BOMBAY PHENOTYPE IS ASSOCIATED WITH REDUCED PLASMA VWF LEVELS AND AN INCREASED SUSCEPTIBILITY TO ADAMTS13 PROTEOLYSIS

James S. O’Donnell‡, Thomas A.J. McKinnon, James T.B. Crawley, David A. Lane and Michael A. Laffan

‡ to whom correspondence should be addressed

Haematology Dept, Imperial College London, 5th Floor, Commonwealth Building,
Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK

Tel ++44 (0) 20 8383 2297
Fax ++44 (0) 20 8383 2296
e-mail j.odonnell@imperial.ac.uk

Running Title: VWF and ADAMTS13 in Bombay phenotype

* This work was supported by grants from the
British Heart Foundation (FS/03/001, FS/03/074 and RG/02/008)

Summary

ABO blood group is an important determinant of plasma VWF:Ag levels, with lower levels in group O. Previous reports have suggested that ABO(H) sugars affect the susceptibility of VWF to ADAMTS13 cleavage. To further test this hypothesis, we collected plasma from individuals with the rare Bombay blood group. VWF:Ag levels were significantly lower in Bombay patients (median 0.69 IU/ml) than in groups AB, A or B (P<0.05) and lower than in group O individuals (median 0.82 IU/ml). Susceptibility of purified VWF fractions to recombinant ADAMTS13 cleavage, assessed using VWF:CB, was increased in Bombays compared to either group O or AB. Increasing urea concentration (0.5 to 2M) increased the cleavage rate for each blood group, but eliminated the differences between groups. We conclude that reduction in the number of terminal sugars on N-linked glycan increases susceptibility of globular VWF to ADAMTS13 proteolysis, and is associated with reduced plasma VWF:Ag and VWF:CB levels.
Introduction

The antigens of the ABO system, (A, B, and H) consist of complex carbohydrate molecules. H (Fuc α1→2 Gal β1→4 GlcNAc β1→) antigen is an essential carbohydrate acceptor for either α-1,3-N-acetylgalactosaminyltransferase (A transferase) or α-1,3-galactosyltransferase (B transferase), which are both encoded by the ABO locus (9q34). In group A, B or AB individuals, these transferases convert precursor H antigen into either A (Galβ1→3 [Fuc α1→2] Galβ 1→4 GlcNAc β1→), or B (Gal α1→3 [Fuc α1→2] Galβ 1→4 GlcNAc β1→) determinants respectively. In group O individuals, the O allele does not encode any functional transferase enzyme so that they continue to express terminal H structures only. In human tissues, H antigen can be synthesised by two distinct α-1,2-fucosyltransferases. One is the H gene (FUT1)-encoded H enzyme that regulates expression of ABH antigens in red blood cells. The other is the Secretor gene (FUT2)-encoded Se enzyme that regulates expression of ABH antigens in the gastrointestinal tract and secretions. Individuals with the very rare Bombay phenotype are both non-secretors and also fail to express H transferase (FUT 1). Such people cannot synthesise A or B antigenic structures regardless of their ABO blood group genotype, and ABH antigens are absent from both their erythrocytes and secretions. Para-Bombay individuals also fail to express H transferase, but do express the FUT2 (Secretor) encoded α-1,2-fucosyltransferase, so that ABH antigens are present in their secretions but not on erythrocytes.

It is well established that ABO blood group exerts a major quantitative effect on plasma von Willebrand factor (VWF) levels, with significantly lower levels in group O individuals. Moreover, ABH antigenic determinants have been identified on the N-linked glycans of circulating VWF according to the blood group of the individual. However the mechanism through which these glycans influence plasma VWF:Ag levels remains unclear. Animal studies have shown that VWF glycans may influence rate of hepatic clearance, and previous
data suggested it may be mediated by the H antigen.12 On the other hand, Bowen recently reported that VWF of different ABO blood groups exhibited different susceptibility to specific cleavage by ADAMTS13 ($O \geq B > A \geq AB$).13 To further investigate how glycan expression on VWF influences plasma VWF:Ag levels, we have collected plasma samples from a series of Bombay and para-Bombay individuals. As these individuals lack the ‘H’ antigen they provide a critical test of current hypotheses. We report the novel observation that Bombay phenotype is associated with plasma VWF levels similar or lower than group ‘O’. In addition we demonstrate that Bombay VWF demonstrates significant increased susceptibility to cleavage by ADAMTS13, via a conformation-dependent mechanism.
Methodology

VWF glycans, VWF antigen, and VWF multimer distribution

Plasma samples from 47 anonymised individuals with Bombay blood groups were collected from blood transfusion centres. No clinical details on these individuals were available. The Bombay (n=30) and para-Bombay (n=17) phenotype of each case was established by serological testing. Plasma samples previously collected from a series of healthy volunteer donors (n=169: 64 group A; 18 group B; 15 group AB; and 72 group O) were used as controls. Bombay and para-Bombay plasma samples were tested for evidence of H on VWF expression by Western blotting, and using a modified sandwich ELISA technique as previously described. In preliminary experiments, we established that the polyclonal rabbit anti-human VWF antibody used in this ELISA was not influenced by VWF glycan (data not shown). Plasma VWF:Ag levels and multimer analyses were performed as previously described. VWF:CB was performed using a commercial ELISA method (Technoclone, UK) in accordance with the manufacturer’s recommendations.

Purification of VWF and ADAMTS13 expression

VWF was purified from human group AB, group O and Bombay plasmas respectively as previously described. In brief, group-specific plasma was cryoprecipitated. The pellet was then re-suspended in TC buffer (20mM Tris-HCl, 10mM sodium citrate, pH 7.4), and passed through a Sepharose CL-2B HiPrep 26/60 gel filtration column (AmershamPharmacia, UK). Eluate fractions were assessed for VWF content, multimer distribution and purity as previously described.

Recombinant human ADAMTS13 was purified and quantified following stable transfection of HEK293 cells. This method has recently been described in full. In a series of
parallel experiments, cryodepleted pooled (groups O, A, B and AB) human plasma was used as the source of ADAMTS13.¹³

Proteolysis of Purified VWF by ADAMTS13

ADAMTS13-VWF cleavage assays were performed using either recombinant human ADAMTS13 or plasma-derived ADAMTS13 respectively.¹⁴ In brief, 5-20nM ADAMTS13 was pre-incubated with 10mM BaCl₂ for 10 minutes at 37°C. The activated ADAMTS13 was then incubated at 37°C with 8nM of comparable blood group specific (O or AB or Bombay respectively) high molecular weight (HMW) VWF in reaction mix containing urea (0.5 – 4M), 10mM BaCl₂, 5mM NaCl, 0.5mM CaCl₂, 15mM Tris-HCl (pH 7.8). At specific time points, sub-samples were removed and VWF proteolysis analysed using VWF:CB and VWF multimer pattern. For plasma-derived ADAMTS13, proteolysis of blood group specific (O versus AB versus Bombay respectively) HMW-VWF was carried out essentially as previously described.¹³
Results and discussion

In both Bombay and para-Bombay individuals, we found no evidence of H antigen on VWF, confirming that both phenotypes are associated with an alteration in the glycans structure of circulating VWF distinct to that observed in normal plasma VWF (Fig. 1A). In keeping with previous reports, we observed a significant effect of ABO blood group on plasma VWF:Ag levels, with significantly lower levels in group O individuals (Fig. 1B) compared to non-O. However we also demonstrated that VWF:Ag levels in Bombay patients (median VWF:Ag = 0.69 IU/dl) were significantly lower than in groups AB, A or B respectively; P< 0.05). Moreover, Bombay VWF:Ag levels were also lower than in group O individuals (median VWF:Ag = 0.82 IU/dl), although this difference failed to achieve statistical significance (P= 0.133; Mann Whitney analysis) (Fig 1B). Bombay and para-Bombay phenotypes result from null mutations at the FUT1 and FUT2 loci which are both located on chromosome 19, remote from the ABO locus on chromosome 9. Consequently this effect of Bombay phenotype on plasma VWF levels is conclusive evidence that the effect of ABO group on plasma VWF:Ag levels is due to a direct functional effect of the ABH determinants on VWF, rather than linkage-disequilibrium between the ABO locus and another unidentified VWF regulatory locus.

Through cleavage at the Tyr1605-Met1606 bond within the VWF A2 domain, ADAMTS13 regulates plasma VWF multimer composition. In keeping with a previous report, we found group O VWF was cleaved significantly more quickly than group AB. If the ABO effect on plasma VWF level is mediated by susceptibility to ADAMTS13 cleavage, then cleavage of Bombay VWF should be at least as rapid as that of group O. In fact we demonstrated that Bombay HMW-VWF is cleaved significantly faster than either group O or group AB (P<0.001) (Fig. 2A,B,C). This marked difference was apparent over the full range of ADAMTS13 concentrations studied (5-20nM) (data not shown). In a parallel set of
experiments, cryodepleted plasma was used as the source of ADAMTS13. Once again, Bombay HMW-VWF was significantly more susceptible to proteolysis (data not shown). The mechanism through which ABO blood group influences susceptibility to cleavage by ADAMTS13 remains unknown, but Tyr1605-Met1606 bond is flanked by two N-linked (asparagine 1515 and 1574) and five O-linked (threonine 1468, 1477, 1487 and 1679, and serine 1486) potential glycosylation sites.16

Previous studies have demonstrated that N-linked glycan structures directly influence the folding of glycoproteins by reducing conformational freedom of the local peptide backbone.17,18 We hypothesised that glycan changes may alter the conformation of VWF, and thus alter accessibility to the ADAMTS13 cleavage site. To investigate this hypothesis, we repeated ADAMTS13 cleavage assays over a range of urea concentrations (0.5-4M), to mimic changes in shear forces responsible for unravelling VWF multimer. As urea concentration increased, we found that the rate of VWF proteolysis increased for each of the different blood groups studied, but Bombay VWF continued to be cleaved most quickly (Fig. 2D). However as the concentration of urea progressively increased, the differential effects observed between AB, O and Bombay became less apparent. This observation suggests that oligosaccharide chain composition may influence the conformation of VWF, such that removal of terminal sugars allows the A2 domain to adopt a conformation more permissive for cleavage by ADAMTS13. Alternatively, the glycan structure of VWF may influence the ability of HMW-VWF multimers to unwind \textit{in-vivo} in response to shear stress.

Reduction in the number of sugars on the oligosaccharide chains of VWF is clearly associated with an increased susceptibility to cleavage by ADAMTS13. Whether this susceptibility to ADAMTS13 proteolysis is responsible for a quantitative effect on plasma VWF:Ag levels remains to be determined, as the magnitude of the Bombay effect on cleavage is not clearly matched by a comparable effect on plasma VWF level. Furthermore, it is
interesting that despite the increased rate of cleavage, plasma multimer analysis in Bombay and para-Bombay individuals appeared normal. In particular, we observed no loss of HMW multimers as seen in typical patients with type 2A VWD, and the ratio of CBA:Ag was similar to that observed in other blood groups (Figs. 1C & 1D). This apparent paradox of increased susceptibility to ADAMTS13, yet normal plasma multimer distribution, has been previously described in association with the Tyr1584Cys polymorphism of VWF. The paradox may reflect the fact that the increased ADAMTS13 susceptibility associated with both Tyr1584Cys and the Bombay phenotype, is markedly less than that arising from classical type 2A mutations. Further studies are required to clarify how VWF proteolysis by ADAMTS13, plasma multimer distribution, and VWF clearance are integrated in-vivo.
Acknowledgements

The authors wish to acknowledge the following individuals who supplied Bombay and para-Bombay plasma samples - Dr J. Clarke and Professor W. Watkins, Imperial College London, UK; Ms J. Poole, International Blood Group Reference Laboratory, UK; Dr J. Harrison National Blood Service, UK; Professor M. Lin, Mackay Memorial Hospital, Taipei, Taiwan; Dr B. Fischer Australian Red Cross; Professor George Garratty, American Red Cross Blood Services.
Figure legends

Figure 1. Effect of Bombay phenotype on plasma VWF glycan expression, plasma VWF:Ag level, and plasma VWF multimer composition.

(A) The amount of H antigen expressed per unit VWF was measured in a series of normal individuals (group O n=72; group A n=64; group AB n=15) and in Bombay (n=30) or para-Bombay (n=17) individuals using a modified sandwich ELISA. Each plasma was tested in duplicate at 3 dilutions, and results represent means ± SEM. Using similar methodologies, no A or B antigen expression was detected on Bombay or para-Bombay VWF (data not shown). In some cases the SEM cannot be seen due to its small size.

(B) Plasma VWF:Ag levels were measured by ELISA. Median values for each group are shown. VWF:Ag levels were significantly lower in Bombay compared to groups AB, A, and B respectively. (**p<0.001; *p<0.01; *p<0.05). Amongst the blood group A individuals, genotype (A1A1, A1O1 or A2O1) at the ABO locus was determined by PCR-RFLP analysis as previously described.12 Bombay VWF:Ag levels were significantly lower than those in A1A1 homoygotes or A1O1 heterozygotes (P<0.01) respectively. Although previous studies have demonstrated an effect of Secretor blood group on plasma VWF levels, we found no difference in plasma VWF:Ag levels between para-Bombay (Secretor) and Bombay (non-secretor) individuals (data not shown).

(C) Plasma multimer analysis of four Bombay individuals (B1 to B4 respectively) compared to two normal controls. No loss of HMW-VWF multimers was apparent in the Bombay individuals.

(D) Plasma VWF:CB levels were also significantly reduced in Bombay plasmas (median VWF:CB = 71 IU/dl), compared to group O (median VWF:CB = 88 IU/dl; p= 0.04 Mann Whitney). However as shown for the 47 Bombay individuals, there remained a good correlation between VWF:Ag and VWF:CB.
To investigate further the mechanism underlying the low plasma VWF:Ag levels associated with the Bombay phenotype, we purified HMW-VWF from two individual Bombay subjects, and from normal pooled group AB and group O plasmas respectively.

(A) Serial analysis of eluate fractions from the Sepharose CL-2B gel filtration column demonstrated that VWF began to elute in fraction B6.

(B) Analysis of the early fractions (B6-B9) by SDS–PAGE under reducing conditions followed by silver staining, demonstrated a single major protein band at 250kDa consistent with monomeric VWF. Multimer analysis showed that fractions also contained predominantly HMW-VWF.

(C) In order to investigate susceptibility of HMW-VWF to ADAMTS13 proteolysis, comparable eluate fractions (in the range B7 to B9) were chosen for group AB, group O and Bombay VWF purifications respectively, containing comparable HMW-VWF. These were incubated with recombinant human ADAMTS-13 (5-20nM) at 1.5M urea concentration, and rate of VWF cleavage was assessed by determining the rate of fall in VWF:CB. Results (mean of 6 experiments ± SEM) are expressed as a percentage residual collagen binding activity. In some cases the SEM cannot be seen due to its small size. After 90 min incubation, the rates of proteolysis between groups AB, O and Bombay were significantly different (O versus AB p<0.01; Bombay versus O p<0.01; and Bombay versus AB p<0.001 respectively).

(D) The effect of ABO on susceptibility of VWF to ADAMTS13 proteolysis was investigated at different concentrations of urea (0.5 to 4M). As urea concentration was raised from 0.5M to 2M, the rate of VWF proteolysis increased for each blood group. However the difference between AB, O and Bombay HMW-VWF, which was most marked at 1.5M urea, became
progressively less apparent as urea concentration was increased. In the presence of 4M urea, proteolysis of HMW-VWF by ADAMTS-13 was inhibited (data not shown).
Figure 1

1A

1B

1C

1D

VWF:Ag (U/mL)

VWF:CB (U/dl)

O'Donnell et al: Bombay phenotype and VWF

For personal use only. on October 3, 2017. For personal use only.
Figure 2

2A

OD 260nm.

2B

<table>
<thead>
<tr>
<th>Fraction</th>
<th>B8</th>
<th>B10</th>
<th>B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2C

2D

1.5M Urea

- AB VWF
- O VWF
- Bombay

1M Urea

2M Urea

For personal use only. On October 3, 2017, by guest.
References

1. Yamamoto F. Molecular genetics of ABO. Vox Sang. 2000;78 Suppl 2:91-103
12. O'Donnell J, Boulton FE, Manning RA, Laffan MA. Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype
and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol. 2002;22:335-341

20. Bowen DJ. Increased susceptibility of von Willebrand factor to proteolysis by ADAMTS13: should the multimer profile be normal or type 2A? Blood. 2004;103:3246

Bombay phenotype is associated with reduced plasma VWF levels and an increased susceptibility to ADAMTS13 proteolysis

James S O'Donnell, Thomas A McKinnon, James T Crawley, David A Lane and Michael A Laffan