Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries

Yukiyasu Sato, Hiroshi Fujiwara, Bin-Xiang Zeng, Toshihiro Higuchi, Shinya Yoshioka And Shingo Fujii
Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan

Running title: Platelets Induce Trophoblast Vascular Invasion
Key words: chemokine / extracellular matrix / extravillous trophoblast invasion / platelet / spiral artery

Address correspondence and reprint requests to: Hiroshi Fujiwara, M.D., Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
Tel: 81-75-751-3269. Fax: 81-75-761-3967. E-mail: fuji@kuhp.kyoto-u.ac.jp.

This work was supported in part by Grants-in-Aid for Scientific Research (16390474 and 16659450).

Word counts 4,942

Author contributions: Yukiyasu Sato performed research and wrote the paper; Hiroshi Fujiwara designed, performed research, analyzed data and wrote the paper; Zeng Bin-Xiang performed research; Toshihiro Higuchi performed research; Shinya Yoshioka performed research; Shingo Fujii discussed the data.
Abstract

In early pregnancy, human extravillous trophoblasts (EVTs) invade and remodel maternal arteries. Previously, we demonstrated that CCR1 is expressed on perivascular/endovascular trophoblasts and that CCR1 ligands promote EVT migration. In this study, we examined the physiological roles of platelet-derived chemoattractants on EVT invasion. By immunohistochemistry, maternal platelets were localized among endovascular trophoblasts within the lumen of spiral arteries. Extracellular matrices (ECMs) were also detected among endovascular trophoblasts and platelets, suggesting that the platelets in these arteries were activated by ECMs. In vitro, platelets attached to EVTs isolated from human villous explant cultures and expressed P-selectin on the cell surface. Platelets significantly enhanced migration of EVTs without affecting proliferation of EVTs or secretion of MMP-2 or MMP-9. The invasion-enhancing effect of platelet-derived culture medium on EVTs was neutralized by anti-CCR1 antibody. Heat treatment completely abrogated the invasion-promoting effects of platelet-derived culture medium, but charcoal stripping did not. Platelets also induced endovascular trophoblast-like morphological changes and integrin α1 expression in EVTs during 48-hour culture. These findings suggest that maternal platelets activated in the spiral arteries can regulate trophoblastic vascular infiltration and differentiation by releasing various soluble factors.
Introduction

In the human placenta, cytotrophoblasts show two distinct patterns of differentiation. In floating villi, cytotrophoblasts differentiate into syncytiotrophoblast and form the syncytial layer, while at villus-anchoring sites, cytotrophoblasts differentiate into extravillous trophoblasts (EVTs) and form the stratified structure called the cell column. After EVTs lose proliferative activity and acquire migratory activity in the cell column, the cells begin to migrate into the decidual tissue (interstitial trophoblasts) or toward maternal blood vessels. Interestingly, EVT migration is directed preferentially to the uterine spiral arteries. EVTs that migrate around the blood vessels (perivascular trophoblasts) destroy the muscular linings and those that migrate along the vascular lumen (endovascular trophoblasts) replace the endothelium. Thus, the maternal arteries are remodeled into low-resistance tubes that are unable to constrict. This process ensures adequate placental perfusion and contributes to the successful establishment of pregnancy. In fact, insufficient physiological remodeling has been reported in cases of preeclampsia and intrauterine fetal growth retardation. In contrast to other organ constructions in the embryo and placenta, this extraembryonic tissue remodeling occurs in maternal tissues and requires both maternal and embryo-derived cells for cooperative tissue construction. From this perspective, this process is more complex than those involved in organ development during embryogenesis.

Vascular infiltration of EVTs at the implantation site is mainly observed in humans and primates. Therefore, analysis of the mechanism is difficult and has been poorly understood for a long time. The predominant EVT migration toward maternal arteries suggests that some factor(s) derived from the endothelium or blood constituents direct this migration. It has been proposed that the relatively high oxygen tension in maternal arteries promotes
trophoblastic differentiation toward an invasive phenotype. This theory could explain, at least in part, why EVT invasion is directed toward the uterine arteries. However, some reports demonstrated that EVTs become more invasive under hypoxic conditions. Thus, hypotheses about the molecular mechanisms that regulate trophoblast invasion and uteroplacental artery remodeling remain controversial.

We previously reported that trophoblasts acquire a chemokine receptor, CCR1, as they differentiate toward EVTs, and that migration of EVTs is promoted by CCR1 ligands such as RANTES and MIP-1α. EVTs also decreased the expression of dipeptidyl peptidase IV/CD26, which can degrade chemokines including RANTES. Notably, peri/endovascular trophoblasts in the shallow sites expressed CCR1 more intensely than interstitial trophoblasts. CCR-1 expression was specifically limited to the EVTs that migrated from the distal site of the cell column in the anchoring villi into spiral arteries through the shell that covered the peripheral sites of the maternal decidua. This suggests that chemokines are candidate factors supporting trophoblastic vascular infiltration. Therefore, we immunohistochemically examined possible production sites of CCR1 ligands in maternal tissues. Our immunohistochemical study, however, did not detect dominant localization of chemokine-expressing cells around/within the maternal vessels.

Recently, human platelets have been shown to release several chemoattractants including chemokines. Since platelets lose their stored substances immediately after activation, it is no wonder that we could not detect immunoreactive chemokines in platelets at the feto-maternal interface. Moreover, platelet activation is known to occur near damaged blood vessels. Thus, we considered that platelets might be the sources of chemoattractants such as chemokines that support trophoblastic vascular infiltration. To investigate this possibility, we examined the immunohistochemical localization of platelets
in frozen sections of early human placental tissues. In addition, we examined the effects of platelet-derived soluble factors on the invasion or differentiation of EVT\textit{s} \textit{in vitro}.
Materials and Methods

Tissue samples

Human endometrial and placental tissues for immunohistochemistry were obtained from eight therapeutic hysterectomies performed for cervical neoplasia or uterine myoma during the secretory phase (n=3) and normal pregnancies (9 and 10 weeks of gestation n=5). Fresh tissues were embedded in O.C.T. compound (Miles, Elkhart, IN), snap-frozen in liquid nitrogen, and stored at -80 °C until use. Human placental tissues for chorionic villous explant cultures were aseptically obtained from legal abortions of normal pregnancies (6-9 weeks of gestation, n=32). Gestational age was calculated from the date of the last menstrual period and, if necessary, was adjusted according to ultrasonic measurements of the gestational sac and fetal crown-rump length. Informed consent for use of these tissues was obtained from all donors. Use of the materials was also approved by the Ethics Committee of Kyoto University Hospital.

Reagents and antibodies

An ELISA kit to measure the concentration of human RANTES was obtained from Biosource International (Camarillo, CA). Function-perturbing mouse anti-human CCR1 monoclonal antibody (mAb) (clone 141-2) was purchased from MBL (Nagoya, Japan). Mouse anti-human integrin α1 mAb (clone FB12) and anti-integrin α5 mAb (clone SAM-1) were obtained from Chemicon (Temecula, CA) and Serotec (Oxford, UK), respectively. Mouse anti-human CD41 (GPIIb/IIIa) mAb (clone M148) and anti-CD45 mAb (clone BT1229) were purchased from Novocastra Laboratories (Newcastle, UK) and Dako (Glostrup, Denmark), respectively. Fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD41 (clone M148) was purchased from
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). FITC-conjugated and non-conjugated mouse anti-human P-selectin/CD62P (clone AK-4) mAbs were obtained from BD Biosciences-Pharmingen (Tokyo, Japan). Anti-human MCAM/CD146 (melanoma cell adhesion molecule) mouse mAb (clone S-Endo1, IgG1 class, Alexis Biochemicals, San Diego, CA) was also used to detect EVTs. Mouse anti-human collagen type I mAb (clone I-8H5), anti-collagen type IV mAb (clone IV-3A9), and anti-fibronectin mAb (clone 96-21F2) were all purchased from Daiichi Finechemical (Takaoka, Japan). Mouse anti-human cytokeratin 7 mAb (clone OV-TL12/30) and FITC-conjugated mouse anti-human cytokeratin 7 mAb (clone LP5K) were obtained from Dako (Glostrup, Denmark) and Cymbus Biotechnology (Hants, UK), respectively. FITC-conjugated sheep anti-human von Willebrand Factor polyclonal antibody (pAb) was obtained from Binding Site (Birmingham, UK). FITC-conjugated and non-conjugated mouse IgG1 (clone DAK-GO1) and IgG2b (clone DAK-GO9) for negative controls were all obtained from Dako. For the blocking antibody in double immunochemistry, anti-trinitrophenyl (TNP) mAb, an unrelated mouse mAb, was employed. For the secondary antibody, FITC-conjugated rabbit anti-mouse Ig pAb (Dako) or rhodamine-conjugated goat anti-mouse Ig pAb (Santa Cruz) was used.

Double immunohistochemistry

Seven-micrometer-thick sections of frozen placental tissues were fixed with acetone and incubated with anti-CD41, anti-CD45, anti-CD62P, anti-collagen type I, anti-collagen type I, anti-fibronectin, or isotype-matched control mAbs (10 µg/mL) for 1 hour. The sections were then incubated with rhodamine-conjugated goat anti-mouse Ig pAb (diluted 1:100) for 30 min and blocked with anti-TNP mAb (20 µg/mL) for 30 min. The sections were then incubated with FITC-conjugated mouse anti-human cytokeratin 7 mAb (diluted
1:10), FITC-conjugated mouse anti-human CD41 mAb (10 µg/mL), FITC-conjugated sheep anti-human von Willebrand Factor pAb (diluted 1:100), or FITC-conjugated negative control antibodies for 1 hour. The stained sections were mounted with Immunon (PermaFluor, Pittsburgh, PA) and examined under a confocal laser scanning microscope (Carl Zeiss, Jena, Germany). Some sections were stained with hematoxylin and eosin (H&E).

Isolation and culture of human platelets and PBMC

Human platelets and PBMC were isolated as described previously. Whole blood was obtained from healthy volunteers (female, 25-35 years old, n=35), immediately mixed with 3.8% v/w trisodium citrate dihydrate (ratio of blood to citrate is 9:1) in polypropylene tubes, and centrifuged at 200 x g for 15 min at 22 °C.

Platelet-rich plasma (PRP) was centrifuged after adding a mixture of 4.5% w/v citric acid and 6.6% w/v dextrose at 50 µL/mL PRP. The sedimented platelets were resuspended in RPMI containing 5.4 mM EDTA, stabilized for 10 min at room temperature, centrifuged at 980 x g for 10 min at 22 °C, then suspended in RPMI (2 x 10⁶/mL).

The remaining blood samples containing PBMC were diluted with RPMI and layered on Lymphocyte Separation Medium (ICN Biomedicals, Aurora, OH) and centrifuged at 980 x g for 20 min at 4 °C. PBMC were collected from the interphase layer, then resuspended in RPMI (2 x 10⁶/mL).

These platelets and PBMC were cultured in collagen type I-coated 6-well plates (Iwaki, Chiba, Japan) for 24 hours to collect platelet-conditioned medium (CM) or PBMC-CM.

Human chorionic villous explant culture and isolation of extravillous trophoblasts (EVTs)
EVTs that grew from explanted human chorionic villi were isolated as previously described\(^8\). Briefly, placental tissues were aseptically dissected to remove decidual tissues and fetal membrane. The remaining chorionic villi were minced into about 2-mm fragments, soaked in FCS (Gibco) and individually placed in 10-cm dishes coated with collagen type I (Iwaki). After 4 hours of incubation to allow the explants to adhere, 10 mL of RPMI containing 10% FCS was gently added and the explants were incubated under standard conditions for an additional 48 hours. After the formation of cell sheets and the migration of spindle-shaped cells from the adherent villous tips were observed\(^8\), the outgrown cells were dispersed with 0.05% trypsin (Difco, Detroit, MI)/0.05% EDTA solution, passed through a 40-µm-pore Nylon Cell Strainer to remove chorionic villous parts, and replated in collagen type I-coated 6-well plates (Iwaki). After 4 hours of incubation, non-adherent cells and debris were removed by washing with RPMI. The cells that remained attached were defined as “isolated EVTs” and used for further experiments. More than 95% of the isolated cells were confirmed to be positive for both cytokeratin 7 and MCAM/CD146, a marker of EVTs\(^ {15,16}\). The rest were vimentin-positive (villous stromal cells) and cells that were positive for CD45 (leukocytes) or von Willebrand factor (endothelial cells) were hardly detected\(^8\).

Long-term co-culture of the isolated EVTs with platelets or PBMC

The isolated EVTs (2 x 10\(^5\) cells/2 mL of RPMI with 1% FCS) were plated in collagen type I-coated 6-well plates. PBMC (2 x 10\(^6\) cells/mL) or platelets (2 x 10\(^8\) cells/mL) in RPMI were inoculated into the culture insert (Becton Dickinson), which had a 0.4-µm-pore membrane filter that was pre-coated with collagen type I (Koken, Tokyo, Japan, 1 µg/mL) and were co-cultured with the isolated EVTs. After incubation for 48 hours, changes in EVTs were observed and analyzed by flow cytometry. For morphological
analysis, the isolated EVTs were plated in collagen type I-coated 24-well plates with the 0.4-μm-pore membrane culture insert in the presence or absence of PBMC or platelets in triplicate and the calculated length/width ratio as described below. These experiments were repeated 5 times.

In some cases, the isolated EVTs were directly incubated with or without platelets in the absence of a culture insert. After 24-hour culture, EVTs were detached using scrapers and suspended in HBSS (Gibco) containing 0.1% BSA and 0.1% NaN3. The sedimented cells were reacted with anti-human MCAM/CD146, anti-human CD41 or isotype-matched control mAbs for 30 min at 4 °C, then with rhodamine-conjugated goat anti-mouse Ig pAb for 30 min and blocked with anti-TNP mAB for 30 min. The cells were then incubated with FITC-conjugated mouse anti-human CD41, CD62P or control mAbs at 4 °C for 30 min in the dark. The cells were washed in HBSS, resuspended in glycerin and PBS (1:1), and observed under a confocal laser scanning microscope (Carl Zeiss).

Flow cytometry

After trypsinization, EVTs (n=5) that had been cultured with or without human PBMC or platelets were suspended in HBSS (Gibco) containing 0.1% BSA and 0.1% NaN3. The precipitated cells were incubated with anti-human integrin α1, α5 or isotype-matched control mAbs (100 μg/mL, 10 μL) for 30 min at 4 °C, and then with FITC-conjugated rabbit anti-mouse Ig pAb at 4 °C for 30 min in the dark. Cell surface labeling was analyzed by a FACScalibur (Becton Dickinson). Differences between the mean intensity of integrin α1 or integrin α5 expression levels were analyzed by two-tailed paired t test.

Matrigel invasion assay

Invasion assay was carried out as previously described8. A
6.4-mm-sized cell culture insert with an 8-µm-pore polyethylene terephthalate membrane filter (Becton Dickinson) was placed in collagen type I-coated 24-well plates (Iwaki). The lower surface of the membrane filter was pre-coated with diluted Matrigel (Becton Dickinson, 200 µg/mL). Four sets of invasion assays were performed as follows.

First, 800 µL of RPMI without cells (control) or platelets or PBMC suspension (2 x 10⁶ platelets/mL and 2 x 10⁶ PBMC/mL in RPMI) was poured into the lower well. The isolated EVTs (2 x 10⁴ cells/200 µL of RPMI with 5% FCS) were inoculated into the upper well. After 12 hours of incubation, the culture medium in the upper well was collected for gelatin zymography. The EVTs that remained on the upper surface of the filter were thoroughly removed. Cells that reached the lower surface were fixed with 100% methanol at -20 °C for 5 min and immunostained with mouse anti-human cytokeratin 7 mAb followed by FITC-conjugated rabbit anti-mouse Ig pAb to visualize trophoblasts. The filters were mounted with Immunon and examined under a confocal laser scanning microscope. The numbers of cytokeratin 7-positive cells were counted for quantification using NIH Image 1.61.

Second, the lower well was filled with 800 µL of RPMI without (control) or with 100, 200, or 400 µL of platelet-CM or 400 µL of PBMC-CM.

Third, platelet-CM was heat-treated (incubated at 95 °C for 1 hour) or charcoal-stripped (incubated with 0.1 g/mL charcoal at 4 °C for 24 hours) and the lower well was filled with 800 µL of RPMI without (control) or with 400 µL of intact, heat-treated, or charcoal-stripped platelet-CM.

Fourth, isolated EVTs (2 x 10⁴ cells/200 µL of RPMI with 5% FCS) were incubated at 4 °C for 30 min with anti-CCR1 function-perturbing antibody (10 µg/mL) or isotype-matched control antibody (10 µg/mL). After pre-incubation, the cells were cultured in the upper well for 12 hours and Matrigel invasion towards the intact platelet-CM was compared.
These experiments were performed in duplicate and the average was defined as the invading cell number. Each result was expressed as the percentage of invading cell number in the control (without co-culture or additive). The experiment was repeated at least three times using EVTs that had been isolated from distinct chorionic explant cultures at different gestational ages (6-9 weeks). The differences were analyzed by one-way ANOVA followed by Scheffe’s F-test for multiple comparisons.

Cell attachment, cell elongation, cell proliferation and apoptosis detection assays

Isolated EVTs (2 x 10^3 cells) were suspended in 100 µL of RPMI plus 1% FCS that contained PBMC-CM, platelet-CM with or without anti-CCR1 mAb at the same concentration as that in the parallel invasion assays. These cells were cultured in each well of collagen type I-coated 96-well plates (Iwaki) under standard conditions in triplicate and observed under a phase-contrast microscope to evaluate cell morphological changes. After 48 hours of incubation, morphological changes were recorded by digital camera (Camedia C5050, Olympus, Tokyo, Japan) and cell elongation was analyzed by calculating the cell length/width ratio, which was defined as the value of the longest cell length divided by the vertical width of the longest one. The average length/width ratio in 30 cells in each well and the mean values of triplicate wells were calculated. The cell size (area) was also calculated using NIH Image 1.61. Differences among treatment groups in 5 independent experiments were analyzed by one-way ANOVA followed by Scheffe’s F-test for multiple comparisons.

In some wells of 96-well plates, the cells were allowed to attach to collagen type I for 30 min, then washed once with RPMI, and the number of attached cells in each well was assessed using the Premix WST-1 Cell
Proliferation Assay System (Takara, Kusatsu, Japan) and ELISA plate reader (Molecular Device, Menlo Park, CA) according to the manufacturer’s instructions. In other wells of the 96-well plates, the cells were cultured for 12 hours, washed twice with RPMI, and the number of viable cells in each well was assessed. Alternatively, the cell lysate was collected from each well and the number of apoptotic cells was assessed using Cell Death Detection ELISA Plus (Roche Molecular Biochemicals, Mannheim, Germany) and ELISA plate reader according to the manufacturer’s instructions. These experiments were repeated at least three times and performed in duplicate, then the average was defined as the “attached cell number”, “viable cell number” or “apoptotic cell number”. Each result was expressed as the percentage of the cell number in the control (without additive). The differences were analyzed by one-way ANOVA followed by Scheffe’s F-test for multiple comparisons.

Gelatin zymography

Gelatin zymography was performed as previously described\(^{17}\). Twenty microliters of culture medium harvested from the upper well of the invasion assay performed as described above were electrophoresed under non-reducing conditions in a 7.5% SDS-acrylamide gel containing 2 mg/mL gelatin (Difco). After electrophoresis, the gel was washed, incubated at 37 °C overnight in buffer containing 150 mM NaCl, 5mM CaCl\(_2\), 0.5 g Brij 35, 50 mM Tris HCl, pH 7.6, and then stained with 0.1% w/v Coomassie brilliant blue R-250 (Wako, Osaka, Japan) in 30% v/v methanol, 10% v/v acetic acid for 60 min and destained in 30% v/v methanol, 10% v/v acetic acid. Semiquantification of the bands corresponding to 72-kDa and 92-kDa gelatinases was performed using NIH Image 1.61.
Results

Localization of platelets and leukocytes at human feto-maternal interface

To determine the localization of platelets or leukocytes at the feto-maternal interface, we immunostained human placental tissues at 9 (n=3) and 10 (n=2) weeks of gestation with anti-CD41 mAb or anti-CD45 mAb, respectively. As shown in Fig. 1B-D, platelets were confined within the maternal blood vessels that contained endovascular trophoblasts, while leukocytes were diffusely distributed throughout the maternal interstitium. These platelets were attached to the surface of the endovascular trophoblasts or to vessel walls that were infiltrated by perivascular trophoblasts (Fig. 1E). Since it is well known that platelets become activated when they are attached to ECM, the expressions of collagen type I, collagen type IV and fibronectin were examined in adjacent sections. Immunohistochemistry showed that all of these three ECM components were diffusely expressed in the maternal interstitium, including the subendothelial region. In addition, collagen type IV and fibronectin were expressed on the surface of endovascular trophoblasts in the spiral arteries (Fig. 1F and G). Although CD 45-positive immune cells were distributed around spiral arteries, there were no platelets observed within spiral arteries in the endometrium during the secretory phase in non-pregnant women (Fig. 1H and I).

Co-localization of P-selectin and CD41 on platelets adhering to endovascular trophoblasts and cultured EVTs

In the maternal spiral arteries, immunohistochemical double-staining showed that P-selectin was co-localized with CD-41 on platelets that adhered to endovascular trophoblasts (Fig. 2A-D).

After 24-hour culture of isolated EVTs with platelets,
immunocytochemical double-staining showed that CD41-positive platelets were adhered to CD146-positive EVTs (Fig. 2E and F). Most of these platelets expressed P-selectin on the cell surface, showing that they had been activated (Fig. 2G-L).

Short-term effects of platelet- and PBMC-derived soluble factors on isolated human EVTs

Co-culturing with human platelets but not with PBMC significantly enhanced Matrigel invasion of isolated human EVTs (Fig. 3A), without affecting their secretion of MMP-2 or MMP-9 (Fig. 3B). Similarly, platelet-conditioned medium (CM) enhanced the invasive activity of EVTs in a dose dependent manner, while PBMC-CM did not (Fig. 3C).

On collagen type I, neither platelet-CM nor PBMC-CM affected the attachment of EVTs (data not shown). After 12 hours of culturing on collagen type I, the number of viable cells (viability) was significantly increased (Fig. 4A) and the number of apoptotic cells was significantly decreased in the presence of PBMC-CM (Fig. 4B), but such effects were not observed with platelet-CM.

The invasion-promoting effect of platelet-CM on isolated EVTs was completely abrogated by heat treatment but not changed by charcoal stripping (Fig. 4C). Interaction of chemokine receptor CCR1 and its ligands has been demonstrated to promote EVT invasion\(^8\). To examine the possible contribution of CCR1 ligands to the invasion-promoting effect of platelet-CM, we disrupted the bioactivity of CCR1 on the isolated EVTs using an anti-CCR1 function-perturbing antibody. Pre-incubation of isolated EVTs with the anti-CCR1 antibody significantly reduced the invasion-promoting effect of platelet-CM (Fig. 4D).
Long-term effects of platelet- and PBMC-derived soluble factors on the isolated human EVTs

To examine the possible effects of PBMC- or platelet-derived soluble factors on EVT differentiation, isolated human EVTs were co-cultured with human PBMC or platelets for a longer period (48 hours). Without co-culturing, the shape of isolated EVTs became extremely elongated after 48 hours, resembling that of interstitial trophoblasts in vivo (Fig. 5A, left panel). The shape of isolated EVTs that had been co-cultured with the platelets for 48 hours became rather round, resembling the shape of endovascular trophoblasts in vivo (Fig. 5A, right panel). These morphological changes were also confirmed by the length/width ratio (Fig. 5D). There was no difference in cell size (data not shown). Flow cytometric analysis demonstrated that these round EVTs expressed higher levels of integrin α1 than control elongated EVTs (Fig. 5B, mean intensity 180.543±32.557 vs. 122.817±17.868, p<0.05), while there was no significant change in integrin α5 expression (data not shown). When co-cultured with PBMC, integrin α1 expression was not changed (data not shown), but integrin α5 expression was significantly lower than that of controls (Fig. 5C, mean intensity 242.438±50.302 vs. 284.140±58.371, p<0.05).
Discussion

In this study, we examined the localization of leukocytes and platelets in frozen sections of early human placental tissues. Immunohistochemistry showed that leukocytes (CD45-positive cells) were diffusely distributed throughout the maternal interstitium. In contrast, platelets (CD41-positive cells) were confined within maternal vessels containing endovascular trophoblasts. We could detect immunoreactive \(\alpha \)-smooth muscle actin around these vessels, indicating that the vessels were arteries and not veins (data not shown). In spiral arteries of non-pregnant women, there were no platelets detected. In pregnant women, these platelets were attached to the surface of endovascular trophoblasts or to vessel walls that were infiltrated by perivascular trophoblasts. The expression of ECM components such as collagen type IV and fibronectin was observed on the surface of endovascular trophoblasts as well as in the subendothelium. Considering that ECM can effectively trigger platelet activation\(^ {18} \), these platelets are likely to have been activated and to have released various bioactive substances. During activation, platelets transport P-selectin from the cytoplasmic region to cell surface. Therefore, to support the above speculation, we confirmed that platelets that were directly incubated with isolated EVTs adhered to these EVTs and that the adherent platelets expressed P-selectin on their cell surface, showing that platelets have become activated.

On invasion assays, we found that platelets significantly increased the number of human EVTs invading through Matrigel without affecting proliferation of EVTs. A similar invasion-promoting effect was observed in conditioned medium (CM) harvested from human platelet cultures. In contrast to platelet-CM, PBMC-CM had no significant effect on invasion of EVTs. Although the number of viable cells was significantly higher, the number of
apoptotic EVTs was significantly lower in the presence of PBMC-CM. In general, migrating EVTs have no proliferative activity19. In addition, this culture system contained only 1% FCS to reduce the effects of other soluble factors in FCS, which is considerably lacking in survival factors. Thus, PBMC-CM is considered to exert some apoptosis-inhibiting effect on EVTs, suggesting that PBMC prevent apoptosis of EVTs.

It is widely considered that EVTs undergo differentiation even after these cells enter the maternal tissue20. The shape of endovascular trophoblasts seems to be round and distinct from the surrounding perivascular trophoblasts that are spindle-shaped (see Fig. 1E-G). Moreover, it has been reported that endovascular trophoblasts express higher levels of integrin α_1 than interstitial trophoblasts21. Here, we found that isolated EVTs became round when co-cultured with platelets for a longer period (48 hours). These cells differed from elongated EVTs observed after culturing without platelets. These round EVTs expressed higher levels of integrin α_1 than the elongated EVTs. These findings suggest that platelet-derived soluble factors may induce EVT differentiation toward the endovascular phenotype.

Thrombophilic disorders are well known to be associated with recurrent fetal loss, preeclampsia, and intrauterine fetal growth retardation22. Although platelet activation is considered nonspecific for EVTs, but a general phenomenon of ECM-secreting cells, according to past reports, trophoblasts abundantly express thrombomodulin23 and tissue- and urokinase-type plasminogen activators24-26 that can inhibit the coagulation pathway and effect the rapid degradation of fibrin at the trophoblastic surface. In preeclampsia and/or intrauterine fetal growth retardation, where trophoblasts have been reported to possess lower activity of plasminogen activators27, the maternal spiral arteries exhibit acute necrotizing arteriopathy (acute atherosis) with frequent thrombosis28. Therefore, it is possible that in normal pregnancy,
intravascular thrombus formation may be prevented by peri/endovascular trophoblasts despite the presence of platelets that have been activated by ECM.

Our previous study demonstrated that EVTs express a chemokine receptor, CCR1, and that CCR1 ligands such as RANTES, MIP-1α, MCP-2, and HCC-1 significantly enhanced the migration of EVTs using the same cell culture and invasion assay systems. In addition, it was reported that platelets contain MIP-1α and MCP-3, which are also CCR-1 ligands. In the present study, pretreatment with anti-CCR1 function perturbing antibody significantly inhibited the enhanced EVT migration towards platelet-CM, indicating that platelet-CM promotes EVT migration at least in part through the action of the chemokine-CCR1 system in vitro. Taken together with the fact that CCR1 expression was more intense on peri/endovascular trophoblasts as compared with interstitial trophoblasts, it is speculated that the interaction of trophoblastic CCR1 and chemokines released by activated maternal platelets play an important role in trophoblastic arterial infiltration.

In this study, platelet-CM-stimulated EVT migration was not completely inhibited by CCR1 neutralization. These results suggest that some platelet-derived soluble factors other than chemokines are also responsible for the promotion of EVT migration. Previous studies by other investigators demonstrated that EGF, VEGF, and PDGF, all of which are released from activated platelets, could enhance trophoblastic invasion. Recently, it was reported that activated platelets release abundant amounts of a lipid mediator, sphingosine-1-phosphate (S1P), which regulates the migration of various cell types. However, lipid removal from platelet-CM by charcoal stripping had no significant effect on its migration-promoting activity, while inactivation of bioactive peptides by heat treatment completely abrogated the activity. These findings suggest that some protein factors such as chemokines, not lipid factors, were due to the biological effects of platelet-derived CM on
EVT function observed in this study.

As indicated above, long-term co-culturing with platelets *in vitro* caused morphological changes in EVTs consistent with their differentiation towards endovascular trophoblasts. Anti-CCR1 neutralizing antibody could not inhibit platelet-induced morphological change (data not shown), suggesting that the factors that induce rounding of EVTs during long-term culture differ from those that promote EVT invasion. Further investigation to characterize individual factors derived from platelets would facilitate a clarification of mechanisms involved in trophoblastic migration as well as differentiation.

In summary, immunohistochemical examination confirmed the presence of platelets within the maternal spiral arteries at the feto-maternal interface, where these cells are likely to have been activated by ECM deposited around the endovascular trophoblasts and to have released various soluble factors. In vitro study confirmed that platelets that attached to EVTs isolated from human villous explant cultures were activated during the culture. This study also demonstrated that platelet-derived soluble factors promote the migration of EVTs, in part mediated by CCR1-chemokine system. In addition, platelet-derived soluble factors induce morphological changes and integrin α1 expression of EVTs, compatible with their differentiation toward endovascular phenotypes. These findings suggest that activated maternal platelets within spiral arteries encourage trophoblastic arterial infiltration, thus contributing to physiological vascular remodeling (Figure 6). It was reported that essential thrombocythemia is related to recurrent abortion and fetal growth retardation, suggesting that platelets are deeply involved in early events during embryo implantation \(^{33-35}\). The data presented here suggest the importance of platelet activation during maternal vascular remodeling, which is considered insufficient in such pathological pregnancies. Although anti-platelet (low-dose aspirin) therapy has been used worldwide for the prophylaxis of preeclampsia and/or
intrauterine fetal growth retardation, there are many controversies about its effectiveness 36,37. Further investigation considering the physiological roles of activated platelets in EVT function and/or differentiation will contribute to understanding the hematological pathophysiology of recurrent abortion and preeclampsia/intrauterine fetal growth retardation in the future.
Acknowledgements

The authors are grateful to Ms M. Takemura for technical assistance. We are also grateful to Dr. Y. Ezumi and T. Ishikawa in the Department of Hematology and Oncology in Kyoto University Hospital for valuable advice.
References

acquire a chemokine receptor, CCR1, as they differentiate towards invasive phenotype. Development. 2003;130:5519-5532.

Figure Legends

Fig. 1. Platelets are localized around the endovascular trophoblasts within the maternal vessels.

Sections of placental tissue from therapeutic hysterectomy at 9 weeks of gestation were double-stained with rhodamine (red) and FITC (green). (E-G) are higher magnifications of the boxed area indicated in (A). (A) H&E. (B) CD41 (platelet marker, red) and cytokeratin 7 (CK7, marker for trophoblasts and endometrial gland, green). (C) CD41 (red) and von Willebrand Factor (vWF, endothelial marker, green). (D) CD45 (leukocyte marker, red) and vWF (green). (E) CD41 (red) and CK7 (green). (F) Collagen type IV (COL IV, red) and CK7 (green). (G) Fibronectin (FN, red) and CK7 (green). TB, trophoblasts. Note that platelets were confined within the maternal blood vessel (C). These platelets were attached to the vessel wall (white dot lines), which was infiltrated by spindle-shaped perivascular trophoblasts (E) or adhered to the surface of round endovascular trophoblasts (E), where collagen type IV and fibronectin were deposited (F and G). Endometrial sections from non-pregnant women in the secretory phase (post-ovulatory day 7) were also double-stained by CD45 and CD41 (red, H and I, respectively) and vWF (green). CD 45-positive immune cells were distributed around spiral arteries, but there were no platelets observed within the spiral arteries. Scale bars indicate 100 µm.

Fig. 2. Co-localization of P-selectin and CD41 on platelets adhering to endovascular trophoblasts and cultured EVTs

Sections of placental tissue at 10 weeks of gestation were double-stained with rhodamine (red) and FITC (green). (B-D) are higher magnifications of the boxed area indicated in the sequential section (A).
P-selectin (B, red) was co-localized with CD-41 (C, green) on platelets that adhered to endovascular trophoblasts (A, green). After 24-hour culture of isolated EVTs with platelets, EVTs were detached from the dishes and were double-stained. (F, H and L), phase contrast images. (E and F), CD41 (green) and CD146/MCAM (red). (G and H), CD62P/P-selectin (green) and CD146/MCAM (red). (I-L), CD62P/P-selectin (green) and CD41 (red). CD41-positive platelets were adhered to CD146-positive EVTs (E and F). Most of these platelets expressed P-selectin on the cell surface, showing that they had been activated (G-L). Bars show 20 μm.

Fig. 3. Platelet-derived soluble factors promote EVT migration.

(A) Isolated human EVTs were allowed to invade through Matrigel toward human PBMC or platelets that were cultured on collagen type I. After 12 hours, the EVTs that reached the lower surface were immunostained with cytokeratin 7 antibody (lower panel) and counted for quantification using NIH image 1.61 (upper panel). (B) At the end of the invasion assay, the culture medium was harvested from the upper well to evaluate the activity of MMP-2 and MMP-9 by gelatin zymography. (C) Matrigel invasion of isolated human EVTs towards PBMC-conditioned medium (CM) or platelet-CM was assessed by invasion assays. Scale bars indicate 100 μm. * indicates p<0.05 and **indicates p<0.01.

Fig. 4. Analysis for the short-term effects of platelets on EVT function.

(A and B), the isolated human EVTs were plated on collagen type I in the presence of PBMC-conditioned medium (CM) or platelet-CM. The viable cell number (A) and the apoptotic cell number (B) after 12 hours of culture were assessed as described in Material and Methods. The number of viable cells (viability) was significantly higher (A) and the number of apoptotic cells was
significantly lower in the presence of PBMC-CM (B), but such effects were not observed with platelet-CM. (C and D), Matrigel invasion of isolated human EVT towards platelet-conditioned medium (CM) with or without heat treatment or charcoal stripping in the presence or absence of anti-CCD1 mAb was assessed as described in Materials and Methods. The invasion-promoting effect of platelet-CM on isolated EVT was completely abrogated by heat treatment but not changed by charcoal stripping (Fig. 4C). Pre-incubation of isolated EVTs with the anti-CCR1 antibody significantly reduced the invasion-promoting effect of platelet-CM (Fig 4D). * indicates p<0.05, **indicates p<0.01 and NS indicates “not significant.

Fig. 5. Long-term co-culturing with platelets induces EVT transformation

Human EVTs isolated at 6 weeks of gestation were cultured for 48 hours in the presence of human PBMC or platelets that were plated in the collagen type I-coated upper chamber (A). Scale bars indicate 50 µm. At the end of the co-culture, EVTs were trypsinized and the cell-surface expression of integrin α1 (B) and integrin α5 (C) was examined by flow cytometry. Note that the EVTs became round (A, right panel) and their integrin α1 expression was enhanced in the presence of platelets (B). These morphological changes were also confirmed by length/width ratio (D). * indicates p<0.05 and **indicates p<0.01.

Fig. 6. An illustration showing possible chemokine gradient produced by platelets in spiral arteries and its estimated effects on trophoblast infiltration toward the arteries.

In spiral arteries that are undergoing vascular remodeling, platelets and ECM are deposited among the endovascular trophoblasts. These platelets are likely to have been activated by trophoblasts or ECM and to have released
various soluble factors including CCR-1 ligands to form a local chemokine gradient around the remodeling spiral arteries. These processes may encourage further trophoblastic arterial infiltration and thus contribute to physiological vascular remodeling during human early pregnancy, providing a positive feedback cascade.
Fig. 1
Fig. 2
Fig. 3

A

B

C

Invading cell number (% control)

Control PBMC co-culture Platelet co-culture

Case 1 Case 2 Case 3

MMP-9 MMP-2

92 kDa 72 kDa

Invading cell number (% control)

Control PBMC-CM 100 μL 200 μL 400 μL Platelet-CM (μL)

**
Fig. 4

A

(% of control) * *

Viad cell number

Control PBMC-CM Platelet-CM

B

(% of control) ** **

Apoptotic cell number

Control PBMC-CM Platelet-CM

C

(% of control) ** NS

Invading cell number

Control Heat-treated Charcoal-stripped Platelet-CM

D

(% of control) *

Invading cell number

Control Control Ab CCR1 Ab Platelet-CM
Fig. 5

A

B

C

D

Integrin α1

Integrin α5

Co-culture (-) Platelet co-culture

PBMC co-culture Co-culture (-)

Length/width ratio (48 h)

Control PBMC Platelet
Fig. 6

Maternal decidua

Intervillous space

Invading EVTs

Cell column

Anchoring Villi

CCR-1-positive EVTs

Spiral artery under vascular remodeling

Arterial Wall

Chemokine gradient

Platelets

ECM

Arterial Wall

Endovascular trophoblasts

Perivascular trophoblasts

Endothelial cells
Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries

Yukiyasu Sato, Hiroshi Fujiwara, Bin-Xiang Zeng, Toshihiro Higuchi, Shinya Yoshioka and Shingo Fujii