The Leukotriene B₄ Lipid Chemoattractant Receptor BLT1 Defines Antigen-primed T-cells in Humans

Running title: The BLT1 Receptor Defines Antigen-primed T-cells

Sabina A. Islam¹,², Seddon Y. Thomas¹, Christoph Hess¹, Benjamin D. Medoff³, Terry K. Means¹, Christian Brander³, Craig M. Lilly⁴, Andrew M. Tager¹, Andrew D. Luster¹

¹Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

²Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

³Massachusetts General Hospital and Partners AIDS Research Center, Harvard Medical School, Boston, Massachusetts, USA

⁴Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Supported by grants from the National Institutes of Health (KO8 AI055663 to SAI, RO1 AI050892 to ADL), Infectious Diseases Society of America Young Investigator Award (SAI), and the Dana Foundation (ADL).

SAI designed research, performed research, analyzed data and wrote the paper. SYT designed research, performed research and helped write the paper. CH designed research, performed research and helped write the paper. BDM designed research, performed research and provided donor samples. TKM designed and performed research. CB designed research and provided donor samples. CML designed research and provided donor samples. AMT designed research and helped write the paper. ADL designed research and wrote the paper.

Correspondence should be addressed to:
Andrew D. Luster
Massachusetts General Hospital
Building 149, 13th Street
Charlestown, MA 02129
Phone: (617) 726-5710
Fax: (617) 726-5651
Email: Luster.Andrew@mgh.harvard.edu

Word count: Abstract 193, Text 4983
Scientific heading: Chemokines
Abstract

We have recently shown that the LTB₄-BLT1 pathway is important in early effector T-cell recruitment in mouse models of inflammation. Here we characterize the phenotype and function of human peripheral blood BLT1⁺ T-cells in health and illustrate their involvement in asthma and acute infection. In healthy individuals, BLT1⁺ T-cells are a rare peripheral blood T-cell population enriched for the activation markers CD38 and HLA-DR. Compared to BLT1⁻ T-cells, a larger proportion of peripheral blood BLT1⁺ T-cells express the effector cytokines IFNγ and IL-4 and inflammatory chemokine receptors, CCR1, -2, -6 and CXCR1. Consequently, in healthy individuals peripheral blood BLT1⁺ T-cells are a rare antigen-primed T-cell subset with unique phenotypic, migratory and functional properties. BLT1 expression on T-cells is tightly regulated by inflammation and only transiently expressed after naïve T-cell activation by dendritic cells. Though rare in the peripheral blood of healthy individuals, BLT1⁺ T-cells are markedly increased in frequency in the peripheral blood in response to acute EBV infection and moderately increased in the airways of asymptomatic allergic asthmatics. Our studies provide novel insights into the LTB₄-BLT1 lipid chemoattractant pathway in human T-cell responses, and how it may link innate and adaptive immunity.
Introduction

Recently, novel roles for bioactive lipids, such as the leukotrienes and sphingosines, in immune cell trafficking and regulation have been elucidated \(^1\). A key feature of bioactive lipid chemoattractants is the rapidity with which they are produced as they are synthesized in minutes as opposed to the hours required to synthesize peptide chemoattractants \(^2,3\). Leukotriene B\(_4\) (LTB\(_4\)) is one such molecule derived by 5-lipoxygenation of arachidonic acid in activated innate leukocytes at inflammatory sites \(^4\). LTB\(_4\) mediates its activity via two G protein-coupled seven transmembrane spanning receptors named BLT1 and BLT2 \(^5,6\). BLT1 is the high-affinity receptor and is preferentially expressed on peripheral leukocytes, while BLT2 is a lower affinity receptor expressed more ubiquitously.

Since discovery in 1982, LTB\(_4\) has been a known potent chemoattractant for myeloid cells \(^4,5,7\). Nevertheless, it has recently been appreciated that LTB\(_4\) is also a potent chemoattractant for effector T-cells \(^8\)\(^-\)\(^10\). We have recently described that BLT1 mRNA is highly expressed in mouse effector T-cells, and LTB\(_4\) potently induces their firm adhesion and chemotaxis \(^8\). Although mouse BLT1 protein levels have not been characterized, we have shown that the LTB\(_4\)-BLT1 pathway performs an important function recruiting early effector T-cells to sites of antigen re-challenge using BLT1-deficient mice in an active immunization model of asthma.

Nevertheless, little is known as to how these findings in mice can be extended to human T-cell trafficking or disease pathogenesis. Prior to the identification of BLT1, it was
shown that LTB4 bound a small proportion of human peripheral blood T-cells11,12, and could induce their chemotaxis both \textit{in vitro} and \textit{in vivo} after topical application of LTB4 11,13. Studies have noted very low level expression of BLT1 in human peripheral blood T-cells as measured by RNA levels or cell surface protein expression14,15. The phenotype and function of human BLT1+ T-cells and the functional significance of the LTB4-BLT1 lipid chemoattractant pathway in human adaptive immune cell trafficking, therefore, still remain to be defined.

A cardinal feature of adaptive immunity is the ability to mount swift recall responses to cognate antigen challenge16,17. To implement effector functions, naïve and memory T-cells are first activated by cognate antigen presenting cells, usually in lymphoid organs, and then home to tissue sites of inflammation18,19. Based on CCR7 mediated lymphoid homing, memory cells have recently been broadly defined as CCR7+ central memory, and CCR7- effector memory populations20. However, in part because of the stochastic nature of \textit{in vivo} priming events and antigen re-exposure at different tissue sites, memory T-cells are a very heterogeneous population21-24. Thus memory T-cells exist across a broad spectrum with regard to phenotype, function and differentiation.

Signals regulating T-cell activation or differentiation are also tightly linked to the expression of specific chemokine receptors involved in T-cell trafficking25,26. In fact, distinct patterns of responsiveness to migratory cues have helped define the function of different memory/effector T-cell subsets both in terms of differentiation stage, as well as tissue localization and cellular interactions. Subsets of memory/effector T-
cells, such as Th1 or Th2-polarized T-cells, follicular T helper cells, and tissue-specific T-cells, all have unique chemokine receptor and adhesion molecule profiles. Here we define the phenotype and function of human BLT1 T-cells, and extend our prior observation that LTB4 mediates effector T-cell homing prior to that induced by peptide chemoattractants. We present novel findings that BLT1 expression defines a rare but unique subset of peripheral blood antigen-primed T-cells during health, capable of rapidly secreting polarizing cytokines and trafficking into tissues early in inflammatory responses. Further, during active acute inflammatory responses these cells transiently expand into a much larger effector population, supporting a role for this receptor in peripheral effector trafficking.
Materials and Methods

Study Subjects

Atopic asthmatics were identified by skin testing to cat allergen. Bronchoalveolar lavage (BAL) cells and PBMC samples were obtained from cat allergen-sensitive atopic asthmatics as described 28. Normal BAL were obtained from healthy lung transplant donors. Donors were studied in the acute and chronic/latent phases of EBV infection. PBMC were obtained from healthy volunteers or fresh buffy coats from the Massachusetts General Hospital blood bank. All human subject protocols were approved by the Institutional Review Board. Informed consent was obtained from all study participants.

Cell preparation and culture

PBMC were prepared by density gradient centrifuge on Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). Untouched CD4+ T-cells and CD8+ T-cells, and CD45RA+/CD45RO+ CD4+ or CD8+ T-cells were isolated using magnetic bead-depletion (Miltenyi Biotec, Auburn, CA). Dendritic cells (DCs) were prepared from fresh buffy coats as previously described 29. CD4+ or CD8+ T-cells were cultured with DC’s as described 30. γδ and NKT cell cultures were obtained by labeling fresh PBMC with fluorochrome-conjugated γδ and Vα24 antibodies, magnetic bead positive selection (Miltenyi) and activation with 2 ug/ml PHA. PB CD1d-restricted NKT cells clones were generated from healthy donors as previously described 31,32. BAL cells were isolated by passing BAL through gauze to remove mucus, then washed and resuspended in 1% FCS PBS.

From www.bloodjournal.org by guest on September 14, 2017. For personal use only.
Flow cytometry reagents and staining

Unconjugated monoclonal antibodies to BLT1 (clones 202/7B1 and 203/14F11) were kindly donated by C. Owman\(^1\) (Lund University, Sweden) and FITC conjugated BLT1 mAB (202/7B1) was obtained from Serotec (Oxford, UK), and analyzed with appropriate isotype control antibody. Abs to CCR1 (53504.111), CXCR1 (42705.111), CCR2 (48607.121), CXCR2 (48311.211), CCR3 (61828.111), CXCR5 (51505.111), CCR6 (53103.111) and CCR7 (150503) were obtained from R&D Systems (Minneapolis, MN). Abs to CXCR3 (1C6), CCR4 (1G1), CXCR4 (12G5), CCR5 (3A9), CCR6 (11A9), CD3 (UCHT1), CD4 (SK3), CD8 (RPA-T8), CD19 (SJ25C1), CD69 (FN50), CD25 (M-251), CD38 (HIT2), HLA-DR (G46-6), CD27 (M-T271), CD28 (CD28.2), CD45RO (UCHL1), CD45RA (HI100), \(\gamma\delta\) (B1), perforin (27-35) and 6B11 were purchased from BD PharMingen (San Diego, CA). Abs to CX3CR1 (2A9-1) was purchased from MBL (Nakaku Nagoya, Japan), CD57 (NC1) and \(\nu\alpha24\) (C15) were purchased from Beckman Coulter (Fullerton, CA). The 6B11 antibody is directed against an invariant \(\nu\alpha24J\alphaQ\) epitope possessed by NKT cells. Dual staining with \(\nu\alpha24\) and 6B11 enables specific identification of a canonical TCR rearrangement on circulating NKT cells, comparable in specificity to tetramer staining\(^3\). The following human leukocyte antigen (HLA) tetramers were used for analysis of EBV responses: HLA-B8-restricted FLRGRAYGL (EBNA-3A) and QAKWRLQTL (EBNA-3A), HLA-B8-restricted RAKFKQLL (BZFL1), and HLA-A2-restricted GLCTLVAML (BMLF1). Cells were blocked with 10% human serum before staining. Intracellular cytokine and perforin staining was performed as described\(^3\).
FACS analysis and sorting

Surface expression of various markers was assessed using CellQuest software on a FACSCalibur (BD Biosciences, Mountain View, CA) flow cytometer. 1-2 million events per PBMC sample were obtained to acquire several hundred BLT1⁺ CD4⁺ and CD8⁺ T events. Samples were stained with CD14 (M5E2, BD PharMingen) or 7AAD (BD PharMingen) to exclude monocytes or dying cells to define FSCₘᵋ lymphocyte scatter gates. Cells were sorted on a Cytomation MoFlo high speed cell sorter. Purity of sorted cells was greater than 85%.

Quantitative PCR

Quantitative PCR was performed on cDNA obtained from total RNA extracted from sorted cells as described²⁹. The primers used to amplify BLT1 mRNA are the following: 5’GCCCTGGAAAACGAACATGA and 3’TTAGATGGAAGGCCCGGTG.

Chemotaxis and Calcium Flux

Sorted cells were rested in 0.5% FCS RPMI overnight, resuspended in 1% BSA RPMI and loaded in a disposable chemotaxis apparatus (ChemoTx; Neuroprobe, Gaithersburg, MD). Chemokines were placed in the lower wells. After incubation for 2 h (*in vitro* activated cell lines) or 3 h (*ex vivo* sorted cells) at 37°C, cell counts in lower wells were determined with an inverted microscope. In some experiments CP-105,696 (obtained from Pfizer), a small molecule that blocks binding of LTB₄ to its receptor³⁴, was added at
different concentrations to upper and lower wells of the chamber. Calcium flux was performed on NKT clones as described \(^{32}\).

Statistical analyses

Unpaired Student’s \(t\)-test was used (two-tailed). \(P\) values less than 0.05 were considered to be significant.
Results

A minor subset of peripheral blood (PB) CD4+ and CD8+ T-cells display surface BLT1

We pursued a strategy of *ex vivo* characterization to more closely approximate the phenotype and function of BLT1+ human PB CD4+ and CD8+ T-cells. Using recently available monoclonal antibodies we examined BLT1 surface expression on freshly isolated PBL from 15 healthy donors by flow cytometry. BLT1 was present on a small fraction of total PB CD3+CD4+ T-cells (0.42±0.49% SD), and CD3+CD8+ T-cells (0.69±0.44% SD) at baseline (Fig. 1a).

A substantial fraction of PB NKT and γδ T-cells display surface BLT1 in healthy donors

We also characterized BLT1 expression on innate lymphocytes. In contrast to conventional αβ T-cells, a much larger fraction of these T-cells display surface BLT1 in healthy individuals (Fig. 1a). 5±4% SD (range 0.9-11.1%, n=7) of PB γδ T-cells display surface BLT1. Rare CD1d-restricted NKT cells were identified directly from PBMC by dual staining of a canonical TCR rearrangement using antibodies specific for the TCR Vα24 chain and the invariant Vα24JαQ (6B11). We found that 13±22% SD (range 0-64%, n=10) of PB NKT cells express surface BLT1.

Surface BLT1 expression is enriched on FSChi CD4+ and CD8+ T lymphocytes

We noted a striking enrichment of BLT1 surface expression on freshly isolated FSChi large lymphocytes (Fig. 1b, total lymphocyte gate = FSClo (forward scatter)lo + FSChi (forward scatter)hi lymphocyte gate). These lymphocytes are SSClo (side scatter)lo as they have low granularity, but have 2-3x the diameter or forward scatter (FSC) of
small lymphocytes. They are not very recently activated as they are CD69−CD25− (data not shown). As shown in Fig. 1b and 1c, 16-fold more FSChi gated CD3+CD4+ T-cells express surface BLT1 and almost 11-fold more FSChi CD3+CD8+ T-cells express surface BLT1 (p values<0.002). We were intrigued by this observation, as other investigators have reported a circulating CD62LhiCD27+ resting memory CD4+ T-cell population with similar SSClo and FSChi scatter properties that have important roles in immune surveillance and recall responses35.

PB FSChi T-lymphocytes of healthy donors are enriched for BLT1 mRNA

To confirm that BLT1 expression is increased on FSChi lymphocytes we FACS sorted freshly isolated PBMC for FSChi and FSClo CD3$^+$CD4$^+$ and CD3$^+$CD8$^+$ cells and performed quantitative mRNA analysis by real-time PCR. As shown in Fig. 1d, FSChi CD4$^+$ T-cells express BLT1 mRNA at levels on par with CXCR3, while FSChi CD8$^+$ T-cells express BLT1 mRNA at levels on par with CXCR3 and CCR5. Compared to FSClo
lymphocytes, FSC^hi CD4^+ and CD8^+ T-cells were enriched at the mRNA level for CXCR3, CCR5 and BLT1, consistent with a more differentiated profile.

Fig. 2

A

<table>
<thead>
<tr>
<th></th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD45RO</td>
<td>0.26</td>
<td>0.54</td>
</tr>
<tr>
<td>CD27</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>CD28</td>
<td>0.50</td>
<td>0.53</td>
</tr>
</tbody>
</table>

FSChi Lymphocyte Gate

B

<table>
<thead>
<tr>
<th></th>
<th>BLT1+ CD4</th>
<th>BLT1+ CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD69</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CD25</td>
<td>3.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>CD38</td>
<td>52.5%</td>
<td>47.7%</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>37.1%</td>
<td>18.5%</td>
</tr>
</tbody>
</table>

C

![Bar charts comparing % CD38 and % HLA-DR](image)

BLT1 is preferentially expressed on pre-terminally differentiated antigen-primed PB T-cells in health

To further characterize this BLT1-enriched population, we examined cell surface markers associated with memory and effector T-cell differentiation. We find that PB BLT1^+ T-cells are mostly antigen experienced CD45RO^+ cells (Fig. 2a) that are not terminally differentiated and have not lost expression of CD27 or CD28. Compared to bulk T-cells,
BLT1 is preferentially expressed on CD45RO⁺ memory T-cells (p values <0.005). The majority of BLT1⁺ T-cells are also CD62Lhi (data not shown), consistent with a pre-terminally differentiated lymphocyte population and a central memory phenotype²⁰.

PB BLT1⁺ T-cells are enriched for markers of late activation in healthy donors

When we characterized PB BLT1⁺ T-cells according to markers of activation (Fig. 2b), we found that BLT1⁺ T-cells are CD69⁻ and predominantly CD25⁻, thus have not been recently activated. Surprisingly, we found that the activation markers CD38 and HLA-DR are more commonly expressed by CD4⁺ and CD8⁺ BLT1⁺ T-cells compared to bulk T-cells (Fig. 2b and 2c, p values <0.0005 and <0.02 respectively). CD38 and HLA-DR are markers of late activation, and have been reliably associated with antigen-specific memory CD8⁺ T-cell populations ³⁶,³⁷. However, recently a novel role for CD38 in leukocyte migration has been elucidated ³⁸,³⁹, which demonstrated that CD38 enhances chemotactic responsiveness and inflammatory tissue entry of dendritic cells ³⁹.

PB BLT1⁺ T-cells are enriched for a subset of inflammatory chemokine receptors associated with memory/effector T-cells in healthy donors

We next studied surface chemokine receptor co-expression to glean insight into tissue localization and cellular interactions of BLT1⁺ T-cells, and the temporal patterns in which they might execute effector functions (Fig. 3 and table 1). CD4⁺ BLT1⁺ T-cells express significantly higher levels of the Th1-associated chemokine receptors, CXCR3 (58%) and CCR5 (30%) compared to bulk CD4⁺ T-cells (p values <0.01). In contrast, CD8⁺ BLT1⁺ T-cells do not express CXCR3 (88%) or CCR5 (41%) at levels significantly
different from bulk CD8$^+$ T-cells. However, CD8$^+$ BLT1$^+$ T-cells express CCR4 (p value 0.05) and CCR6 (p value 0.047) at higher levels than bulk, consistent with a less differentiated central memory phenotype. Furthermore, 73% of CD4$^+$ BLT1$^+$ T-cells, and 54% of CD8$^+$ BLT1$^+$ T-cells are CCR7$^+$, suggesting an ability to home to lymphoid organs, also consistent with a central memory phenotype.

Fig. 3

Notably, the inflammatory chemokine receptors, CCR1, CXCR1, CCR2 and CCR6, are expressed at significantly higher levels on both CD4$^+$ and CD8$^+$ BLT1$^+$ T-cell populations compared to bulk T-cells (Fig. 3 and table 1). Their ligands are induced at the onset of the immune response in inflamed tissue by resident cells, activated innate
cells or activated mature dendritic cells41-44. The fold enrichment of CCR1 and CCR2 on CD4+BLT1+ T-cells (145±74 fold and 91±42 fold, respectively) and CD8+BLT1+ T-cells (80±39 fold and 83±38 fold, respectively), were exceptionally dramatic. Though it has been reported that CCR2 can be expressed at relatively high levels on circulating memory CD4+ cells33, we and others have noted minimal CCR2 expression on freshly isolated T-cells32,45. In fact, other investigators have reported high level CCR1 and CCR2 expression only on CD45RO+ memory cells in the presence of IL-2 \textit{in vitro}45. In this respect BLT1, CCR1 and CCR2 are similar as they are expressed at very low levels on PB T-cells in the absence of ongoing inflammation.

\textit{BLT1}+ CD4+ T-cells are more polarized than BLT1- CD45RA- CD4+ T-cells in PB

We determined the effector functions of memory/effector BLT1+ CD4+ T-cells in healthy donors. Fresh negatively selected CD4+ T-cells were activated with PMA and ionomycin to determine polarizing effector cytokine production by intra-cytoplasmic staining. BLT1+ CD45RA- CD4+ T-cells contain a significantly larger fraction of IFN\textsubscript{\gamma}-producing Th1 cells, IL-4 producing Th2 cells, and simultaneous IFN\textsubscript{\gamma} and IL-4 producing Th0 cells than BLT1- CD45RA- CD4+ T-cells (Fig. 4a and 4b). Though BLT1+ Th1 cytokine producing cells were the highest in overall frequency among all BLT1+ CD4+ T-cells, Th0 cytokine producing cells were comparatively more increased among BLT1+ T-cells than BLT1- CD45RA- T-cells.

IFN\textsubscript{\gamma}-producing cells are more frequent among BLT1+ CD8+ T-cells than memory/effector BLT1 CD8+ T-cells in PB
When we investigated effector functions of BLT1⁺CD8⁺ T-cells (Fig. 4c and 4d), IFN\(\gamma\) -producing cells were significantly more common among BLT1⁺CD8⁺ T-cells than memory/effector BLT1⁻CD8⁺ T-cells after activation. IFN\(\gamma\) producing BLT1⁺CD8⁺ T-cells were present in both the CD45RA⁻ and the CD45RA re-expressing memory/effector subset. Fresh negatively selected CD8⁺ T-cells were activated with PMA and ionomycin. After activation, BLT1⁺CD45RA⁻CCR7⁻CD8⁺ T-cells contained a striking 5±2 fold larger fraction of IFN\(\gamma\) -producing cells than did BLT1⁺CD45RA⁺ CCR7⁺CD8⁺ T-cells (p value 0.0007).
We then studied the cytotoxic potential of freshly isolated unstimulated peripheral blood BLT1⁺CD8⁺ T-cells by intracellular staining for perforin. BLT1⁺CD8⁺ T-cells did not contain significantly different amounts of intracellular perforin compared to BLT1⁻ CD8⁺ T-cells (Fig. 4c and 4d). We also characterized CD57 expression, a marker generally associated with CCR7⁻ terminally differentiated cytotoxic T lymphocytes (CTLs). Only a minority of BLT1⁺CD8⁺ T-cells express CD57, indicating that these cells are not terminally differentiated CTL (data not shown). Thus, PB BLT1⁺CD8⁻ T-
cells, a high frequency of which express CCR7 (Fig. 3 and Table 1), can rapidly secrete the effector cytokine IFN\(\gamma\) when activated, but lack the potent cytolytic potential of more differentiated CTLs.

FSC\(^{hi}\) T-lymphocytes are functionally responsive to LTB\(_4\)

In chemotaxis assays (Fig. 4e), FSC\(^{lo}\) CD4\(^+\) and CD8\(^+\) T-cells migrated to SDF-1\(\alpha\), but not to LTB\(_4\). In contrast, despite BLT1\(^+\) T-cells being a minor population of all FSC\(^{hi}\) T-cells (Fig. 1b), FSC\(^{hi}\) CD4\(^+\) and CD8\(^+\) T-cells still migrated to LTB\(_4\) with peak chemotactic indices of 2-3. These cells also chemotaxed to 10 and 100 nm SDF-1\(\alpha\), but more robustly than FSC\(^{lo}\) cells at these concentrations. Furthermore, the specific LTB\(_4\) receptor antagonist CP-105,696 \(^{34}\) inhibited chemotaxis of FSC\(^{hi}\) T-cells to LTB\(_4\) (Fig. 4f). Cells used in these assays chemotaxed similarly to 100 nm SDF-1\(\alpha\) in the absence and presence of CP-105,696 (data not shown). Thus, FSC\(^{hi}\) T-cells are enriched for BLT1 by surface protein and are functionally responsive to LTB\(_4\).

In vitro primed effector T-cells transiently upregulate surface BLT1

As only a small fraction of PB T-cells express BLT1 during health, we wanted to determine if BLT1 expression could be induced during active inflammation. We found that BLT1 is most robustly induced by priming naïve (CD45RO\(^-\)CD25\(^-\)) T-cells with allo-activated dendritic cells in vitro. Under these conditions, activated T-cell surface BLT1 is induced at day 6, when the majority of T-cells are CD45RO\(^+\)CD25\(^+\) FSC\(^{hi}\) blasts (Fig. 5a). Induction of lymphocyte chemokine receptor expression is developmentally regulated, and other investigators have noted CCR1, CCR2, CCR5, and CXCR6 for personal use only.
induction on *in vitro* activated T-cells on or after day 6, as opposed to CXCR5, CXCR3 or CCR4, which are expressed earlier.

Fig. 5

In a representative example in Fig. 5, a striking 38% of *in vitro* activated effector CD4+ T-cells (Fig. 5a, bottom left panel) and 39% of effector CD8+ T-cells were induced to express surface BLT1 (Fig. 5b). *In vitro* activated effector T-cells also chemotax to LTB4, and this chemotaxis was abrogated by the specific LTB4 receptor antagonist CP-
105,696 in a dose-dependent fashion (Fig. 5c and 5d). Cells used in these assays chemotaxed similarly to 10 nm SDF-1α in the absence and presence of CP-105,696 (data not shown).

BLT1 is not stably expressed on in vitro activated T-cells. It is transiently expressed between days 6-10 of activation, peaking at day 8, and subsequently undergoes downregulation. Furthermore, we failed to see BLT1 surface expression or ligand responsiveness on several T-helper and CTL lines or clones, maintained in long-term culture by several rounds of re-stimulation (data not shown).

In vitro activated innate T-cells upregulate surface BLT1
We found when activated in vitro, BLT1 surface expression is also dramatically upregulated on innate γδ T-cells and NKT cells (Fig. 5e). When Miltenyi bead purified γδ and Vα24 cells were activated with PHA, BLT1 surface expression started to increase by day 4. Furthermore, BLT1 expressed on re-stimulated NKT clones demonstrated functional responsiveness to LTB4 by calcium flux (Fig. 5f), as well as chemotaxis (data not shown).

BLT1+ memory/effector T-cells are present in the lungs of asymptomatic asthmatics
The ability to rapidly secrete T-cell effector cytokines when activated and the marked co-expression of inflammatory chemokine receptors suggest that PB BLT1+ T-cells may migrate into peripheral tissues to perform effector functions. We studied surface BLT1 expression on tissue-infiltrating lymphocytes freshly isolated from bronchoalveolar
lavage (BAL) samples obtained from asymptomatic asthmatics (Fig. 6). BLT1+ T-cells were enriched in the BAL compartment compared to simultaneously obtained blood samples in these subjects. Fig. 6a is a representative example in which blood and BAL T-cell BLT1 expression is compared. Blood and BAL total T-cell and BLT1+ T-cell phenotype are compared in Fig. 6b, and demonstrate that BAL resident T-cells are mostly memory in phenotype. BLT1 surface expression was significantly increased on both BAL memory CD4+ T-cells (p=0.042) and CD8+ T-cells (p=0.034) compared to blood T-cells (Fig. 6c).
It is intriguing to note that within 24 hours of segmental allergen challenge, BAL resident CD8⁺ T-cells completely lost surface BLT1 expression (SYT, CML, ADL, manuscript in preparation). Only two other chemoattractant receptors, CXCR3 and CCR6, lost surface expression at this early time point after allergen challenge. Furthermore, 4 of 5 study subjects completely lost surface BLT1 expression on blood FSCʰi CD4⁺ T-cells within 24 hours of allergen challenge.
Compared to atopic asthmatic individuals, BAL resident T-cells from 2 healthy control subjects did not express increased surface BLT1 on repeat measurements (n=4) (data not shown). Furthermore, BAL T-cells from lung transplant recipients with evidence of chronic rejection express increased BLT1, while BAL T-cells from transplant recipients without histological evidence of rejection do not express BLT148. These data suggest that BLT1+ T-cells traffic more into inflamed tissue compared to non-inflamed tissue.

Fig. 7
During acute EBV infection BLT1 surface expression is dramatically increased on activated tetramer$^+$CD8$^+$ T-cells

To further define the role of BLT1 during inflammation in humans, we studied surface BLT1 expression on antigen-specific effector CD8$^+$ T-cells generated during the primary immune response to Epstein-Barr virus (EBV) (Fig. 7). In individuals with acute EBV infection, unlike in healthy individuals, a substantial number of activated blasts are present in the FSChi gate in PB (Fig. 7a). In Fig. 7a, using the HLA B8 restricted latent epitope FLR-specific CD8 tetramer in a representative example, we show that 31% of total circulating FLR-specific Tet$^+$CD8$^+$ T-cells express surface BLT1, while 24% of FSClo and 46% of FSChi FLR-specific Tet$^+$CD8$^+$ T-cells express BLT1. Compared to the Tet$^+$CD8$^+$ T-cell population for each specific tetramer studied in 4 different individuals with acute EBV infection (Fig. 7b), BLT1 was significantly enriched in the Tet$^+$CD8$^+$ T-cell population, in both the total lymphocyte and FSClo gates ($p<0.02$).

When Tet$^+$CD8$^+$ T-cell responses are compared, surface BLT1 expression is dramatically increased on activated antigen-specific PB CD8$^+$ T-cells during the acute phase of infection (p value 0.0002) (Fig. 7c) compared to the chronic phase. Consistent with the higher levels of CCR7 expression observed on BLT1$^+$CD8$^+$ T-cells in health (Fig. 3), more Tet$^+$CD8$^+$BLT1$^+$ T-cells re-express CCR7 in chronic compared to acute infection (Fig. 7c). When BLT1 expression on Tet$^+$CD8$^+$ T-cells was compared to other chemokine receptors, we noted that the relative increase in BLT1 expression was on par with that of other inflammatory chemokine receptors in the acute setting (Fig. 7d). In a representative example during acute infection, inflammatory chemokine receptors such as
CXCR3, CCR5, CXCR6 and CX3CR1 are increased on antigen-specific CD8+ T-cells, as is BLT1, while chemokine receptors such as CXCR1, CCR4, CXCR4, CCR6 and CCR7 are decreased. After resolution of acute infection, BLT1 is expressed at much lower levels on PB T4 Tet+CD8+ T-cells. Thus in the absence of acute inflammatory stimuli BLT1 expression on T-cells is subsequently downregulated, consistent with our observation of transient expression on in vitro activated effectors.
Discussion

Here, we present novel findings defining the phenotype and function of peripheral blood BLT1+ T-cells, which are a rare population of antigen-primed T-cells in healthy individuals. Our studies also establish that in vitro priming dramatically, though transiently, upregulates ligand responsive BLT1 expression on human effector T-cells. We thus provide new insights into LTB4-BLT1 mediated homing in humans during health and inflammation.

We extend mouse studies demonstrating BLT1 mediated effector T-cell trafficking by providing novel insights into unique features central to BLT1 expression on human effector T cells8-10. Despite BLT1+ T-cells being an extremely rare peripheral blood population in health, we have determined that BLT1 is markedly inducible on in vitro primed cells and during acute infection in vivo. Furthermore, BLT1+ T-cells are increased in the airways, but not blood, of asymptomatic asthmatics. Our data suggests that BLT1 plays a role in human effector T-cell inflammatory homing in the periphery. Moreover, investigators in our lab have recently shown that BLT1 mediates effector T-cell trafficking into the lung during rejection of the airways in a mouse model of lung transplant rejection48. Additionally, BLT1 was upregulated on human T lymphocytes
infiltrating the grafts of lung transplant recipients undergoing chronic rejection, further supporting a role for BLT1 mediated peripheral effector trafficking in humans.

Our study highlights a unique feature of the LTB4-BLT1 pathway in adaptive immunity, in that high level BLT1 expression on effector T-cells is transiently expressed and tightly regulated by antigen and inflammatory stimuli. Thus, in conditions of health, BLT1 is expressed only on a very rare PB T-cell population. This inflammation regulated expression of BLT1 parallels that of inflammatory chemokine receptors such as CCR1 and CCR2 on T-cells, and is distinct from that of other inflammatory chemokine receptors such as CXCR3 and CCR5 which are readily detected at high levels on PB T-cells.

Furthermore, in health we determined that peripheral blood BLT1+ T-cells are antigen primed memory/effector T-cells by defining their phenotype and function. By doing so we demonstrate that these BLT1+ T-cells possess migratory, phenotypic and effector properties consistent with those of immunomodulatory T-cells that may rapidly initiate secondary immune responses.

With regard to migratory features, blood BLT1+ T-cells are dramatically enriched for CD38 (p values <0.0005) compared to bulk T-cells. Given recent data on CD38-deficient mice, these data suggest that circulating memory BLT1+ T-cells may be equipped to rapidly migrate into inflamed peripheral tissue from blood during the earliest phases of inflammation. It has been proposed that CD38 may act as a sensor of tissue damage and
potentiates leukocyte chemotaxis39. Thus, CD38 may also be a marker of blood T-cells endowed with enhanced chemotactic responsiveness to chemokine ligands for which they bear receptors.

With regard to chemokine receptor mediated homing it is striking that inflammatory chemokine receptors, CCR1 (p values<0.00005), CXCR1 (p values<0.05), CCR2 (p values<0.00005), and CCR6 (p values<0.05), are significantly enriched on peripheral blood CD4+ and CD8+ BLT1+ T-cells. It has been reported that CCL2-CCR2 and LTB\textsubscript{4}-BLT1 act synergistically to recruit monocytes49. Other investigators report that LTB\textsubscript{4} strongly induces CCL2 production by human monocytes50, supporting a likelihood of cross-talk between these mediators and their receptors51. Therefore, BLT1 may work in combination or synergistically with strongly co-expressed chemokine receptors, such as CCR1, CXCR1, CCR2 and CCR6, to augment peripheral blood T lymphocyte extravasation into inflamed tissue.

Phenotypically, circulating BLT1+ T-cells are mostly SSClo FSChi CD62Lhi CCR7+ and CD27+, consistent with phenotypic features of memory T-cells involved in immune surveillance35 and central memory cells20. Murine studies have led to the proposal that by preventing activation induced cell death, CD27 promotes long-term survival of memory T-cells52. Human studies have also shown that long-lived memory CD4+53 and CD8+ T-cells do not differentiate to lose expression of CD2754. With regard to central memory cells, recently it has been shown that the chemokine receptors CXCR3, CCR4 and CXCR5 identify functional subsets within the human CD4+ central memory pool24.
BLT\(^1\) T-cells are not enriched for CXCR5 (data not shown), which identifies the least differentiated CD\(^4\) central memory\(^24\) subset. As Th1 cytokine producing cells are most frequent among BLT\(^1\)CD\(^4\) T-cells, it is not surprising that total BLT\(^1\) CD\(^4\) T-cells are significantly enriched for CXCR3 and CCR5, the Th1-associated chemokine receptors, compared to bulk CD\(^4\) T-cells (p values <0.01). However, as CCR2 and CCR1 are most strikingly enriched on all BLT\(^1\) CD\(^4\) T-cells, and BLT1 is expressed not only on Th1 cells, but also on Th2 and Th0 functional subsets, it is likely that BLT1 defines a unique subset common to the more functionally differentiated central memory T-helper subsets described by Rivino et al\(^24\).

Functionally, a larger fraction of blood BLT\(^1\) T-cells rapidly secrete polarizing effector cytokines compared to BLT\(^1\) memory/effector T-cells. CD\(^4\) BLT\(^1\) T-cells are particularly enriched for IFN\(\gamma\)^+IL-4^+ Th0 cells. Notably NKT cells, a very rare population in circulating blood (range 0.021- 0.051\%) \(^32\), possess a Th0 subset important for immune regulation \(^55\). Though rare in peripheral blood, NKT and \(\gamma\delta\) cells critically modulate the adaptive immune response by early secretion of IFN\(\gamma\), TNF\(\alpha\) or IL-4 \(^56,57\). Recently it has been shown that early secretion of IFN\(\gamma\) by NK cells can also influence Th1 polarization \(^58\). Polarizing cytokines critically induce and stabilize the generation of their own T-helper subset, while inhibiting development of the opposing subsets at the onset of the immune response by promoting auto amplification signaling loops \(^59\). Unlike immunomodulatory cytokines secreted by innate lymphocytes such as NKT and \(\gamma\delta\) T-cells in response to non-cognate inflammatory stimuli, effector cytokines secreted by
tissue infiltrating BLT1+ T-cells would be in response to cognate antigen rechallenge in secondary responses.

A significant fraction of BLT1+ T-cells express CCR7, suggesting they can migrate to draining lymph nodes from either blood, or from tissue as has been shown for CCR7+ memory/effector cells by investigators in our lab. There are also data on the expression of 5-lipoxygenase in dendritic cells in human lymph nodes, suggesting they can synthesize LTB4. Furthermore, expression of CCR1 and CCR2 on lymph node homing BLT1+ T-cells could facilitate rapid interactions with lymph node resident mature DCs, as the ligands for these receptors, CCL2, CCL3 and CCL5, are also synthesized by activated mature DCs. This may help amplify polarized immune responses by promoting interactions between DCs and T-cells, as has been described for CXCL16 and CCL22. Thus, BLT1+ T-cells may interact with activated tissue resident or lymph node resident antigen presenting cells to enable rapid local or systemic initiation and progression of the secondary immune response.

We thus provide novel insights into antigen-primed BLT1+ T-cells in peripheral blood during health and suggest a mechanism by which the LTB4-BLT1 chemoattractant pathway may link innate and adaptive immunity. We also provide new insights into LTB4-BLT1 mediated effector T-cell peripheral homing during active inflammation.
Acknowledgements

We thank Shannon Bromley for critical review of the manuscript.
Table 1. Human BLT1+ T-cells from Blood are Enriched for Early Inflammatory Chemokine Receptors

<table>
<thead>
<tr>
<th></th>
<th>CCR1</th>
<th>CXCR1</th>
<th>CCR2</th>
<th>CXCR3</th>
<th>CCR4</th>
<th>CXCR4</th>
<th>CCR5</th>
<th>CCR6</th>
<th>CCR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT1+ (mean±sd%)</td>
<td>30.4±11.1</td>
<td>33.95±17.1</td>
<td>36.5±6.1</td>
<td>58.3±12</td>
<td>33.2±15.4</td>
<td>94.3±6.4</td>
<td>29.5±12.8</td>
<td>51.4±11.1</td>
<td>73.5±13.3</td>
</tr>
<tr>
<td>Total (mean±sd%)</td>
<td>0.74±0.89</td>
<td>1.00±0.47</td>
<td>1.5±1.7</td>
<td>31.7±8.0</td>
<td>25.8±9.2</td>
<td>88.9±11.7</td>
<td>10.4±2.9</td>
<td>28.5±14.9</td>
<td>72.6±11.5</td>
</tr>
<tr>
<td>p value</td>
<td>0.000344313</td>
<td>0.002</td>
<td>0</td>
<td>0.003</td>
<td>0.34</td>
<td>0.39</td>
<td>0.005</td>
<td>0.025</td>
<td>0.914</td>
</tr>
<tr>
<td>fold enrichment (mean±se)</td>
<td>145.2±74.1</td>
<td>36.8±8.6</td>
<td>90.8±42.1</td>
<td>1.9±0.3</td>
<td></td>
<td></td>
<td>3.1±0.7</td>
<td>4.6±3.1</td>
<td></td>
</tr>
<tr>
<td>CD8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT1+ (mean±sd%)</td>
<td>17.8±5.4</td>
<td>19.7±15.0</td>
<td>26.6±6.2</td>
<td>87.6±7.5</td>
<td>17.4±12.1</td>
<td>97.23±2.6</td>
<td>40.9±14.3</td>
<td>39.2±13.4</td>
<td>56.6±7.8</td>
</tr>
<tr>
<td>Total (mean±sd%)</td>
<td>0.85±1.02</td>
<td>2.0±1.4</td>
<td>1.6±1.8</td>
<td>75.9±9.9</td>
<td>5.6±4.5</td>
<td>92.3±6.3</td>
<td>30.1±9.8</td>
<td>21.4±10.4</td>
<td>54.3±10.6</td>
</tr>
<tr>
<td>p value</td>
<td>0.0001315</td>
<td>0.03</td>
<td>2.49E-06</td>
<td>0.07</td>
<td>0.047</td>
<td>0.15</td>
<td>0.15</td>
<td>0.047</td>
<td>0.7</td>
</tr>
<tr>
<td>fold enrichment (mean±se)</td>
<td>79.5±39.2</td>
<td>10.7±2.2</td>
<td>83.3±38.0</td>
<td>1.2±0.1</td>
<td>3.8±1.2</td>
<td></td>
<td></td>
<td>2.7±1.1</td>
<td></td>
</tr>
</tbody>
</table>

Freshly isolated BLT1+ T-cells from blood were analyzed for co-expression of chemokine receptors by flow cytometry.

These data are from five to six independent experiments.
Figure Legends

Figure 1. BLT1 expression is significantly enriched on circulating FSC$^{\text{hi}}$ large CD4$^+$ and CD8$^+$ lymphocytes.

(a) Representative data showing BLT1 expression as percent of quadrant on different T-cell types. Cells were simultaneously gated on total lymphocyte and CD3 gates to characterize CD4$^+$, CD8$^+$, and $\gamma\delta$ cells; and total lymphocyte and CD4 gates to characterize NKT cells. (b) Left panel. Contour density plot of PBMC defining small FSC$^{\text{lo}}$, large FSC$^{\text{hi}}$ and total lymphocyte gates. Right panel. FACS plot demonstrating enrichment of surface BLT1 on FSC$^{\text{hi}}$ large lymphocyte gated CD3$^+$CD4$^+$ and CD3$^+$CD8$^+$ T-cells. (c) BLT1 expression is significantly enriched on FSC$^{\text{hi}}$ CD4$^+$ and CD8$^+$ T-cells compared to total CD4$^+$ and CD8$^+$ T-cells in freshly isolated PBMC (n=15). (d) FSC$^{\text{hi}}$ CD4$^+$ and CD8$^+$ T-cells express increased amounts of BLT1 mRNA by quantitative real time PCR. These data are representative of three separate experiments.

Figure 2. Circulating BLT1$^+$ T-cells are CD27$^+$ pre-terminally differentiated memory T-cells that express CD38 and HLA-DR. (a) BLT1$^+$ T-cell co-expression of differentiation markers. Approximately 92% of circulating BLT1$^+$CD4$^+$ T-cells and 86% of BLT1$^+$CD8$^+$ T-cells co-express CD45RO. The majority of BLT1$^+$ CD4$^+$ and CD8$^+$ T-cells are CD27$^+$ (90% of CD4 and 89% of CD8) and CD28$^+$ (97% CD4 and 76% CD8), comparable to levels of CD27 and CD28 expressed by bulk T-cells. Representative data
is shown gated on FSC^hi and CD3^+ cells; these data are representative of 7 (CD45RO and CD27) and 4 (CD28) different experiments. (b) Co-expression of activation markers on total BLT1^+ CD3^+CD4^+ and CD3^+CD8^+ T-cells. Cells were simultaneously gated on the total lymphocyte gate, CD3^+ CD4 or CD8 gate, and the BLT1^+ gate, to define the frequency of BLT1^+ CD4^+ or CD8^+ cells that co-express the activation marker of interest. These data are representative of 4-10 separate donors. (c) BLT1^+ T-cells are significantly enriched for CD38 (n=10) and HLA-DR (n=6) compared to bulk.

Figure 3. Ex vivo characterization of chemokine receptor co-expression on circulating BLT1^+ T-cells. Representative example of chemokine receptor co-expression on total BLT1^+ T-cells and bulk T-cells. Gating strategy employed is as described in Fig. 2b. These data are representative of 5-6 separate donors.

Figure 4. Ex vivo functional characterization of circulating BLT1^+ T-cells. (a) Representative FACS plots of IFNγ and IL-4 production by different CD4^+ T-cell subsets. (b) Circulating BLT1^+CD4^+ memory T-cells are more polarized than BLT1^− CD4^+ memory T-cells. Negatively selected magnetic bead purified peripheral blood CD4^+ T-cells were pre-labeled then activated for 4 h with PMA and ionomycin before fixation and permeabilization for cytokine analysis. BLT1^+CD45RA^- CD4^+ T-cells were 1.6±0.2 fold more enriched for IFN-γ-producing Th1 cells (p value 0.036, n=5), 2.3±0.6 fold more enriched for IL-4 producing Th2 cells (p value 0.04, n=5), and 4.1±2.8 fold more enriched for both IFNγ and IL-4 producing Th0 cells (p value 0.012, n=5) compared to BLT1^−CD45RA^-CD4^+ memory T-cells. * p<0.05 compared to total CD4^+ T-cells and
** p<0.05 compared to BLT1 CD45RA CD4+ T-cells. (c) Representative histogram plots of IFNγ production and perforin expression by BLT1+ and BLT1– CD8+ T-cell subsets CD8+ T-cell subsets. (d) A large percentage of circulating BLT1+CD8+ memory T-cells rapidly produce IFNγ but lack significant perforin expression. As described above purified peripheral blood CD8+ T-cells were pre-labeled then activated for 4 h before analysis for IFNγ production, or freshly isolated unactivated PBMC were stained for intracellular perforin. After stimulation, total BLT1+ CD8+ T-cells contained 2.9±1.1 fold more IFNγ -producing cells than did BLT1– CD8+ T-cells (p value 0.0065, n=5), and BLT1+ CD45RA+ CD8+ T-cells contained 5±2 fold more IFNγ -producing cells than did BLT1– CD45RA+ CD8+ T-cells (p value 0.0007, n=5). * p<0.05 compared to total CD8+ and ** p<0.05 compared to BLT1–RA+CD8+ memory T-cells. (e) Sorted FSC^{hi} CD4+ and CD8+ T-cell lymphocytes chemotax to LTB₄, but FSC^{lo} CD4+ and CD8+ T-cells do not. These data are representative of 3-6 separate experiments. (f) 10nm CP-105,696 inhibits LTB₄-mediated chemotaxis of FSC^{hi} CD4+ and CD8+ T-cells. These data are representative of at least 3 separate experiments.

Figure 5. In vitro activation upregulates BLT1 surface expression on T-cells. (a) Dendritic cell (DC) primed naïve CD4+ T-cells upregulate surface BLT1 expression, and this expression is first seen on day 6 of activation. Representative data showing scatter plot (top left panel), differentiation and activation markers (top right panel), histogram plot of BLT1 expression (bottom left panel), and CFSE labeling demonstrating expression of BLT1 expression on divided cells at day 6 (bottom right panel). These data are representative of 3-6 different experiments. (b) DC primed CD8+ T-cells also
upregulate surface BLT1 expression; shown is 1 representative experiment of 4. (c) and (d) *In vitro* activated human effector T-cells chemotax to LTB4 and are inhibited by CP-105,696. These data are representative of at least 3 separate experiments. (e) PHA activated γδ and Vα24 cells upregulate surface BLT1 expression. γδ and Vα24 cells were isolated from PBMC and activated with PHA as described in the methods (top and bottom panels, respectively). Representative examples of pre-activation *ex vivo* BLT1 surface expression in PBMC (left panels), and post activation *in vitro* BLT1 surface expression (right panels) are shown. These data are representative of 4 (γδ) and 6 (Vα24) separate experiments. (f) NKT cell clones flux calcium when stimulated with LTB4. This data is representative of experiments on 4 separate NKT cell clones.

Figure 6. BLT1+ memory T-cells traffic into the airways of asymptomatic atopic asthmatics. (a) Representative example of freshly isolated blood and bronchoalveolar lavage (BAL) total lymphocyte BLT1 expression in one study subject. (b) Representative phenotypic characterization of blood, BAL and BLT1+ blood and BAL lymphocytes in a study subject. (c) BLT1+ memory T-cells are enriched in the BAL compared to blood in 5 atopic asymptomatic study subjects.

Figure 7. BLT1 surface expression is increased on EBV-specific CD8+ T-cells during acute EBV infection. (a) Scatter and lymphocyte gates showing increased numbers of circulating activated blasts (top left panel), and increased surface BLT1 expression on Tetramer+EBV-specific CD8+ T-cells (bottom left panel) during acute EBV infection in R1 (FSClo), R2 (FSChi) and total (R1+R2) lymphocyte gates (right
(b) BLT1 surface expression is significantly enriched on total and FSClo small lymphocyte gated EBV-specific tetramer positive CD8+ T-cells (n=4). (c) BLT1 surface expression is increased on Tetramer+EBV-specific CD8+ T-cells during acute symptomatic EBV infection compared to the chronic phase of infection in healthy asymptomatic donors (p value<0.0003); and more Tet+CD8+BLT1+ T-cells re-express CCR7 in chronic compared to acute infection. (d) Tetramer+ EBV-specific CD8+ T-cells were gated on to compare surface chemoattractant receptor expression profile of EBV-specific HLA-B8 restricted QAK tetramer+CD8+ T-cells during acute infection (top panel), and EBV-specific HLA-B8 restricted RAK tetramer+CD8+ T-cells during the latent or chronic phase of infection (bottom panel). These data are representative of at least 3 donors.
References

60. Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005;6:895-901
The Leukotriene B₄ Lipid Chemoattractant Receptor BLT1 Defines Antigen-primed T-cells in Humans

Sabina A Islam, Seddon Y Thomas, Christoph Hess, Benjamin D Medoff, Terry K Means, Christian Brander, Craig M Lilly, Andrew M Tager and Andrew D Luster