchmc.org

Scientific heading: Neoplasia Category: Regular manuscripts

Abstract: 200 words
Text: 4340 words
Specific contributions of the authors to the work:

Y.Y. designed and performed the research, analyzed data, and wrote the paper. M.E.R designed and supervised the study and assisted in writing the paper. A.W.L. assisted in performing experiments. H.S.A. and E.B.B. participated in performing experiments and analyzing the data. D.A.W. supervised the study and assisted in writing the paper. J.A.C. designed, performed, and supervised the study, assisted in analyzing the data, and wrote the paper. All authors checked the final version of the manuscript.
Abstract

Dysregulated tyrosine kinase activity by the Fip-1-like 1 (FIP1L1)-platelet derived growth factor receptor alpha (PDGFRα) (F/P) fusion gene has been identified as a cause of clonal hypereosinophilic syndrome (HES), called F/P-positive chronic eosinophilic leukemia (CEL) in human. However, transplantation of F/P-transduced hematopoietic stem cells/progenitors (F/P+ HSC/P) into mice results in chronic myelogenous leukemia-like disease, which does not resemble HES. Because a subgroup of patients with HES show T-cell dependent interleukin-5 (IL-5) overexpression, we determined if expression of the F/P fusion gene in the presence of transgenic T-cell IL-5 overexpression in mice induces HES-like disease. Mice transplanted with CD2-IL-5 transgenic F/P+ HSC/P (IL-5Tg-F/P) developed intense leukocytosis, strikingly high eosinophilia and eosinophlic infiltration of non-hematopoietic as well as hematopoietic tissues, a phenotype resembling human HES. The disease phenotype was transferable to secondary recipients transplanted at a high cell dose, suggesting involvement of a short-term repopulating stem cell or an early myeloid progenitor. Induction of significant eosinophilia was specific for F/P since expression of another fusion oncogene, p210-BCR/ABL in the presence of IL-5 overexpression was characterized by a significantly lower eosinophilia than IL-5Tg-F/P recipients. These results suggest that F/P is not sufficient to induce a HES/CEL-like disease but requires a second event associated with IL-5 overexpression.
Introduction

The hypereosinophilic syndrome (HES) was described by Hardy and Anderson\(^1\). The diagnostic criteria of this hematological disorder as proposed by Chusid et al.\(^2\) include unexplained severe peripheral blood eosinophilia (higher than 1,500 eosinophils/mm\(^3\)) sustained for over 6 months accompanied by end-organ damage resulting from direct organ infiltration by eosinophils. Although the etiology of HES remains unclear, a subset of patients with HES has been shown to have an interstitial deletion in chromosome 4q12, which results in the generation of a fusion protein between the platelet-derived growth factor receptor alpha (PDGFR\(\alpha\)) gene and a previously uncharacterized gene, Fip1-like1 (FIP1L1). The fusion gene product acts as a constitutively active tyrosine kinase\(^3,4\). The FIP1L1-PDGFR\(\alpha\) (F/P) fusion gene has been identified in 14% to 60% of patients with HES\(^3,5-8\). This subgroup of HES patients are now diagnosed as chronic eosinophilic leukemia (CEL) according to World Health Organization disease classification criteria. Those patients with F/P\(^+\) HES/CEL appear to have a more severe disease phenotype involving extensive end-organ pathology\(^6,7,9,10\). Notably, the F/P tyrosine kinase is susceptible to imatinib inhibition and this drug is thus effective in some HES patients\(^11-13\).

A murine study of retroviral transduction of hematopoietic stem cells/progenitors (HSC/P) with the F/P fusion gene was previously shown to be associated with the development of a myeloproliferative disorder similar to that of the murine model of BCR/ABL leukemogenesis\(^14,15\). Affected mice demonstrated neutrophilia and a modest eosinophilia (5-20% of all cells in the peripheral blood). In addition, in this model, tissue
Yamada et al. FIP1L1-PDGFRA-induced HES/CEL

infiltration by F/P-expressing cells was dominated by granulocytic cells mainly composed of non-eosinophils. Thus, this murine model did not entirely mimic the characteristics of human HES/CEL15,16.

A subgroup of patients with HES displays aberrant, sometimes clonal, Th2 lymphocytes secreting large amounts of interleukin-5 (IL-5), a well-known eosinophil maturation and function activating cytokine17-19. We hypothesized that the F/P fusion protein may cooperate with hematopoietins such as IL-5 to induce abnormal eosinophil responses typical of HES. The present study describes that transplantation of F/P-expressing IL-5-transgenic (Tg) HSC/P into syngeneic recipients induces a murine model of tissue-infiltrating hypereosinophilia similar to human HES/CEL. These results establish that F/P is necessary but not sufficient to induce HES/CEL in mice and cooperates with IL-5-dependent signaling in driving abnormal eosinophil development, which mimics human HES/CEL.
Methods

Mice
Age- and gender-matched wild type and CD2-IL-5Tg BALB/c mice20 were used as bone marrow (BM) donors. These mice and other T-cell dependent IL-5 transgenic mice have shown high IL-5 plasma levels in either primary or bone marrow-transplanted mice21,22. BALB/c (wild type) female mice (7-12 week old) were obtained from the National Cancer Institute (Frederick, MD) and Taconic Farms (Germantown, NY) and used as HSC/P transplantation recipients. All mice were maintained under specific pathogen free conditions in Cincinnati Children’s Hospital Animal Facility. Animal protocols were approved by the Animal Care Committee of Cincinnati Children’s Hospital Medical Center.

Retroviral constructs and viral supernatants
Retroviral constructs were murine stem cell virus (MSCV)-based23 bicistronic vectors called MSCV-F/P-IRES-EGFP, MSCV-BCR/ABL (p210)-IRES-EGFP and MSCV-IRES-EGFP (mock vector) (kindly provided by Drs. Gary Gilliland and Jan Cools, Harvard Medical School, U.S.A.). Efficient expression of F/P and p210-BCR/ABL by these retroviral vectors has been previously shown15,24. Retrovirus supernatant was generated in the Phoenix-gp cells25 as previously described26.

Retroviral transduction into hematopoietic progenitor cells
Mice were treated with 150 mg/kg of 5-fluorouracil administered intraperitoneally
beginning 6 days prior to BM harvest. Femorae, tibiae and iliac crests were harvested and their bone marrow content was isolated by bone crunching. Low-density bone marrow (LDBM) cells were separated by density gradient fractionation according to manufacturer’s instructions (Histopaque 1083, Sigma-Aldrich, St. Louis, MO), pre-stimulated in the presence of recombinant mouse (rm) IL-3 (6 ng/ml, PeproTech, Rocky Hill, NJ), recombinant rat (rr) stem cell factor (SCF, 10 ng/ml, Amgen, Thousand Oaks, CA), and rm IL-6 (10 ng/ml, PeproTech, Rocky Hill, N.J.) and transduced during two days in a protocol that included spinoculation (1,800 x g for 90 min) followed by two cycles of incubation (for 24 and 6 hours, respectively) with transient retroviral supernatants expressing MSCV-based retroviral bicistronic vectors containing F/P or BCR/ABL (p210) fusion genes and the enhanced green fluorescent protein (EGFP) as previously described15,27. An aliquot of transduced cells was cultured for two extra days for transduction efficiency analysis of EGFP-expressing BM cells. Transduction efficiency of all experiments was 10 ± 8.9% without any significant difference among the different groups.

HSC/P transplantation

Retrovirally transduced LDBM cells were transplanted 6 hours after the second round of spinoculation/transduction. A total of 2.5-6.5 x 106 cells/mouse were injected into the lateral tail vein of previously lethally irradiated (4.5 Gy x 2 doses, 3 hours apart, 137Cs source, dose rate 60-65 cGy/min) recipient mice (BALB/c, wild type)15. For serial transplantations, splenocytes from diseased mice or controls were injected into lethally irradiated syngeneic secondary recipients. Myeloproliferation was defined according to
Yamada et al. FIP1L1-PDGFRα-induced HES/CEL

the established NIH-Bethesda criteria for myeloproliferative disorder-like myeloid leukemia although this classification does not include any specific hypereosinophilia criteria.

Treatment with imatinib mesylate.

The tyrosine kinase inhibitor, imatinib (formally known as CGP57148B or STI571), was kindly provided by Novartis Pharmaceuticals (Basel, Switzerland). A stock solution of imatinib was prepared by dissolving in water and prior to administration, diluted with PBS. Concurrent PBS-injected mice were used as controls. Imatinib was administered intraperitoneally at 50 mg/kg/dose, twice a day from day 10 post-transplantation until one week after all the control mice had died or were sacrificed due to progressive disease, as described previously.

Peripheral blood counts

Peripheral blood samples were collected in EDTA microtainer tubes (Becton Dickinson, Franklin Lakes, NJ) by retro-orbital bleeding. Manual and automated total cell counts and differential counts using smears stained with Diff-Quick according to manufacturer’s instructions (Fisher Diagnostics, Middletown, VA) were performed. In addition, blood eosinophil levels were determined by counting cells after staining whole blood with Discombe’s solution.

Histopathology

Cytospins of BM and spleen specimens were stained with Diff-Quick as indicated above.
For tissue histology, relevant organs were fixed in 10% buffered formalin and embedded in paraffin. The tissue sections were stained with hematoxylin/eosin and an antibody directed against the major basic protein (MBP) of eosinophils as previously described31,32. In brief, endogenous peroxidase in the tissues was quenched with 0.3% hydrogen peroxide in methanol and specimens were treated with pepsin for antigen retrieval, followed by nonspecific protein blocking with normal goat serum. Tissue sections were then incubated with rabbit anti-MBP (1:10,000, kindly provided by Dr. James Lee, Mayo Clinic-Scottsdale, AZ) overnight at 4°C, followed by a 1:200 dilution of biotinylated goat anti-rabbit IgG secondary antibody and avidin-peroxidase complex (Vector Laboratories, Burlingame, CA) for 30 minutes each. These slides were further developed with nickel diaminobenzidine-cobalt chloride solution to form a black precipitate, and counterstained with nuclear fast red. As a negative control, pre-immune rabbit serum was used to replace the primary antibody and revealed no immunoreactivity. The tissue samples stained by anti-MBP were used for eosinophil quantification in the heart and small intestine. At least three random sections per mouse were analyzed. Quantification of stained cells per square millimeter of myocardium or intestinal lamina propria was performed by blind morphometric analysis using the Metamorph Imaging System (Universal Imaging Corp., West Chester, Pennsylvania, USA).

Flow cytometry analysis

Single-cell suspensions from the mouse peripheral blood, spleen and BM cells were lysed with NH\textsubscript{4}Cl red blood cell (RBC) lysis buffer (pH 7.4), and stained according to manufacturer’s instructions with the following monoclonal antibodies: PE-conjugated
Yamada et al. FIP1L1-PDGFRα-induced HES/CEL

anti-CD3ε (clone 145-2C11, BD Pharmingen), APC-conjugated anti-B220 (clone RA3-6B2, BD Pharmingen), APC-conjugated anti-CD11b (clone M1/70, BD Pharmingen), biotin-conjugated anti-CD49d (clone R1-2, BD Pharmingen), PE-conjugated anti-CCR3 (clone 83101, R&D), PE-conjugated anti-Siglec-F (clone E50-2440, BD Pharmingen) and biotin-conjugated anti-IL-5 receptor alpha (clone T21, kindly provided by Dr. Kiyoshi Takatsu, University of Tokyo, Japan) or isotype-matched control antibodies. PerCP- or APC-conjugated streptavidin (BD Pharmingen) was used as a secondary reagent to detect the binding of the biotinylated primary antibody (BD Pharmingen). 7-aminoactinomycin D (7-AAD) (Molecular Probes, Eugene, OR) was added to exclude dead cells except for samples labeled with antibodies bound to PerCP. Multicolor flow cytometric analysis was performed with a FACScalibur flow cytometer, cells were sorted with a FACS-Vantage Diva, and the data were analyzed using CellQuest software (Becton Dickinson, San Jose, CA).

Plasma IL-5 concentration analysis

The plasma level of IL-5 was measured by ELISA according to the manufacturer’s instructions (Mouse IL-5 OptEIA ELISA set, BD Biosciences Pharmingen, San Jose, CA). Samples were diluted 1:4 and 1:10. The sensitivity of the assay was 16 pg/ml.

Statistical analysis

Data were expressed as mean ± standard deviation except when otherwise stated.

Statistical analysis of data was performed by Student’s t test when comparing 2 groups and one-way analysis of variance (ANOVA) followed by Bonferroni t test for 3 or more
groups. For ELISA tests and survival analysis, data are presented as medians and 25 and 75% interquartiles. Statistical comparisons were performed with either Mann-Whitney U test or log P rank test, respectively. P values < 0.05 were considered significant.
F/P cooperates with IL-5 overexpression to induce murine eosinophilic disease.

We investigated whether the F/P fusion gene collaborates with IL-5 signaling in eosinophilic leukemogenesis. To test this, lethally irradiated wild-type mice were transplanted with the F/P-transduced HSC/P derived from CD2-IL-5 Tg mouse BM (IL-5Tg-F/P recipients). These mice overexpress IL-5 in a T-cell dependent fashion. In order to confirm that the level of IL-5 was elevated in recipients transplanted with CD2-IL-5Tg HSC/P, plasma IL-5 levels were measured (at the endpoint, n=6-7 pooled from 2 independent experiments). IL-5 plasma levels were 162 [94.4-252.4] pg/ml in IL-5Tg-mock vector and 266 [130.3-442.4] pg/ml in IL-5Tg-F/P recipients (p=0.31). In contrast, IL-5 was undetectable in 7 non-Tg-mock vector and 6 non-Tg-F/P recipients. In addition to plasma IL-5, there were no significant differences in T cell engraftment between IL-5Tg-mock vector and IL-5Tg-F/P recipients (frequency of EGFP+/CD3+ cells was 4.9 ± 2.52% vs. 4.4 ± 2.50%, respectively, n=8, pooled from 2 independent experiments).

Once transplanted, F/P-expressing cells engrafted and rapidly proliferated in vivo. All IL-5Tg-F/P recipients developed a myeloproliferative disease with a latency of 4 weeks characterized by leukocytosis with significant eosinophilia in peripheral blood, splenomegaly, and eosinophilic infiltrate of multiple organs. IL-5Tg-F/P recipients developed an intense leukocytosis (149.0 ± 85.50 x 10³ leukocytes/mm³) (Figure 1A) and a significant eosinophilia (35.0 ± 9.90 x 10³ eosinophils/mm³) that was 9-fold higher (p<0.0001) than that observed in mock vector transduced CD2-IL-5Tg HSC/P recipients (IL-5Tg-mock vector recipient) mice (Figure 1B). In contrast, F/P-transduced wild type
HSC/P recipients (non-Tg-F/P recipients) showed a myeloproliferative disorder with predominant granulocytic involvement as previously reported with similar survival as IL-5Tg-F/P recipients (28 [27-33] vs. 28 [27-30] days, p=0.61). In order to further characterize the eosinophilia induced by the F/P fusion gene in the presence of IL-5 overexpression, we performed flow cytometry analysis. Flow cytometry identification of eosinophils was based on the pattern of expression of the antigens CD11b, CCR3 and Siglec-F (Y. Yamada, M.E. Rothenberg and J.A. Cancelas, personal observations). Eosinophil populations were identified as CCR3+/CD11b+/low and Siglec-F+/CD11b+/low and were analyzed on the gated EGFP+. For comparison, the gated EGFP− populations were also analyzed. Indeed sorted CCR3+/CD11b+/low and Siglec-F+/CD11b+/low populations contained over 90% eosinophils, and accounted for 88% and 98% of all eosinophils, respectively (Figure 2). We analyzed the percentage of CCR3+/CD11b+/Low cells in circulating EGFP+ cells. The percentage of circulating EGFP-expressing, CCR3+/CD11b+/Low cells of IL-5Tg-F/P recipients was 1.6-fold and 4.7-fold higher than that of recipients of IL-5Tg-mock vector and of non-Tg-F/P recipients (Table 1), confirming that the F/P fusion gene and IL-5 overexpression had additive effects in promoting eosinophil proliferation and/or differentiation in vivo.

Spleen and bone marrow eosinophilia

Spleen weight was significantly higher in the IL-5Tg-F/P recipients compared with other groups including non-Tg-F/P recipients (Figure 3A). Upon histopathologic analysis, IL-5Tg-F/P recipients demonstrated a diffuse eosinophilic infiltrate with disruption of follicular architecture of the spleen. Non-Tg-F/P recipients showed mostly neutrophil
infiltration with reduced eosinophils (Figure 3B). In addition, the marrow in IL-5Tg-F/P recipients showed myeloid hyperplasia dominated by eosinophils (Figure 3C). Similarly to peripheral blood, we observed that the percentages of EGFP+ eosinophils as determined by CCR3+/CD11b+/Low or Siglec-F+/CD11b+/Low staining in the BM and spleen of IL-5Tg-F/P recipients were strikingly higher than in IL-5Tg-mock recipient mice (Table 1). The non-Tg-F/P recipients also showed a higher percentage of EGFP+/CCR3+/CD11b+/Low cells and EGFP+/Siglec-F+/CD11b+/Low cells in the spleen and BM compared with mock vector-transduced wild type HSC/P recipient (non-Tg-mock vector recipient) mice (Table 1), suggesting that the expression of the fusion gene alone promoted eosinophil lineage cell proliferation. Taken together, these observations suggested that the F/P fusion gene induced a significant eosinophilic infiltrate in the spleen and BM of IL-5Tg-F/P recipients. Expression of F/P alone led to a modest increase of eosinophilic infiltrates in these organs.

Eosinophil infiltration of non-hematopoietic organs

Human HES is characterized by persistent eosinophilia and organ involvement associated with eosinophilic infiltration. IL-5Tg-F/P recipients showed an up-regulation of the α4-integrin in the spleen and BM (Figure 3D) and up-regulation of Siglec-F expression in the BM (Figure 3E). This was especially relevant since α4-integrin and Siglec-F have been associated with eosinophil adhesion and migration33,36,37, suggesting the presence of activation in the F/P+ eosinophils. In order to analyze whether the expression of activation markers in IL-5Tg-F/P mice correlated with non-hematopoietic organ infiltration mimicking HES/CEL, we analyzed the eosinophil content of the liver, kidneys,
intestine, lungs, and heart of all the experimental groups. In the IL-5Tg-F/P recipients, eosinophils dominated infiltration in perivascular regions of the liver (Figure 4A), whereas in non-Tg-F/P recipients most infiltrating cells were neutrophils (data not shown). In addition, the IL-5Tg-F/P recipients showed eosinophilic infiltrates in peritubular regions of the kidney (Figure 4B) and lung (Figure 4C). IL-5Tg-F/P recipients showed 4.5-fold and 2.5-fold higher eosinophil content in myocardium and the lamina propria of the small intestine, respectively, than in IL-5Tg-mock vector recipients (Figure 5). Representative examples of heart and small intestine histology are shown in Figures 5A and 5B.

Murine eosinophilic disease was transplantable into secondary recipients.

To examine whether the eosinophilic disease developed in primary transplant recipients was transferable to secondary recipients, we transplanted increasing numbers of splenocytes from diseased primary IL-5Tg-F/P recipients into lethally irradiated recipients. IL-5Tg-F/P secondary recipients showed an eosinophilic disease (9 out of 9 mice, pooled from two independent experiments) when transplanted with 1/5 or 1/10 of the spleen cell content from IL-5Tg-F/P primary recipients at 4 weeks after transplantation. However, when secondary recipients were transplanted with fewer cells (1/100 or 1/1000 of total splenocytes), it took 7 and 10 weeks, respectively, to develop the murine eosinophilic disease in a fraction of mice (~30%). We analyzed the frequency of EGFP+ cells in the peripheral blood of recipient mice at 4 weeks post-transplantation until death. The percentage of EGFP+ cells in IL-5Tg-F/P secondary recipients gradually decreased during this period of time; however, EGFP+ cells were identified at 10 weeks
FIP1L1-PDGFRα-induced HES/CEL post-secondary transplantation (minimum of 2.5%; Table 2). Detectable EGFP+ B and T lymphocytes were observed in F/P-transduced BM recipients at 10 weeks post-transplantation (data not shown). Collectively, these results suggest that either short-term stem cells or early myeloid progenitors with prolonged survival and/or extended proliferation are involved in the development of this phenotype.

F/P expression is specifically required to induce murine eosinophilic disease and is associated with increased expression of IL-5Rα.

To determine whether the development of the murine eosinophilic disease requires the expression of F/P in combination with overexpression of IL-5 in hematopoietic cells, we performed two additional groups of experiments. In the first experiment IL-5Tg HSC/P were transduced with the p210-BCR/ABL fusion gene (IL-5Tg-BCR/ABL) and transplanted into irradiated recipient mice. The p210-BCR/ABL fusion gene was chosen because a myeloproliferative disease induced by this transgene in mice shows abnormalities of all myeloid lineages including eosinophils14 and human chronic myelogenous leukemia (CML) occasionally involves hypereosinophilia, e.g. the eosinophilic variant of CML38-40. Although the efficiencies of F/P and BCR/ABL transductions were not significantly different (7 ± 5.2% vs. 3 ± 1.9%, respectively, p = 0.20), IL-5Tg-BCR/ABL recipients developed myeloproliferative disease in the third week after transplantation while IL-5Tg-F/P recipient mice established full disease by 4 weeks. IL-5Tg-BCR/ABL recipients showed similar eosinophil counts to IL-5Tg-mock vector mice (Figure. 6A) at the study endpoint. IL-5Tg-BCR/ABL-induced myeloproliferative disorder was characterized by leukocytosis (143,900 ± 129,610
leukocytes/mm^3) with neutrophilia and splenomegaly and was similarly to the observed in BCR/ABL transduced wild type-HSC/P (non-Tg-BCR/ABL) recipients. IL-5Tg-BCR/ABL-transduced BM recipients, at 3 weeks post-transplantion, had low levels of circulating IL-5 (undetectable, n=5) compared to the levels of IL-5-Tg-mock vector BM recipients (356 and 381 pg/ml, n=2). Curiously, the levels of eosinophilia of both groups were similar by day 21 post-transplantion, (5,620 ± 2,970 eosinophils/mm^3 and 3,680 ± 1,165 eosinophils/mm^3, respectively), suggesting that the plasma IL-5 level, by itself alone, does not correlate with the severity of eosinophilia. In addition, IL-5Tg-BCR/ABL recipients showed an eosinophilic peak by day +18 (15,880 ± 10,432 eosinophils/mm^3), which significantly dropped by day +21 (5,620 ± 2,970 eosinophils/mm^3, p < 0.03 derived from the same mice) while the leukocyte count increased (83,480 ± 30,133 leukocytes/mm^3 on day +18 vs. 96,733 ± 42,985 leukocytes/mm^3 on day +21 derived from the same mice). Importantly, this eosinophil peak was higher than non-Tg-BCR/ABL control mice (76 ± 59 eosinophils/mm^3) indicating that indeed BCR/ABL had the potential ability to develop HES/CEL under these conditions. This makes unlikely that the lower eosinophilia found in IL-5Tg-BCR/ABL mice was due to mouse death before IL-5 exerted its full effect.

IL-5Tg-F/P recipients showed 10-fold higher eosinophilia than IL-5Tg-BCR/ABL recipients. In addition, non-Tg and IL-5Tg-F/P recipients demonstrated ~23- and ~32-fold higher percentages, respectively, of EGFP^+/CCR3^+/CD11b^{+/Low} cells than those of non-Tg- and IL-5Tg-BCR/ABL recipients in peripheral blood (Figure 6B). We compared the percentages of EGFP^+/CCR3^+/CD11b^{+/Low} and EGFP^+/CCR3^+/CD11b^{+/Low} in the F/P and BCR/ABL groups. F/P recipients showed eosinophilia due to a specific expansion of
EGFP-expressing cells. In fact, in non-Tg- and IL-5Tg-F/P recipients, the percentages of EGFP+/CCR3+/CD11b+/Low cells were 3.0- and 1.8-fold higher than those of EGFP+/CCR3+/CD11b+/Low cells, respectively. In contrast to F/P recipients, the eosinophil population observed in IL-5Tg-BCR/ABL recipients was due mostly to non-EGFP expressing cell expansion (Figure 6B).

We next aimed to determine if F/P-associated disease in mice was imatinib sensitive. Accordingly, we administered PBS (vehicle) or imatinib to IL-5Tg-F/P recipient mice beginning 10 days postransplantation until one week after all control mice had developed severe disease (day +37). Imatinib-treated IL-5TgF/P mice had a ~8-fold decrease in eosinophils compared with control treated mice (eosinophil count in peripheral blood were 25,720 ± 11,268 eosinophils/mm³ vs. 3,260 ± 1,261 eosinophils/mm³, respectively, with a percentage of EGFP+ leukocytes of 49.0 ± 16.65% vs. 4.7 ± 1.97%, respectively). Imatinib-treated IL-5Tg-F/P recipients did not show leukocytosis or splenomegaly, and had only moderate eosinophilia (similar to basal IL-5Tg-mock vector recipients), indicating no disease development. All imatinib-treated IL-5Tg-F/P recipients survived until the study endpoint, whereas control-treated IL-5Tg-F/P recipients had died due to severe disease by 26 [24-29] days after transplantation (p=0.0018).

To investigate the mechanism of cooperation between F/P and IL-5, we further analyzed the expression of IL-5 receptor α chain (IL-5Rα). IL-5Tg-F/P recipients showed a 1.9-fold higher expression of IL-5Rα on EGFP+ splenocytes than IL-5Tg-mock vector and IL-5Tg-BCR/ABL recipients (mean fluorescence intensity of EGFP+/IL-5Rα+: 494.7 ± 31.39 vs. 368.3 ± 57.57 [P<0.01] and 304.5 ± 48.29 [p<0.01]; respectively). EGFP+ cells from IL5Tg-F/P recipients had higher IL-5Rα expression compared with F/P cells.
Yamada et al. FIP1L1-PDGFRα-induced HES/CEL derived from the same mice (p = 0.013), suggesting that F/P may specifically up-regulate IL-5Rα expression. In contrast to EGFP⁺ cells, the mean fluorescence intensity of IL-5Rα expression on EGFP⁻ cells was not different among the recipient groups (p=0.44). A representative set of histograms is shown in Figure 6C.
Discussion

In this study, a murine model for HES/CEL, that utilizes the co-expression of F/P with transgenic IL-5 overexpression by T cells, has been described. The introduction of F/P together with T cell overexpression of IL-5 induced a striking eosinophilia in the peripheral blood and tissue eosinophil infiltration of the heart, lungs, kidneys, small intestine, liver and spleen. Prior to this study, it has been an enigma why CD2-IL-5 Tg mice develop blood eosinophilia but not tissue eosinophilia as seen in HES22. Our study shows that neither IL-5 nor F/P overexpression alone induces substantial tissue eosinophilia, but together these two events result in the development of eosinophil associated end-organ infiltration. It is interesting to note that patients with persistent eosinophilia due to parasitic infection41 or various malignancies42 remain at risk for developing end-organ damage. Perhaps Th2-associated eosinophilia transforms into HES-like disease when accompanied by the de novo activation of the appropriate tyrosine kinase, in this case F/P. In HES patients, the cardiovascular system (CVS) is the most common organ system involved and CVS abnormalities are the primary cause of morbidity and mortality43. The HES/CEL model described here showed a rapidly progressive increase of eosinophil infiltration in the myocardium. The absence of myocardial mural thrombosis and fibrosis-related endomyocardial thickening, characteristic of HES/CEL patients, may be explained by the short life expectancy of mice co-expressing the F/P fusion gene in the presence of IL-5 overexpression. Extrahematological manifestations in HES/CEL patients also include pulmonary infiltration in approximately 50% of patients43,44 and spleen and liver involvement in
Yamada et al. FIP1L1-PDGFRα-induced HES/CEL

∼40% and ∼30% of patients, respectively\(^{43,44}\). The model of HES/CEL-like disease described here also demonstrated eosinophil infiltration of other non-hematopoietic organs, as well as blood and hematopoietic tissue hypereosinophilia. In humans, F/P\(^+\) HES/CEL has been associated with a poor prognosis compared with F/P\(^−\) HES. These patients specifically exhibit cardiac complications and poor response to corticosteroids\(^{6,7,9,10,45}\). In this HES/CEL-like disease model, mice developed a severe and rapidly progressive disease featuring hepatosplenomegaly and tissue eosinophilia in most organs that may be similar to poor-prognosis HES phenotype.

IL-5 has been shown to be the most relevant cytokine in the pathogenesis of HES/CEL\(^{46}\). Indeed, anti-IL-5 therapy appears to be an effective therapy even in patients with undetectable or low levels of IL-5\(^{47,48}\). In addition to circulating IL-5, paracrine effects of IL-5 locally produced by T cells\(^{18}\) and/or eosinophils\(^{49}\) may have critical roles in HES. In fact, a fraction of HES/CEL patients have T cell-dependent IL-5 overexpression \(^{44}\). The relationship between the F/P mutation and high levels of IL-5 still remains unclear \(^{44}\). Interestingly, serum IL-5 levels have been reported to be elevated in imatinib-responder HES patients\(^{50}\), including F/P\(^+\) patients \(^{8}\) and the existence of anti-IL-5-responder F/P\(^+\) patients has been observed (\(^{47}\) and Y. Yamada and M. E. Rothenberg, unpublished data). In our study, HES/CEL-like mice generally showed high circulating IL-5 levels. IL-5 likely synergizes with F/P on the development of hypereosinophilia in this murine HES/CEL-like model; this may occur through systemic or local (paracrine or autocrine) effects and indirectly through a putative upregulation effect on IL-5Rα in F/P cells, which would increase the sensitivity of IL-5R-expressing myeloid progenitors and precursors.
In agreement with Cools et al.15, we have shown that F/P fusion gene expression without IL-5 overexpression induced the development of a myeloproliferative disorder resembling p210-BCR/ABL-induced myeloproliferative disease. However, in non-Tg-F/P recipients, the frequencies of F/P+/CCR3+/CD11b+/Low and F/P+/Siglec-F+/CD11b+/Low cells in BM and spleen were increased, suggesting that F/P promoted differentiation into eosinophils, at least as defined by these markers. In addition to these markers, the frequency of IL-5R\textalpha+ cells on the F/P+ population was increased in both non-Tg-F/P and IL-5Tg-F/P recipient spleens (Figure 6C and data not shown). These results suggest that the introduction of F/P induces myeloid proliferation and primes eosinophil differentiation but that development of the full HES/CEL picture requires additional cytokines or molecular events. While neither the F/P fusion gene nor IL-5 overexpression alone, as indicated by IL-5Tg-mock vector recipients, is sufficient to cause HES-like disease, F/P expression and dysregulated IL-5 overexpression appear to cooperate to induce HES/CEL.

Expression of the F/P fusion gene or deletion of the surrogate marker CHIC2 has been detected in non-eosinophilic myeloid cells and in lymphoid cells, suggesting that the F/P mutation may occur in early hematopoietic stem cells9,51,52. In order to test whether the phenotypic expression of hypereosinophilia seen in this model of HES/CEL-like disease derived from a primitive hematopoietic cell, we performed serial transplantation of splenocytes from F/P recipients after overt disease development. F/P fusion gene-induced disease was consistently transplantable into secondary recipients but only when large numbers of cells were utilized, suggesting that the transformed stem/progenitor cell
expressing the combination of F/P and IL-5 overexpression was infrequent in the spleen of diseased animals. Alternatively, the disease may not be associated with long-term repopulating stem cells. These results suggest that either short-term hematopoietic repopulating cells or myeloid progenitors with prolonged survival and/or extended proliferation are responsible for the F/P-induction of the HES/CEL-like disorder in IL-5Tg-F/P recipient mice.

In addition to F/P-positive HES/CEL, an eosinophilic variant of CML (eoCML) identified by the BCR/ABL rearrangement has been reported38,40. Indeed CML patients with more than 5% of eosinophils are at risk for an eosinophilic blast crisis39. Accordingly, we investigated whether the BCR/ABL fusion gene could cooperate with IL-5 overexpression in the development of HES/CEL-like disease in mice. When compared with IL-5 Tg-F/P recipients, we observed that the eosinophil count of IL-5Tg-BCR/ABL recipients was significantly lower at the time of disease development. These results suggest that expression of the F/P fusion gene specifically induces eosinophil differentiation. The molecular event that transforms BCR/ABL-associated CML into CEL remains to be determined.

In conclusion, a murine HES/CEL model has been established in this study. The pathogenic mechanism of the HES/CEL-like disease might be explained by the expansion of a short-term stem cell associated myeloid proliferation or of an early myeloid progenitor with prolonged survival and/or extended proliferation. Either of them would have an enhanced sensitivity to IL-5, which evokes eosinophil precursor proliferation and
terminal differentiation. Moreover, tissue eosinophil infiltrations were induced by the combination of overexpression of IL-5 and the introduction of the F/P fusion gene, suggesting additional specific activation and migratory activity of IL-5-stimulated, F/P-transduced eosinophils. F/P+ cells have shown exquisite sensitivity to imatinib inhibition in vitro and in vivo3,9,15,53, and imatinib has become a first-line treatment for F/P+ disease. However, the presence of a subgroup of imatinib-resistant F/P+ HES/CEL patients and the longer life expectancy of F/P+ HES/CEL patients compared to CML patients highlights the need to develop additional therapy for HES/CEL. As such, this model may aid in the development of drugs that specifically target F/P+ HES/CEL.
Acknowledgements

The authors are thankful to Gary Gilliland for his critical comments and suggestions, Jan Cools for his advice in the experiment using imatinib and his suggestions, Elizabeth Stover for her advice in the experiment using imatinib. Shuichi Abe for technical assistance and suggestions in histological analysis, Patricia Fulkerson and Susan Wert for their advice in the histological analysis of the lung, Jeff Bailey for technical assistance in bone marrow transplantation, Melissa McBride for preparing IL-5 (CD2) Tg mice, Victoria Summey-Harner, Chad Harris, Kathy Szczur, and Tracy Hopkins for their assistance in the experiment using imatinib. Toru Oka for his advice in heart histology, Andrea Lippelman for her editorial assistance and the flow cytometry core facility at the Division of Experimental Hematology for providing support in our FACS analysis.
References

myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood. 2003;101:4660-4666

Yamada et al.

33. Tateno H, Crocker PR, Paulson JC. Mouse Siglec-F and Human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6′-Sulfo-Sialyl Lewis X as a preferred glycan ligand. Glycobiology. 2005

34. Zhang JQ, Biedermann B, Nitschke L, Crocker PR. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol. 2004;34:1175-1184

42. Slungaard A, Vercellotti G, Zanjani E, Ascensao J, Jacob HS. Tumor-induced eosinophilia and endocardial fibrosis: evidence for ectopic eosinophilopoietin
production and toxic O2 metabolite-mediated endothelial damage. Trans Assoc Am Physicians. 1982;95:8-11

43. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83:2759-2779

45. Roufosse F, Cogan E, Goldman M. Recent advances in pathogenesis and management of hypereosinophilic syndromes. Allergy. 2004;59:673-689

Figure legends

Figure 1. Blood cell counts in the murine eosinophilic disease model induced by the F/P fusion gene Mice transplanted with non-transgenic (Tg), mock-transduced (non-Tg-mock); IL-5Tg, mock-transduced (IL-5Tg-mock); non-Tg, F/P-transduced (non-Tg-F/P) and IL-5Tg, F/P-transduced (IL-5Tg-F/P) HSC/P were analyzed at four weeks after transplantation. Automated total cell leukocyte (A) counts and eosinophil (B) counts assessed by Discombe’s staining were performed. Data are shown as mean ± S.D. and represent 10-12 mice per group, pooled from 3 independent experiments. *p<0.05, **p<0.01: compared to non-Tg-mock, ##p<0.01: compared to IL-5Tg-mock.

Figure 2. CD11b, Siglec-F, and CCR3 coexpression defines a highly specific murine eosinophil population by flow cytometry Peripheral blood from CD2-IL-5 transgenic BALB/c mice was stained with anti-CCR3-PE, anti-Siglec-F-PE, and CD11b-APC antibodies followed by 7-AAD and sorted for CD11b+/CCR3+/low and CD11b+/Siglec-F+/low populations in 7-AAD− cells. Cytospins were prepared from sorted cells and were stained with Diff-Quick (optical magnification: x 500).

Figure 3. Analysis of spleen and bone marrow in a murine eosinophilic disease model induced by the F/P fusion gene (A) Spleen weight of the same groups of transplanted mice as shown in Figure 1. Data are shown as mean ± S.D. and represent 10-12 mice per group, pooled from 3 independent experiments. **p<0.01: compared to non-Tg-mock; ##p<0.01 compared to IL-5Tg-mock. Histopathological analysis of spleen (B)
and bone marrow (C) were performed at 4 weeks by hematoxylin/eosin staining for sectioned tissue and Diff-quick staining for cytospins. Representative examples (out of 5-12 mice per group, pooled from 3 independent experiments) are shown in panel B and C (upper left: non-Tg-mock; lower left: non-Tg-F/P; upper right: IL-5Tg-mock; lower right: IL-5Tg-F/P, optical magnification: x 500). Arrows in panel C indicate eosinophils. Inset of panel B shows cytospin of IL-5Tg F/P recipient spleen (optical magnification: x 500).

Figure 4. Eosinophil infiltration in the liver, kidney and lung of murine eosinophilic disease model induced by F/P fusion gene and IL-5 overexpression Histopathological analysis of liver (A), kidney (B), and lung (C) in IL-5Tg-F/P recipient mice was performed by hematoxylin and eosin (for A, B and C) and anti-MBP staining (C [inset]). Representative examples (out of 3-7 mice per group, pooled from 3 independent experiments) are shown. Optical magnifications are x 125. Insets represent blow-ups of original pictures with overall magnifications of x 2000 in A and B, at x 500 in C. Arrow is pointing to an eosinophil infiltrate in the liver and kidney, respectively.

Figure 5. Quantitative histopathological analysis of the heart and small intestine in the murine eosinophilic disease model induced by F/P fusion gene and IL-5
Yamada et al. FIP1L1-PDGFRα-induced HES/CEL

overexpression Representative examples (out of 3-4 mice per group) of eosinophil content of heart (A) and small intestine (B) of non-Tg-mock (upper, left), non-Tg-F/P (lower, left), IL-5Tg- mock (upper, right) and IL-5Tg-F/P (lower, right) mice are shown in panel A and B. Optical magnifications are x 125. Quantitative analysis of the content of MBP⁺ eosinophils in heart (C) and small intestine (D) of mice depicted above were performed. Data are shown as mean ± S.D. *p<0.05, **p<0.01: compared to non-Tg-mock and #p<0.05, ##p<0.01: compared to IL-5Tg-mock.

Figure 6. Comparison between the murine eosinophilic disease model induced by the F/P fusion gene and the BCR/ABL-induced disorder under conditions of IL-5 overexpression Mice transplanted with non-Tg, F/P-transduced (non-Tg F/P), IL-5Tg, F/P transduced (IL-5Tg-F/P), non-Tg, p210-BCR/ABL-transduced (non-Tg-BCR/ABL) and IL-5Tg, p210-BCR/ABL transduced (IL-5Tg-BCR/ABL) HSC/P were analyzed just after disease development. Total eosinophil counts using Discombe’s staining (A) and frequency of CCR3⁻CD11b⁺/low cells in EGFP⁺/7AAD⁻ or EGFP⁻/7AAD⁻ by flow cytometer (B) was measured when they fully developed diseases. The eosinophil count (eosinophils/mm³) in all samples was divided by the average of those of IL-5Tg-mock recipients in each experiment for standardization. Data represent 6-10 mice per group, pooled from 2 or 3 independent experiments (C). Representative example (out of 3-5 mice per group, pooled from one or two independent experiments) of expression of IL-5 receptor α on EGFP⁻ (left panel) and EGFP⁺ (right panel) splenocytes in IL-5Tg-mock (blue line), IL-5Tg-F/P (red line), and IL-5Tg-BCR-ABL (green line) as analyzed by flow cytometry is shown.
Table 1. Frequency of CCR3\(^{+}\)CD11b\(^{-}\)\(^{\text{low}}\) and Siglec-F\(^{+}\)CD11b\(^{-}\)\(^{\text{low}}\) in EGFP\(^{+}\)TAA-D cells (%)

<table>
<thead>
<tr>
<th></th>
<th>CCR3(^{+})CD11b(^{-})(^{\text{low}})</th>
<th>Siglec-F(^{+})CD11b(^{-})(^{\text{low}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Tg-MOCK</td>
<td>IL-5Tg-mock</td>
</tr>
<tr>
<td>Peripheral blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spleen</td>
<td>4.4 ± 2.05</td>
<td>34.9 ± 8.97(^*)</td>
</tr>
<tr>
<td>BM</td>
<td>2.8 ± 1.18</td>
<td>7.3 ± 3.01(^*)(#)</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.3 ± 0.67</td>
<td>20.7 ± 3.06(#)</td>
</tr>
<tr>
<td>BM</td>
<td>5.1 ± 0.89</td>
<td>25.7 ± 4.54(#)</td>
</tr>
</tbody>
</table>

\(^*\) p<0.05: compared to non-Tg-mock
\(^\#\) p<0.05: compared to IL-5Tg-mock
\(\|\) p<0.05: compared to non-Tg-F/P
Data are shown mean ± S.D. of % of cells in each group.
Table 2. Frequency of EGFP+ cells in peripheral blood of secondary recipients (%)

<table>
<thead>
<tr>
<th>weeks post-transplantation</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-5Tg-mock (n=4)</td>
<td>9.1 ± 2.79</td>
<td>10.4 ± 3.20</td>
<td>12.6 ± 2.16</td>
<td>10.6 ± 1.08</td>
<td>9.4 ± 2.44</td>
</tr>
<tr>
<td>IL-5Tg-F/P (1/10) (n=3*)</td>
<td>66.2 ± 1.99</td>
<td>20.5 ± 5.77</td>
<td>9.0 ± 3.81</td>
<td>5.3 ± 3.33</td>
<td>2.5 ± 0.92</td>
</tr>
</tbody>
</table>

Data are shown mean ± S.D. of % of cells in each group.
* except 10 weeks (n=2 in 10 weeks)
Figure 1

A

WBC (X10^3/mm^3)

Non-Tg-mock
IL-5Tg-mock
Non-Tg-F/P
IL-5Tg-F/P

B

Eosinophils (X10^3/mm^3)

Non-Tg-mock
IL-5Tg-mock
Non-Tg-F/P
IL-5Tg-F/P

p < 0.05

p < 0.0001
Figure 2
Figure 4
Figure 5

(A) Non-Tg vs. IL-5Tg

mock

FIP

(C) p < 0.05

Eosinophils/mm²

Non-Tg IL-5Tg Non-Tg IL-5Tg
mock mock F/P F/P

(D) p < 0.001

Eosinophils/mm²

Non-Tg IL-5Tg Non-Tg IL-5Tg
mock mock F/P F/P
Figure 6

(A) Fold change

(B) %CCR3+ CD11b+low in EGFP+ or EGFP-

(C) EGFP-

IL-5Rα+

IL-5Rα+

IL-5Tg-mock

IL-5Tg-BCR/ABL

IL-5Tg-F/P
The FIP1L1-PDGFRα fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease

YOSHIYUKI YAMADA, MARC E ROTHENBERG, ANDREW W LEE, HIROKO SAITO AKEI, ERIC B BRANDT, DAVID A WILLIAMS and JOSE A CANCELAS