Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes

Sunita R. Patel1,3, Jennifer Richardson1,3, Harald Schulze2,3, Eden Kahle1,3, Niels Galjart4, Ksenija Drabek4, Ramesh A. Shivdasani2,3, John H. Hartwig1,3, and Joseph E. Italiano Jr.1,3,5

1Division of Hematology, Brigham and Women’s Hospital, 2Dana Farber Cancer Institute, 3Department of Medicine, Harvard Medical School, Boston, MA 02115. 4Department of Cell Biology and Genetics, Erasmus University, 3000 DR Rotterdam, The Netherlands.

5Corresponding author:
Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
Phone: (617) 355-9007
Fax: (617) 355-9016
Email: jitaliano@rics.bwh.harvard.edu

Running title: Microtubule sliding powers proplatelet elongation.

Abstract word count: 208 words

Text word count: 5381 words

This work was supported by National Institutes of Health grant HL68130 (to J.E. Italiano Jr.) and and HL063143 (to R. A. Shivdasani). S. R. Patel was supported by training grants (HLO7680, T.P. Stossel) and HLO66978-04, L. Silberstein).
Abstract

Megakaryocytes are terminally differentiated cells that, in their final hours, convert their cytoplasm into long, branched proplatelets, which remodel into blood platelets. Proplatelets elongate at an average rate of 0.85 µm/min in a microtubule dependent process. Addition of rhodamine-tubulin to permeabilized proplatelets, immunofluorescence microscopy of the microtubule plus-end marker EB3, and fluorescence time-lapse microscopy of EB3-GFP expressing megakaryocytes reveal that microtubules, organized as bipolar arrays, continuously polymerize throughout the proplatelet. In immature megakaryocytes lacking proplatelets, microtubule plus-ends initiate and grow by centrosomal nucleation at rates of 8.9-12.3 µm/min. In contrast, plus-end growth rates of microtubules within proplatelets are highly variable (1.5-23.5 µm/min) and are both slower and faster than those seen in immature cells. Despite the continuous assembly of microtubules, proplatelets continue to elongate when net microtubule assembly is arrested. One alternative mechanism for force generation is microtubule sliding. Triton X-100 permeabilized proplatelets containing dynein and its regulatory complex, dynactin, but not kinesin, elongate with the addition of ATP at a rate of 0.65 µm/min. Retroviral expression in megakaryocytes of dynamitin (p50), which disrupts dynactin-dynein function, inhibits proplatelet elongation. We conclude that while continuous polymerization of microtubules is necessary to support the enlarging proplatelet mass, the sliding of overlapping microtubules is a vital component of proplatelet elongation.
Introduction

Blood platelets, tiny cells shed by megakaryocytes, circulate throughout blood vessels and survey the integrity of the vascular system. In response to traumatic injuries in which blood vessel continuity is interrupted, platelets bind to exposed collagen, change shape, secrete granule contents, and aggregate with neutrophils to form a hemostatic plug to seal off the damaged blood vessel. The mechanisms by which blood platelets are formed and released from giant precursor cells called megakaryocytes in situ remain to be defined. However, the development of megakaryocyte culture systems that produce platelets has provided a means to study the intermediate structures called “proplatelets”, long (up to several millimeters), thin extensions of the megakaryocyte cytoplasm that contain multiple platelet-sized beads along their length.1-7 Based on multiple lines of evidence, we have speculated that platelets are not preassembled in the megakaryocyte cytoplasm but instead are constructed de novo, predominantly at the ends of the proplatelets.8 As predicted, megakaryocytes go to great lengths to amplify the number of proplatelet ends, taking the shaft of each proplatelet and bending it multiple times. Each bend yields a bifurcation in the shaft, generating a new end.

The formation of proplatelets is highly dependent upon a complex network of protein filaments that extends throughout the megakaryocyte cytoplasm. Microtubules, which are formed when thousands of tubulin molecules assemble into linear filaments, are a major component of this cytoskeletal network and function as the primary motor for proplatelet elongation. High concentrations of microtubule poisons prevent proplatelet elongation and cause extended proplatelets to retract.7,9,10 Deletion of the β1-tubulin gene, which encodes the major β-tubulin isoform expressed in mouse megakaryocytes diminishes the capacity of these cells to assemble microtubules, cripples platelet production and release, and results in aberrant platelet morphologies.11,12 We have previously described in detail some of the temporal and spatial rearrangements of microtubules that accompany proplatelet formation, which appear to be unique and used only by megakaryocytes to make platelets.8 The first observable protrusive event in proplatelet elaboration occurs after the bulk movement of microtubules into the cortex of
a mature megakaryocyte. Subsequently, broad pseudopodia form and extend from one pole of the megakaryocyte. As proplatelets continue to elongate and narrow, their microtubule bundles align and narrow in the proplatelet shafts. Surprisingly, the arrays of microtubules do not abruptly terminate at the proplatelet tip but instead loop back toward the cell body and re-enter the shaft of the proplatelet. The process of amplifying proplatelet ends by repeatedly bending and bifurcating the proplatelet shaft is dependent on actin-based forces and is inhibited by the cytochalasins, actin toxins.7,8 These events are highly interrelated, but one can try to dissect their separate mechanisms experimentally. Despite our detailed knowledge of the microtubule architecture within proplatelets, exactly how this cytoskeletal engine reorganizes to power proplatelet elongation is unclear.

In this study, we have focused on how microtubules interact to generate the required forces for proplatelet elongation. Proplatelet elongation occurs as adjacent microtubules slide relative to one another analogous to the way in which a ladder on a fire engine lengthens by sliding of overlapping sections past each other. Polymerization involves extension through the addition of free tubulin dimers to existing microtubules or the de novo formation of new microtubules. We identify the sites of microtubule assembly and directly visualize microtubule dynamics during platelet production using time-lapse video fluorescence microscopy of megakaryocytes directed to express a fluorescent marker of plus-end microtubule growth. Although microtubule plus-ends distribute throughout proplatelets and normally grow both towards and away from the proplatelet tip, we find that microtubule assembly is not required for proplatelet elongation as application of low concentrations of microtubule assembly inhibitors that arrest plus-end growth fail to diminish the rate at which proplatelets are elongated. To dissect apart the contribution of microtubule assembly from that of microtubule sliding in elaborating the proplatelet microtubule array, we studied permeabilized proplatelets. Triton X-100-permeabilized proplatelet shafts remain capable of elongating, and do so in response to the addition of ATP in the absence of microtubule growth. Since dynein and the dynactin complexes are intimately associated with proplatelet microtubules, we show evidence for and favor a
mechanism that slides overlapping microtubules relative to one another, within the shafts to lengthen proplatelets.
Materials and Methods

Materials

Nocodazole, vinblastine, and taxol were purchased from Sigma (St. Louis, MO) and prepared as stock solutions in dimethyl sulfoxide.

Megakaryocyte Cultures

Livers were recovered from mouse fetuses and single cell suspensions were generated using methods described previously8.

DIC Microscopy of Proplatelet Elongation

Megakaryocytes were cultured in DMEM within video chambers as described previously.8 Samples were imaged with a Nikon TE-200 60X (NA 1.4) DIC objective and captured with an Orca-II ER cooled CCD camera (Hamamatsu, Hamamatusu City, Japan). Illumination was shuttered between exposures. Electronic shutters and image acquisition were under the control of Metamorph software (Universal Imaging Corporation of Molecular Devices, Westchester, PA). Sample temperature was maintained at 37°C using a bipolar temperature controller (Medical Systems Corp., Miami, FL). A stage micrometer was used for measurement of the rate of proplatelet elongation and length measurements were made using the Metamorph image analysis program. The average length of the proplatelet was determined from recordings spaced between 1 and 5 minutes apart over a period of 20-60 min.

Quantitation of Microtubule Polymer Levels

Microtubule polymer fractions in control, nocodazole-, and vinblastine-treated megakaryocytes were analyzed by SDS-PAGE and immunoblot. Control and drug-treated megakaryocytes were rinsed in PEM (100 mM PIPES, 10 mM EGTA, and 2mM
MgCl₂, pH 7.0) with different doses of drug, and extracted in PEM containing 0.75% Triton X-100 plus Complete protease inhibitor cocktail (Roche) for 5 min. Samples were centrifuged for 30 min at 100,000 g in a centrifuge (model TL-100; Beckman Coulter, Fullerton, CA). The pellet was resuspended with SDS-PAGE sample buffer to the same volume as the supernatant. All samples were incubated at 37°C overnight. An equal volume of each sample was run on SDS-PAGE, transferred to PVDF (Polyvinylidene difluoride), immunoblotted with anti-α-tubulin antibody (Sigma), and the density of the bound antibody was quantitated as described below.

Immunofluorescence Microscopy

Rabbit Anti-EB3 polyclonal antibody was described previously 13. Mouse anti-p150^{Glued} monoclonal antibody was obtained from Becton Dickinson Biosciences (Franklin Lakes, NJ). Affinity purified rabbit anti-dynactin p50 (UP1097) and anti-dynein intermediate chain (DIC) polyclonal antibodies were a gift from E. Holzbauer (University of Pennsylvania, Philadelphia). Mouse monoclonal anti-kinesin heavy chain antibody (MAB1614) was obtained from Chemicon (Temecula, CA). Rabbit anti-β1 antiserum was a gift from Nick Cowan (New York University Medical Center, New York). Cells were analyzed and photographed on a Zeiss Axivert 200 microscope described below.

Megakaryocytes were fixed on coverslips as described previously. For anti-EB3 immunofluorescence, coverslips were washed with platelet buffer and fixed in freshly prepared -20°C methanol/1 mM EGTA for 10 min at -20°C. Megakaryocytes were permeabilized with 0.5% Triton X-100, then washed with PBS. In experiments where cells were extracted prior to fixation, coverslips were incubated for 5 min in a microtubule-stabilizing buffer (PEM) containing 0.5% Triton X-100, washed with PEM buffer, and fixed with formaldehyde. Specimens were blocked overnight in PBS with 1% BSA, incubated in primary antibody for 2-3 hours, washed, treated with appropriate secondary antibody for 1 hr, and then washed extensively. Primary antibodies were used at 1 μg/ml in PBS containing 1% BSA and secondary antibodies at 1:500 dilution in the same buffer. Controls were processed identically except for omission of the primary antibody.
Reactivation of Elongation in Permeabilized Megakaryocytes

Proplatelet-producing megakaryocytes were attached to coverslips as described above and transferred to the microscope for observation. Cells were treated with microtubule stabilization buffer (PEM buffer plus 30 μm taxol), washed with PEMG buffer (PEM buffer supplemented with 0.1 mM GTP), permeabilized with 0.5% Triton X-100 in PMEG buffer supplemented with 1 mM DTT and Complete protease inhibitor cocktail (Roche), washed three times with PEM buffer, and then incubated in PEM buffer supplemented with 1 mM DTT. Elongation was initiated by adding 0.1 mM ATP in PEM buffer. All nucleotides were used at concentrations ranging from 0.1-1 mM.

Rhodamine-Tubulin Incorporation in Permeabilized Megakaryocytes

Megakaryocytes were attached to 25 mm coverslips as described above. Cells were briefly washed with platelet buffer, permeabilized with 0.5% Triton X-100 in PMEG buffer with protease inhibitors, and washed with PMEG buffer. Permeabilized proplatelets were incubated for 4 min in 20 μm rhodamine-labeled tubulin (The Cytoskeleton, Denver, CO), 20 μm taxol, 0.1 mM GTP in PMEG solution in the absence of ATP. After incubation, unbound tubulin was removed by washing with PMEG buffer containing 20 μm taxol in PMEG buffer.

Expression of Constructs

Semliki Forest virus (SFV)-mediated gene delivery was used to express EB3-GFP in mouse megakaryocytes.13 Cultured megakaryocytes were infected by the addition of 1 µl of SFV infectious replicons to 400 µl of Day 2.5 cultures. EB3-GFP movements were visualized by fluorescence microscopy 8-48 hr after infection. A p50 cDNA (Accession no. HIBBF17), kindly obtained from E. Holzbaur (University of Pennsylvania, Philadelphia), was cloned into pWZL plasmids containing the sequence for enhanced green fluorescent protein using previously described methods.31
Live Cell Imaging of EB3-GFP Movements

Infected megakaryocytes were pipetted onto video chambers maintained at 37°C. Cells were viewed on a Zeiss Axivert 200 microscope equipped with a 63X objective (NA 1.4) and 1.6X optivar, and a 100-W mercury lamp adjusted to an intensity of 50%. Images of EB3-GFP movements in megakaryocytes were acquired every 2-5 sec with an average image capture time of 500 milliseconds using an Orca II CCD camera (Hamamatsu). The velocity of EB3-GFP comets was determined by dividing the distances traveled by the time elapsed. We included only comets that could be followed for a minimum of 15 seconds.

RESULTS

Proplatelets elongate at an average rate of 0.85 µm/min.

We obtained details of proplatelet elongation using video-enhanced differential-interference-contrast (DIC) microscopy of cultured mouse megakaryocytes (Figure 1, Supplemental Movie 1). Proplatelet formation begins with the extension of a thick cytoplasmic process that elongates from one pole of the megakaryocyte body. The formation of the initial pseudopodia does not require the addition of any “stimulus” to the culture medium and occurs spontaneously on days 4 to 5 in culture. Proplatelets become thinner as they elongate and taper in diameter at their ends (Figure 1, arrow at 9 min). The rate of proplatelet elongation ranged from 0.30 to 1.59 µm/min (mean, 0.85 ± 0.24 µm/min, n=77).

Visualization of plus-end microtubule growth in megakaryocytes.

Proplatelet morphogenesis depends on the elaboration of a dense and highly organized array of microtubules. Microtubules are polar structures: one end, the plus end, is capable of rapid growth, while the other end, the minus end, tends to lose subunits if not
stabilized. Microtubules first collect in the cortex of a mature megakaryocyte, then loop into an initial broad pseudopod. Linear arrays of microtubules align within the shaft as the pseudopod elongates and transforms into a proplatelet. Rather than ending at the proplatelet tip, microtubules instead, loop and reenter the shaft. Given the importance of microtubule-based forces involved in proplatelet extension and the structural constraints imposed by microtubule organization within proplatelets, we first determined the location of growing microtubule plus-ends within proplatelets using two independent approaches. First, proplatelet-producing megakaryocytes were attached to polylysine-coated coverslips, permeabilized with Triton X-100, and incubated with Rhodamine-labeled tubulin. This approach preserves the integrity of the microtubule array in proplatelets. As shown in Figures 2A and 2B, fluorescently-labeled tubulin incorporates into distinct foci along the entire length of proplatelets, indicating that microtubule plus-ends exist along their full length.
Second, the growing ends of microtubules in megakaryocytes were highlighted with antibodies against end-binding protein 3 (EB3), a plus-end-tracking protein (Figure 2C-D). Figure 2C (inset) shows that mouse megakaryocytes express EB3, a 36 kDa protein, when cell lysates are separated by SDS-PAGE and immunoblotted with anti-EB3 antibodies. Immunofluorescence microscopy of proplatelet-producing megakaryocytes with anti-EB3 antibody revealed labeling in both the cell bodies and proplatelets of megakaryocytes (Figure 2C-D). EB3 stained as fluorescent “comets” with bright “fronts” and diffuse “tails” previously described by plus-end markers in other cell types. Clear staining of comet-like dashes was observed along the total length of the proplatelet and in the cell body, which suggests that plus-ends of microtubules are interspersed across the entire cytoplasm of proplatelet-producing megakaryocytes. We were unable to detect the hallmark “starburst” pattern typical of centrosomal nucleation in the cell bodies of proplatelet-producing megakaryocytes, although it is readily observed in megakaryocytes prior to the proplatelet phase (see below); these results indicate that a centrosomal mode of nucleation is absent during proplatelet formation.

To gain information on microtubule plus-end dynamics in real time, EB3-GFP was virally expressed in mouse megakaryocytes and movements of the fluorescently tagged protein were visualized 8-48 hr after infection (Figure 3 and 4A-D). The distribution of EB3-GFP in living cells was similar to that of endogenous EB3 (compare Figure 2C-D and Figure 3A-B). Expression of EB3-GFP had no effect on the rate of proplatelet elongation (0.74 μm/min in EB3-GFP-expressing cells). EB3-GFP appeared as comet-like dashes along the full length of proplatelets, providing direct evidence that microtubule plus-ends are situated throughout the shafts (Figure 3B) and tips (Figure 4B) of proplatelets. Treatment of megakaryocytes with 10 μm nocodazole resulted in a rapid loss of EB3-GFP comets, which indicates that EB3-GFP associates specifically with growing ends of microtubules (data not shown). As observed in the anti-EB3 immunofluorescence experiments, centrosomal nucleation of microtubules was not observed in proplatelet-producing megakaryocytes.
Because the temporal movement of EB3-GFP provides insight into the polarity of individual microtubules within the bundles that line proplatelets, we analyzed the direction and velocities of EB3-GFP comets. Figure 3B and Supplemental Movie 2 demonstrate that EB3-GFP comets move in both directions along proplatelets, and quantitation of the data shows an equal mix of microtubule polarity (51.72% of the EB3-GFP comets moved toward the tip; 48.28% moved away from the tip, n = 90) in proplatelets. Representative examples of comets moving tipward have been highlighted in green and those moving toward the cell body are highlighted in red (Figure 3B). EB3-GFP comets were also observed to travel around the proplatelet tip and re-enter the shaft (Figure 4B and Supplemental Movie 3). EB3-GFP comets within the microtubule coils at the tips of proplatelets moved bidirectionally (arrowhead, clockwise; arrow, counterclockwise) (Figure 4C-D and Supplemental Movie 4). Although the average rate of comet movement was 8.9 ± 3.9 µm/min (mean ± SD; data from 133 comets in 12 proplatelet-producing cells), velocity rates were quite broad (Figure 3C, white bars), ranging from 3.75 to 24.77 µm/min. No difference was found in the forward or reverse rate of microtubule growth relative to the proplatelet tips, and the growth rates for individual microtubules were always linear. None of the comets moved at a rate equivalent to proplatelet elongation (0.85 µm/min). Taken together, these results suggest that microtubule assembly is not tightly coupled to proplatelet elongation.

The wide distribution of EB3-GFP comet velocities in proplatelet-producing megakaryocytes could be explained by the superposition of microtubule transport on assembly. To investigate this possibility, we analyzed EB3-GFP comet movements in immature megakaryocytes, which employ centrosomal nucleation and where plus-end growth rates can be ascribed primarily to microtubule assembly. Immunofluorescence staining with anti-EB3 antibody of pre-proplatelet megakaryocytes gave a labeling pattern that was consistent with centrosomal nucleation (Figure 4E-F). At this stage, megakaryocytes elaborate a well-developed, radial microtubule network with readily discernible tips extending toward the cell periphery. Centrosomal nucleation was confirmed in pre-proplatelet megakaryocytes that were virally directed to express EB3-GFP and visualized by fluorescence time-lapse microscopy (Figure 4G, Supplemental
Movie 5). The dynamic behavior of EB3-GFP at microtubule plus-ends was displayed by continuous centrifugal movements of the numerous GFP signals. The average rate of EB3-GFP movement during centrosomal nucleation was similar to that observed in proplatelet-producing megakaryocytes (10.2 µm/min +/- 0.77, n=33), but the range of movement was much narrower (8.92-12.28 µm/min), as is expected for a population of microtubules with similar polymerization kinetics. This evidence further supports the idea that the wide distribution of comet velocities observed along proplatelets reflects the process of microtubule sliding superimposed on assembly.

Proplatelets elongate under conditions that arrest net microtubule assembly.

The EB3-GFP expression studies strongly suggest that proplatelet elongation is not coupled directly to microtubule assembly. To further test this hypothesis, we sought methods to tease apart the relative contributions of microtubule sliding and microtubule assembly in elaborating the proplatelet microtubule array. To do so, we studied the outgrowth of proplatelets under conditions that arrest microtubule assembly while maintaining substantial levels of pre-existing tubulin polymer available for transport via sliding within proplatelets. We reasoned that if proplatelet elongation is driven entirely by polymerization, inhibition should arrest elongation. However, if microtubule sliding is the predominant mechanism for proplatelet elongation, proplatelets should continue to lengthen even after assembly is inhibited. When microtubule poisons are applied to cells at appropriate concentrations, they can act as kinetic stabilizers of microtubules. To investigate the effects of various concentrations of microtubule assembly inhibitors, pre-prolatelet megakaryocytes were cultured in media containing nocodazole at concentrations of 0, 100, 250, and 1000 nM or vinblastine at concentrations of 0, 16, and 50 nM. Twenty hours after plating, cultures were examined with phase-contrast optics and photographed (Figure 5Ai-xii). Megakaryocytes plated overnight, extended proplatelets in all but the highest drug concentrations (1 µM nocodazole and 50 nM vinblastine). However, the number and length of proplatelets seen in cultures containing
250 nM nocodazole (Figure 5Aiv-v) or 16 nM vinblastine (Figure 5Aix-xi) were diminished.

To quantify the effects of these drugs on microtubule levels and establish which concentrations block assembly, we compared the levels of polymer in megakaryocytes cultured overnight in the presence of varying concentrations of nocodazole and vinblastine. Figure 5Bi and 5Biii show the effects of increasing concentrations of nocodazole and vinblastine on the microtubule content of proplatelet-producing megakaryocytes. Analysis of tubulin polymer levels in the cytoskeleton (Triton X-100 insoluble fraction) of megakaryocytes, as determined by quantitative immunoblotting, showed that the tubulin polymer level increased from ~55% to 81.3% as megakaryocytes formed proplatelets in culture. Megakaryocytes cultured in 100 nM nocodazole still maintained their capacity to increase microtubule polymer levels. However, when the nocodazole concentration was increased to 250 nM, the polymer level remained at a constant 56.4%. Addition of 1 µM nocodazole to cultures reduced the polymer level to 40.6% of the total. As shown in Figure 5Biii, similar experiments with vinblastine showed 16 nM to prevent the net increase in polymer levels that accompany proplatelet elaboration. The ability of these inhibitor concentrations to block net tubulin assembly was confirmed by the rapid loss of comets in EB3-GFP expressing cells, and similar effects on microtubule levels in megakaryocytes were found after a brief (5 min) treatment with 250 nM and 1 µM nocodazole, which suggests that the effect of the inhibitors rapidly comes to equilibrium (data not shown).

The above experiments delineated the concentrations of inhibitors required to block net assembly of tubulin in megakaryocytes while maintaining an equal fraction of polymer. Next, we studied the immediate influence of 250 nM nocodazole or 16 nM vinblastine on proplatelet elongation. Proplatelet elongation was followed for 30 min prior to and after drug treatment. Figures 5Bii and 5Biv plot the growth of proplatelets over time intervals before and after treatment with 250 nM nocodazole or 16 nM vinblastine. A representative differential-interference-contrast time-lapse sequence of a proplatelet elongating in the presence of 250 nm nocodazole is shown in Supplemental Movie 6. In
all examples studied (n=15 for each microtubule assembly inhibitor), the rate of proplatelet elongation did not change in the continuous presence of the microtubule inhibitors. These experiments demonstrate that proplatelet elongation does not require the polymerization of new microtubules.

Reactivation of elongation in permeabilized proplatelets.

Given that proplatelet elongation is unaffected by inhibitors that block plus-end microtubule assembly, other microtubule-based mechanisms must exist to power proplatelet elongation. Since microtubule sliding is used to drive the motility and extension in a number of cellular processes, we investigated whether proplatelets possess a mechanism to power sliding. Proplatelet-bearing megakaryocytes were permeabilized using 0.5% Triton X-100 in a microtubule-stabilizing buffer, washed, and reactivated by exposure to ATP. Figure 6 shows representative proplatelets before (Figure 6A) and after (Figure 6B) detergent permeabilization. Soluble tubulin was removed by extensive washing with microtubule stabilizing buffer, thus excluding tubulin polymerization as a factor that could contribute to proplatelet elongation. These permeabilized, washed proplatelets were stable for over an hour. Figure 6C and Supplemental Movie 7 show a permeabilized proplatelet that, despite being tethered at both ends, grew rapidly in length following the addition of 1 mM ATP. In this example, the proplatelet increased its length by ~2.5 µm in 225 sec. In all the examples studied, permeabilized and ATP-treated proplatelets achieved average elongation rates of 0.65 ± 0.13 µm/min (n=8) that were sustained for several minutes. In other preparations, immediately after adding ATP, microtubules were rapidly extruded from the ends of proplatelets (Supplemental Figure 1, Supplemental Movie 8). Nonhydrolyzable nucleotide analogues such as adenyldimidodiphosphate (AMPPNP) or adenosine 5’-O-(3-thiotriphosphate) (ATP-γ-S), or the addition of tubulin and GTP, did not permit proplatelet elongation. These findings demonstrate that proplatelet microtubules can slide past one another to power elongation.

The dynein and dynactin complex localize to proplatelet microtubules.
Having demonstrated that proplatelet microtubules can undergo sliding, we addressed the nature of the motors that power such movement. Mouse megakaryocytes at different stages of maturation were stained with antibodies against kinesin, dynein and dynactin, the multi-subunit complex that is required for most, if not all, types of cytoplasmic dynein activity (Figure 7)22,23. Figure 7A shows the specificity of antibodies used against mouse megakaryocyte and platelet lysates and rat brain lysate. Anti-kinesin antibody mainly recognizes a 124 kDa band corresponding to kinesin heavy chain in rat brain and mouse megakaryocytes. Anti-dynein intermediate chain antibodies reacted with a 74 kDa band corresponding to dynein intermediate chain. Anti-dynactin p50 antibodies reacted on immunoblots with the 50 kD dynactin subunit in rat brain and megakaryocytes. Kinesin and dynein localize to different structures in the megakaryocytes; antibodies to kinesin heavy chain label punctate structures in both the cell body (Figure 7B) and proplatelets (Figure 7D) but do not label proplatelet microtubule bundles, while cytoplasmic dynein or dynactin antibodies strongly stain the microtubule bundles of the proplatelets (Figure 7E, H). The cell bodies stain with a diffuse, cytoplasmic pattern. At high magnification, the staining pattern of antibodies to dynactin p50 (Figure 7C,G) or dynein intermediate chain reveal linear rows of small foci throughout the proplatelet processes (Fig 7E, inset). Antibodies to dynactin p50 also robustly stain teardrop-shaped structures at the tips of proplatelets that we have shown to correspond to microtubule loops (arrow in Figure 7E), suggesting an intimate association between cytoplasmic dynein and microtubules. The staining signal of the anti-dynein intermediate chain antibody was drastically reduced in mature resting blood platelets compared to proplatelets (Figure 7H-I, arrows), signifying that the dynein motor became delocalized or degraded once the platelet is formed, consistent with a mechanism where the principal role of the motor is during platelet production.

In all of the cells we examined, the appearance of the kinesin immunoreactive structures was highly suggestive of vesicle-like, membrane-bounded organelles, while the dynein/dynactin antibodies label along the length of the proplatelet microtubule array. This localization pattern would be consistent with a model in which dynein could be anchored along microtubules and provide the force for sliding. To determine if this is
indeed the case, unfixed cultured cells were lysed in a microtubule-stabilizing buffer containing the nonionic detergent Triton X-100 (0.5%), known to dissolve virtually all cytoplasmic, membrane-bounded organelles. After exposure to the detergent, the cells were fixed and double-labeled with motor-specific antibody and anti-tubulin antibody to ensure preservation of the microtubules. Nearly all of the kinesin immunoreactive material detected in unextracted cells (Figure 7D) was removed by the detergent treatment (Figure 7J). This supports their identification as membrane-bounded organelles. In contrast, the anti-dynein intermediate chain immunoreactive structures were still observed in Triton X-100 extracted cells, which implies that they are not localized to membrane-bounded organelles but instead, intimately associated with the microtubule arrays (Figure 7L,M).

Disruption of dynein function by expression of the dynamitin (p50) subunit inhibits proplatelet elongation.

To directly test the hypothesis that dynein contributes to proplatelet elongation, we disrupted dynein function in living megakaryocytes and investigated the effect on proplatelet elongation. To disrupt dynein function, we retrovirally directed megakaryocytes to express the dynamitin (p50) subunit of dynactin fused to GFP. Overexpression of dynamitin (p50), which results in the dissociation of the p150 subunit from the dynactin complex, has previously been demonstrated to disrupt dynein function in a number of cellular processes, including axonal outgrowth in cultured cells. When analyzed by fluorescence microscopy, the overexpressed p50-GFP was found diffusely throughout the cytoplasm of infected megakaryocytes (Figure 8E-G). Approximately 54% of the megakaryocytes in culture exhibited detectable fluorescence. In nearly all cases, megakaryocytes expressing dynamitin p50-GFP exhibited a striking phenotype of short pseudopodia extending from the cell body that appeared to be arrested in elongation (Figure 8E-G). Normal proplatelets failed to elaborate from infected cells and the typical bulbous end at proplatelet tips was rare. To determine the magnitude of this effect, we compared the morphology of p50-GFP-expressing cells to those of untransfected cells in the same culture or transfected cells overexpressing an unrelated
protein, β1-tubulin.31 Control megakaryocytes directed to express GFP-β1 tubulin using the same retrovirus exhibited normal proplatelet formation (Fig 8H), as did untransfected cells (Fig 8I-J). Nearly all (97%) of the proplatelet-producing megakaryocytes that we observed in the same cultures as p50-GFP expressing cells had no detectable fluorescence, suggesting they were not infected. On the basis of these results, we conclude that cytoplasmic dynein and dynactin contribute to the elongation of proplatelets.
DISCUSSION

Platelet formation by megakaryocytes is a complex process that appears to be unique in cell biology. Maturation culminates in an exquisite series of events that ends the megakaryocyte’s life as it converts its entire cytoplasm first into proplatelets and then into platelets. Proplatelets elongate from the megakaryocyte using bundles of microtubules. The first insights into the cytoskeletal mechanics of platelet formation date from the work of Tablin and Leven, who showed that proplatelet elongation is dependent on microtubules. We now know that microtubules first consolidate in the cortex of the maturing megakaryocyte, and in a mechanism that is poorly understood, cause the cytoplasm to bulge locally. The resulting pseudopod then elongates as its shaft thins into a uniform cylindrical tube characteristic of proplatelets. At the base of the proplatelet, the microtubule bundle is thicker and contains more filaments than at the tip. Since proplatelets can reach a length of several millimeters, it seems unlikely that individual microtubules can span the full distance from cell body to proplatelet tip. Our current experiments support this notion and further demonstrate that microtubule ends are dispersed throughout these bundles. The precise length of individual microtubules is likely to be heterogeneous and remains to be determined. Near the end of the proplatelet, the bundle contains no more than 10-20 microtubules that extend into the bulbous tip before making a U-turn and re-entering the proplatelet shaft. Therefore, the proplatelet end contains cross-polarized portions of the same bundle. Since plus-ends were found in the bulbous tips of the proplatelets and grew in opposing directions, the polarity of microtubules in each bundle is mixed.

Our findings suggest that megakaryocytes employ and superimpose two separate microtubule-based activities to elongate proplatelets. First, as demonstrated by the movement of EB3-GFP comets that mark the growing plus-ends of microtubules, proplatelet microtubules are in a continuous state of growth. This reflects either rapid microtubule turnover, or the need to maintain a steady supply of new microtubules to sustain the increasing mass of elongating proplatelets. If the rate of EB3-GFP comet movement solely reflects the rate of microtubule assembly, then we would expect all
elongating microtubules to move at a similar rate. In contrast, microtubule transport
driven by sliding of bipolar bundles would lead to variable rates of movement of
microtubule plus ends. We find that the rates of microtubule growth in megakaryocytes
depend on the maturation state of the cells. Prior to proplatelet morphogenesis,
megakaryocytes use centrosomal nucleation to form radiating arrays of microtubules and
display microtubule growth rates of ~10.2 \(\mu \text{m/min} \), with tight clustering of all rates
around this value. Once proplatelet outgrowth begins, however, measured plus-end
growth rates become highly variable and range from 2 to 24 \(\mu \text{m/min} \). Moreover, the
distribution of plus-end assembly rates in proplatelets are potentially bimodal, in marked
contrast to pre-proplatelet megakaryocytes. Hence, proplatelets house distinct
populations of microtubules, which appear to grow 4-5 \(\mu \text{m/min} \) slower and 4-5 \(\mu \text{m/min} \)
faster than those observed in cells that lack proplatelets. These deviations from the norm
are best explained by microtubule sliding movements superimposed on plus-end growth.

Indeed, in permeabilized cells, ATP activates a sliding mechanism that elongates
proplatelets in the absence of polymer growth. Proplatelet residues in this experimental
system have the motor protein dynein and its regulator dynactin associated with them,
and sliding of growing microtubules relative to one another fully explains the broad range
of plus-end assembly rates we record in proplatelets. Our results imply that adjacent
microtubules within a bundle may slide toward either the cell body or the proplatelet tip.
Furthermore, since microtubules appear to be arranged with mixed polarity, microtubule
growth events could similarly occur toward either the cell body or the proplatelet tip.
Thus, as we observe, microtubule growth superimposed on microtubule sliding should
result in a wide range of plus-end assembly rates; a microtubule polymerizing toward the
proplatelet tip but sliding toward the cell body would appear to grow at a diminished rate
compared to one that is both polymerizing and sliding in the same direction. This model
also explains why proplatelet growth can be uncoupled temporally from microtubule
assembly, using a pharmacological regime of plus-end growth inhibitors, without
affecting the underlying continuance of proplatelet elongation. We propose that the
microtubule-based mechanisms that power extension can also explain many aspects of
platelet release and the process of mechanical coiling that produces the marginal
microtubule band. In particular, sliding of an uncoiled portion of a microtubule relative to the rigid microtubule bundle in the proplatelet tip would provide a simple mechanism to achieve platelet release.

In previous studies using EB3-GFP, as well as our current studies on young megakaryocytes, rates of plus end microtubule growth appear to be cell-type specific. Growth rates could be controlled by microtubule end-associated proteins that regulate tubulin access and/or by tubulin dimer supply. While this difference could be explained by spatial variations in tubulin supply along the length of the proplatelet, we favor the idea that it is a consequence of plus-end assembly being overlaid on microtubule sliding. There is no relationship between EB3’s position in the proplatelet and growth rate, nor is the plus-end growth rate influenced by the directions of microtubule growth, i.e., towards or away from the cell body. Compared to plus-end growth rates during the centrosomal phase, those in proplatelets may slow down or accelerate by ~3-5 µm/min. This finding indicates that individual microtubules slide relative to one another at ~4 µm/min in either direction. The most likely microtubule motor protein candidate to achieve this sliding is dynein, which associates with microtubule bundles in proplatelets, and as supported by our experiments with p50 dynactin expression in megakaryocytes. However, it is possible that other microtubule-based motors contribute to elongation. How might dynein generate outward protrusive movement within the context of microtubule bundles of mixed polarity? The likely explanation is that sliding occurs equally in both directions but translates exclusively into outward protrusive movements because the cell body resists inward sliding forces. Alternatively, positional heterogeneity in microtubule crosslinking could influence the efficiency and direction of net movement if crosslinking between microtubules is greatest near the cell body. However, the sliding of microtubule bundles away from the proplatelet tip is not just an awkward phenomenon that requires explanation. Rather, it may be an integral feature of the process by which proplatelet ends are amplified to enhance the platelet output. Sliding of microtubules away from the cell body may thus fulfill two related needs. First, it could create new points of proplatelet bifurcation. Second, sliding in this direction would serve to meet the steady demand for microtubules from the repeated branching that occurs over the entire length of individual proplatelets.
ACKNOWLEDGMENTS

We thank Dr. T.P. Stossel for his supportive environment, Kurt Barkalow for valuable suggestions, K. Hoffmeister and Jagesh Shah for critical review of the manuscript, and E. Hett for advice with cloning.

REFERENCES

3. Leven RM, Yee MK. Megakaryocyte morphogenesis stimulated in vitro by whole or partially fractionated thrombocytopenic plasma: a model system for the study of platelet formation. Blood. 1987;69.
FIGURE LEGENDS

Figure 1. Video-enhanced differential-interference-contrast microscopy showing a representative proplatelet elongating from a mouse megakaryocyte. By 3 min (arrow), the initial broad pseudopodia has converted into a proplatelet process that continues to lengthen and reduce its diameter at the proplatelet tip (arrow at 9 min). Proplatelets elongate at an average rate of $0.85 \pm 0.24 \mu m/min$, $n=77)$. Bar, $5 \mu m$. See Supplemental Movie 1.

Figure 2. Localization of microtubule plus ends in proplatelets. (A-B) Megakaryocytes extending proplatelets were permeabilized with Triton X-100 and incubated with TRITC-tubulin as described in Materials and Methods. (A) Fluorescence micrograph showing a permeabilized proplatelet after incubation with rhodamine-tubulin for 4 min. TRITC-tubulin incorporates into specific foci along the length of the proplatelet. Bar, $4 \mu m$. (B) Differential interference contrast micrograph of cell labeled in panel (A). (C-D) Anti-EB3 immunofluorescent labeling of a proplatelet-containing megakaryocyte. EB3 staining (arrowheads label comet-like dashes) is dispersed along proplatelets and is abundant in the cell bodies (CB) but is not found in a radial pattern (compare with preproplatelet megakaryocytes in Figure 5). The boxed region in C shows a high magnification view of the comets. Bars, $4 \mu m$. (C, inset) The immunoblot shows that anti-EB3 antibodies recognize a 36 kDa polypeptide in both (L1) pre-proplatelet megakaryocytes and (L2) proplatelet-containing megakaryocytes.

Figure 3. EB3-GFP movements in proplatelet-producing megakaryocytes. (A) First frame from a time-lapse movie of a live megakaryocyte expressing EB3-GFP (see Supplemental Movie 2). The cell body is at the left of the micrograph. EB3-GFP labels growing microtubule plus-ends in a characteristic “comet” staining pattern (arrowheads) that has a bright front and dim tail. Moving comets are found along the proplatelets as well as in the megakaryocyte cell body. The scale bar is $5 \mu m$. (B) Kymograph of the boxed region in panel (A). Images are every 5 seconds. EB3-GFP comets undergo bidirectional movements in proplatelets. Some EB3-GFP comets move tipward and are
highlighted in green; others that move towards the cell body are highlighted in red. (C) Comparison of the velocity distribution of comets moving in proplatelets (white bars) with those emanating from the centrosome of pre-proplatelet megakaryocytes (dark bars). The average rate of comet movement in the pre-proplatelet megakaryocytes was 10.2 ± 0.77 and the rates of movement were tightly grouped (8.9 – 12.3 µm/min). EB3 movements in proplatelets, however, are apparently bimodal with distinct populations moving slower and faster than those of the pre-proplatelet megakaryocytes. (D) EB3-GFP comets were distributed throughout the proplatelet. Proplatelets were divided into 10 segments (tip = 0, cell body = 9) and the number of GFP-EB3 comets in each was determined. The length of the evaluated proplatelet was 28 µm.

Figure 4. EB3-GFP comet movements in living megakaryocytes. (A-D) EB3-GFP comet movements within the tips of proplatelets. (A) First frame of a time-lapse sequence shown in Supplemental Movie 3. (C) First frame of a time-lapse sequence shown in Supplemental Movie 4. (B, D) Kymograph of EB3 movements around proplatelet tips. In the first example, EB3-comets enter the proplatelet tip, circle its periphery, and then re-enter the shaft of the proplatelet. Images are every 5 seconds. In the second example, EB3-comets move around the periphery of the tip in both directions (arrowhead highlights clockwise movement, arrow highlights counter-clockwise movement). Images are every 2 seconds. Comets also move into the tip on microtubules that end abruptly. The scale bar represents 5 µm. (E-G) Location and dynamics of microtubule plus-ends in representative pre-proplatelet megakaryocytes. (E-F) Anti-EB3 immunofluorescence of pre-proplatelet-megakaryocytes. Cells at this stage of maturation have a radial array of microtubules that emanates from the centrosome. EB3 comets concentrate near the centrosome and are on the plus-ends of microtubules that radiate outward. Bar, 2 µm. (G) Dynamics of EB3-GFP comets in a megakaryocyte lacking proplatelets. This sequence of images shows EB3-GFP to concentrate on the plus-ends of microtubules as they grow from the centrosome (See Supplemental Movie 4). Translocations of EB3-GFP in the cell cortex, parallel to the plasma membrane, are also apparent. Elapsed time is in seconds.
Figure 5. Effect of microtubule assembly inhibitors on proplatelet elaboration. (Ai-x) Phase-contrast micrographs of mouse megakaryocytes grown for 20 hr in the (ii, viii) absence or (iii-vi, ix-xii) presence of microtubule inhibitors. (i-vii) Freshly plated megakaryocytes lack proplatelet extensions. Megakaryocytes cultured in the presence of (iii) 100 nM, (iv-v) 250 nM, and (vi) 1 µM nocodazole or (ix-xi) 16 nM, and (xii) 50 nM vinblastine. In control cultures, the cells become decorated with long proplatelets in 20 hr. Proplatelets were elaborated normally when the cells were cultured in (iii) 100 nM nocodazole and some proplatelets were found on cells cultured in either (iv-v) 250 nM nocodazole or (ix-xi) 16 nM vinblastine although extensions are shorter and thicker compared to those elaborated in the absence of the inhibitors. Proplatelet formation is completely inhibited by (vi) 1 µM nocodazole or (xii) 50 nM vinblastine. Scale bar, 25 µm. (Bi) Effect of increasing concentrations of nocodazole on tubulin polymer levels in megakaryocytes. The graph compares the percentage of tubulin polymerized into microtubules in freshly plated megakaryocytes lacking proplatelets (~55%) to megakaryocytes plated for 20 hr in the absence (control) or presence of 100 nM, 250 nM, and 1 µM nocodazole. Culturing of megakaryocytes for 20 hr in the absence or presence of 100 nM nocodazole resulted in an increase of total tubulin polymer to ~85% (a 25.9% increase from freshly plated cells). Tubulin polymer levels in megakaryocytes cultured in the presence of 250 nM nocodazole remained stable relative to the initial value, showing that 250 nM nocodazole acts as a kinetic stabilizer of microtubules. The tubulin polymer content of cultured megakaryocytes was decreased to ~40% by 1 µM nocodazole. (Bii) Proplatelet elongation is unaffected by 250 nM nocodazole. The rate of elongation was studied in 6 proplatelets before and after treatment with 250 nM nocodazole. Nocodazole was added after 30 min (arrow). (Biii) Effect of increasing concentrations of vinblastine on tubulin polymer levels in megakaryocytes. The graph compares the percentage of total tubulin polymerized into microtubules in freshly plated megakaryocytes lacking proplatelets (65%) to megakaryocytes plated for 20 hr in the absence (control) or presence of 16 nM and 50 nM vinblastine. Culturing of megakaryocytes for 20 hr increased the total tubulin polymer content of cells to ~90%. Megakaryocytes cultured in the presence of 16 nM and 50 nM vinblastine were unable to increase their polymer content or had diminished tubulin polymer contents, respectively.
Proplatelet elongation is unaffected by 16 nM vinblastine. The rate of elongation was studied in 6 proplatelets before and after treatment with 16 nM vinblastine, added at time 30 min (arrow).

Figure 6. Activation of elongation in a Triton X-100 permeabilized proplatelet by ATP. Changes in proplatelet length after the addition of ATP were monitored by microscopy. (A) A proplatelet viewed with DIC optics just before detergent permeabilization. Two proplatelets can be observed extending from the cell body (CB) of a megakaryocyte. (B) Treatment with 0.5% Triton X-100, followed by washing in a microtubule stabilizing buffer, preserves the general structure of the proplatelet. (C) Time-lapse sequence after the addition of 1 mM ATP. ATP causes the proplatelet residue to increase its contour length and individual microtubules to splay apart from the bundle. Note the increase in distance between the cell body (right arrow) and the swelling that was attached to the substrate (left arrow). The rate of elongation in this example is ~0.7 µm/min. The lengthening of the proplatelet slows after 125 seconds. Scale bar, 5 µm. See Supplemental Movie 6.

Figure 7. Immunolocalization of cytoplasmic dynein, dynactin and kinesin in megakaryocytes. (A) Characterization of antibodies by immunoblotting. Whole-cell protein extracts from mouse megakaryocytes (M), mouse platelets (P), and rat brain (B) were displayed by SDS-PAGE, transferred to PVDF, and immunoblotted with antibodies against β1-tubulin, kinesin, dynein-intermediate chain, p50 dynactin, and p150Glued. Double immunofluorescence microscopy of megakaryocytes using antibodies to (B, D, F) anti-kinesin and (C, E) either anti-p50 dynactin or (G) anti-dynein intermediate chain antibodies. Immunofluorescence images of pre-proplatelet megakaryocytes and proplatelet-containing megakaryocytes. (B, F) Kinesin antibodies stain vesicle-like particles within megakaryocytes and (D) along the shafts of proplatelets. (C) p50 dynactin and dynein intermediate chain (DIC) antibodies diffusely stain the megakaryocyte cytoplasm. Proplatelets are intensely stained (E, inset) along their length with anti-p50 dynactin and (H) anti-dynein-intermediate chain antibodies. (H) Comparative immunofluorescent and (I) DIC images of a proplatelet containing...
megakaryocyte and mouse platelets (arrows) stained with anti-dynein intermediate chain antibodies. Proplatelets stain robustly with anti-dynein intermediate chain antibody. In contrast, staining of platelets seeded onto the coverslip is highly reduced. Scale bar, 5 µm. Dynactin remains associated with the Triton X-100 insoluble megakaryocyte cytoskeleton (J-M). Megakaryocytes were extracted with 0.5 % Triton X-100 in a microtubule-stabilizing buffer before fixation, as described in Materials and Methods. The cells were then immunostained using (J) kinesin and (L) p50 dynamitin and (K, M) counterstained with α-tubulin antibodies to visualize proplatelet microtubules. Kinesin immunoreactivity was removed by the detergent treatment suggesting that kinesin is not associated with the microtubules. In contrast, the p50 dynamitin immunoreactivity is preserved.

Figure 8. Role of dynactin in proplatelet elongation. (A-J) Effects of p50 dynamitin expression on proplatelet elongation. (A, C) Differential-interference-contrast and (B, D-G) fluorescence images of p50-GFP-expressing cells exhibiting a range of elongation distortions, as compared with the unperturbed elongation of representative megakaryocytes (H) retrovirally directed to express GFP-β1-tubulin and (I-J) uninfected, non-expressing cells. All images were acquired by fluorescence and DIC microscopy. Scale bars all represent 10 µm.
FIGURE 1
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes