Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD

J. Ermann1,2, P. Hoffmann1,3, M. Edinger3,4, S. Dutt1, F.G. Blankenberg5, J.P. Higgins6, R.S. Negrin4, C.G. Fathman1, S. Strober1

1 Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
2 Department of Medicine, University of Tennessee, Memphis, Tennessee, USA
3 Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
4 Department of Medicine, Division of Bone Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
5 Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
6 Department of Pathology, Stanford University School of Medicine, Stanford, California, USA

Abstract word count: 187
Total word count: 4400

Address correspondence to Dr. Samuel Strober, Stanford University School of Medicine, CCSR Building, Room 2215-C, 300 Pasteur Drive, Stanford, CA 94305-5166, USA, Phone: 650-723-6500, Fax: 650-725-6104, E-mail: sstrober@stanford.edu

Keywords: GVHD, regulatory T cell, CD62L, CD25

Running title: CD62L subsets of CD4+CD25+ Treg cells in GVHD
Abstract

CD4+CD25+ regulatory T (Treg) cells are potent modulators of alloimmune responses. In murine models of allogeneic bone marrow transplantation, adoptive transfer of donor CD4+CD25+ Treg cells protects recipient mice from lethal acute graft-versus-host disease (aGVHD) induced by donor CD4+CD25- T cells. Here we examined the differential effect of CD62L+ and CD62L- subsets of CD4+CD25+ Treg cells on aGVHD-related mortality. Both subpopulations showed the characteristic features of CD4+CD25+ Treg cells in vitro and did not induce aGVHD in vivo. However, in co-transfer with donor CD4+CD25- T cells, only the CD62L+ subset of CD4+CD25+ Treg cells prevented severe tissue damage to the colon and protected recipients from lethal aGVHD. Early after transplantation, a higher number of donor-type Treg cells accumulated in host mesenteric lymph node (LN) and spleen when CD4+CD25+CD62L+ Treg cells were transferred as compared to the CD62L- subset. Subsequently, CD4+CD25+CD62L+ Treg cells showed a significantly higher capacity than their CD62L- counterpart to inhibit the expansion of donor CD4+CD25- T cells. The ability of Treg cells to efficiently enter the priming sites of pathogenic alloreactive T cells appears to be a prerequisite for their protective function in aGVHD.
Introduction

CD4⁺CD25⁺ Treg cells are potent modulators of immune responses. We and others have demonstrated that donor-derived CD4⁺CD25⁺ Treg cells could suppress lethal aGVHD in murine models of allogeneic bone marrow transplantation ¹⁻³. In these models, co-transplantation of Treg cells with conventional donor T cells controlled the expansion of alloaggressive T cells in recipient animals, thereby interfering with one of the major events in the initiation phase of aGVHD ⁴. Importantly, donor Treg cells did not cause generalized immune paralysis, since the beneficial graft-versus-leukemia/lymphoma effect of donor T cells was maintained ⁴⁻⁶. Modulating alloimmune responses after bone marrow or hematopoetic stem cell transplantation with adoptively transferred donor CD4⁺CD25⁺ Treg cells thus appears as a promising strategy for the prevention or therapy of aGVHD in humans.

CD62L (L-selectin) is an important T cell homing receptor as well as a marker for T cell development. Naïve T cells are CD62L⁺ and interaction of CD62L with its ligands, a group of molecules collectively referred to as peripheral node addressin (PNAd) is crucial for T cell entry into lymph nodes (LNs) via high endothelial venules ⁷. Expression of CD62L is rapidly lost following T cell receptor engagement and CD62L⁻ T cells are thought to be “antigen-experienced”. Two recent publications demonstrated that CD62L⁻ donor T cells did not cause GVHD ⁸⁻⁹. While CD4⁺CD62L⁻ T cells contained a higher fraction of CD4⁺CD25⁺ Treg cells, their inability to induce GVHD was maintained after Treg cell depletion ⁸. Nevertheless, these findings called for the reciprocal analysis of the GVHD-regulating capacity of CD62L⁺ and CD62L⁻ subsets of CD4⁺CD25⁺ Treg cells. Comparing the effects CD4⁺CD25⁺CD62L⁺ and CD62L⁻ Treg cell subpopulations in aGVHD was suggested by a second line of investigations. Both subsets had been shown to be equally anergic and suppressive upon polyclonal stimulation in vitro ¹⁰⁻¹². Interestingly, we found that in an adoptive transfer model of diabetes into NOD.scid mice only the CD62L⁺ but not the CD62L⁻ subset of CD4⁺CD25⁺ Treg cells caused a significant delay of disease onset ¹². In contrast, another group reported recently that both CD62L⁺ and CD62L⁻ Treg cell subsets were protective in an adoptive transfer model of colitis ¹³ suggesting that the inconsistency between in vitro and in vivo experiments in NOD mice may have been related to peculiarities of this mouse strain which
spontaneously develops autoimmune diabetes. In the current study, we used the aGVHD model as an additional in vivo assay for suppressor function in a non-autoimmune disease-prone strain.

Using a mouse model for lethal aGVHD induced by MHC mismatched CD4+CD25− T cells ¹, we found that only the CD62L+ subpopulation of CD4+CD25+ T cells protected recipients against GVHD-related severe tissue damage and death. As reported before, both CD62L+ and CD62L− subsets displayed the characteristic features of CD4+CD25+ Treg cells in vitro. However, CD4+CD25+CD62L+ Treg cells showed a significantly higher capacity to home to secondary lymphoid organs in vivo and subsequently inhibit the expansion of pathogenic CD4+CD25− donor T cells. Our results suggest that the ability of Treg cells to efficiently enter the priming sites of pathogenic alloreactive T cells is a prerequisite for their protective function in aGVHD.
Materials and Methods

Mice. C57BL/6 (H-2KbThy1.2Ly5.1) and BALB/c (H-2Kd) mice were obtained from the breeding facility of the Department of Comparative Medicine, Stanford University. C57BL/6.Thy1.1 and C57BL/6.Ly5.2 congenic mice were provided by the laboratory of Dr. Irving Weissman, Stanford University. Only male mice were used for experiments. Donors were between 6 and 12 weeks of age, recipients were at least 8 weeks old. Care of all experimental animals was in accordance with institutional guidelines.

Antibodies and Flow Cytometric Analysis (FACS). The following reagents were used for flow cytometric analysis: unconjugated anti-CD16/32 (2.4G2), anti-CD25 APC (PC61), anti-CD62L FITC (Mel-14), anti-CD69 PE (H1.2F3), anti-CD44 PE (IM7), anti-CD45RB PE (16A), anti-H-2Kb FITC (AF6-88.5), SA/PE were purchased from BD Pharmingen (San Diego, CA). Anti-CD4 Cy7/APC (RM4-5) was from Caltag (South San Francisco, CA). The anti-GITR clone 3H12 was kindly provided by Dr. Shimon Sakaguchi, Kyoto University. The antibody was purified and biotinylated according to standard protocols. Biotinylated anti-Thy1.1 and anti-Ly5.2 were kindly provided by Dr. Weissman’s laboratory. Stainings were performed in the presence of purified anti-CD16/32 at saturation to block unspecific staining. Propidium iodide (Sigma, St. Louis, MO) was added prior to analysis to exclude dead cells. All analytical flow cytometry was done on a modified dual laser LSRScan (BD Immunocytometry Systems, San Diego, CA) in the Shared FACS Facility, Center for Molecular and Genetic Medicine at Stanford using FlowJo® software (TreeStar, Ashland, OR) for data analysis.

Cell isolation and sorting. Single cell suspensions from spleens were enriched for CD25+ cells after sequential staining with anti-CD25 PE (BD Immunocytometry Systems, San Diego, CA) and anti-PE magnetic beads using the autoMACS system (Miltenyi Biotec, Auburn, CA). Then negative fraction from this separation was enriched for CD4+ cells with anti-CD4 magnetic beads. CD25+ and CD25\textsuperscript{CD4+} cells were then stained with anti-CD4 APC and anti-CD62L FITC and sorted on a FACS Vantage (Becton-Dickinson, Mountain View, CA). T cell-depleted bone marrow (TCD BM) was obtained through
negative depletion using anti-Thy1.2 magnetic beads (Miltenyi Biotech, Auburn, CA). Thy1.2-depleted splenocytes were used as allogenic stimulator cells.

GVHD model. aGVHD was induced as described previously 1. In brief, BALB/c hosts were lethally irradiated (800 cGy) and injected iv. within 24 hours with 2x 10^6 TCD BM cells for reconstitution plus any additional cells as indicated in the text. For survival studies mice were kept on antibiotic water (neomycin/polymyxin) for the first 28 days. Survival and appearance were monitored daily. For histology, mice were sacrificed 5 days after cell transfer. Hematoxylin/eosin staining of paraffin-embedded tissue sections was performed according to standard protocols.

Cell distribution studies. Cell preparation and aGVHD induction were performed as described above. For day 2 biodistribution studies, the cell population of interest was labeled with ^111^In-oxine 14. Briefly, sorted CD4^+^CD25^+^CD62L^+^ and CD62L^-^ T cells were incubated in 150 to 200 µl (0.15 to 0.20 mCi of activity) of stock ^111^In-oxine (Amersham Health, San Jose, CA) for 30 minutes at room temperature. The cells were then spun, washed once with PBS, resuspended in medium and, after admixing unlabeled CD4^+^CD25^-^ T cells and TCD BM, injected into irradiated hosts. Recipients were sacrificed 48 hours later, the various organs were dissected, their weight recorded. Organ samples were analyzed in a scintillation well counter along with three samples of standard activity (1/100 of injected dose) at two energy windows, 100-200 and 210-350 KeV. Results were expressed as the average of the percentage of injected dose (ID) per gram (g) of tissue (%ID/g). For day 5 analysis, Thy1.1 or Ly5.2 congenic C57BL/6 mice were used as donors for the CD4^+^CD25^-^ T cells. Recipients were sacrificed 5 days after aGVHD induction. Cell suspensions from mesenteric LNs and spleen were prepared using a syringe plunger. Mononuclear cells from the liver were isolated by gradient centrifugation as described by Eberl and MacDonald 15. Viable cells were counted, stained with appropriate antibodies and analyzed by FACS.

Mixed lymphocyte reactions and polyclonal stimulation assays. Cultures were set up in 96 well round bottom plates (BD Biosciences, Franklin Lakes, NJ) in a total volume of
200 µl. Cells were cultured in RPMI-C, i.e. RPMI 1640 (Bio Whittaker, Walkersville, MD) supplemented with 10% heat-inactivated fetal bovine serum, 10 mM HEPES, 1% non-essential amino acids, 1 mM sodium pyruvate, 100 U/ml Penicillin + 100 µg/ml Streptomycin, 2 mM L-Glutamine (all Gibco BRL, Gaithersburgh, MD), and 50 µM 2-Mercaptoethanol (Sigma, St. Louis, MO). CD4+CD25- responder cells and irradiated (3000 cGy) allogenic stimulator cells (100,000 cells each) were mixed with variable numbers of CD4+CD25+ T cells to obtain the ratios indicated in the text. Proliferation was assessed after 5 days by pulsing the cells with 1µCi/well [3H]-thymidine (Amersham Pharmacia Biotech, Piscataway, NJ) for the last 16 h. Cells were harvested onto filter membranes using a Wallac harvester (PerkinElmer Life Sciences, Gaithersburg, MD), and the amount of incorporated [3H]-thymidine was measured with a Wallac Betaplate counter (PerkinElmer Life Sciences, Gaithersburg, MD).

IL-2 ELISA. 25,000 cells were incubated in 200 µl RPMI-C with PMA (50 ng/ml, Sigma, St. Louis, MO) + Ionomycin (1 µM, Calbiochem, La Jolla, CA) in 96-well flat-bottom plates. Supernatants were harvested after 24 hours and analyzed for IL-2 by ELISA as described 16. Values presented are the mean and standard deviation of triplicate cultures.

Real-time quantitative PCR. Total mRNA was isolated from frozen cell pellets using the RNeasy MiniKit (Qiagen, Valencia, CA) and after digestion of genomic DNA (DNA-free, Ambion, Austin, TX) reverse-transcribed with TaqMan Reverse Transcription Reagents (Applied Biosystems, Foster City, CA). Quantitative real-time PCR was then performed on a MX4000 (Stratagene, LaJolla, CA) using the Brilliant SYBR Green QPCR Master Mix (Stratagene, LaJolla, CA) and the following primers: FoxP3 forward CCGCAAGCTAAAAGCCAGG, FoxP3 reverse CTTTGCCTTCGTCACC, β-actin forward GACGGCCAAGTCATCACTATT, β-actin reverse AGGAAGGCTGGAAAAGAGCC.

Statistical Analysis. Statistical analysis was performed using Prism (GraphPad Software, San Diego, CA). Differences in animal survival were analyzed by LogRank test. Cell numbers recovered from various organs were compared using the Mann-Whitney test.
Results

CD4⁺CD25⁺CD62L⁻ T cells do not protect from lethal aGVHD

Lethal aGVHD can be induced by adoptive transfer of a limited number of CD4⁺CD25⁻ C57BL/6 (H-2ｂ) T cells into lethally irradiated BALB/c (H-2ｄ) hosts. Priming and massive expansion of alloreactive donor T cells together with severe inflammation of the gut leads to clinically apparent severe diarrhea and death of the animals within 1-2 weeks. Using this model we have previously shown that co-transfer of donor-derived CD4⁺CD25⁺ Treg cells at a 1:1 ratio protects against lethal disease ¹. About 40% of the CD4⁺CD25⁺ T cells in the spleen of an 8-week old C57BL/6 mouse are CD62L⁻. We purified CD4⁺CD25⁺CD62L⁺ and CD62L⁻ T cells from C57BL/6 donors to >95% purity (Figure 1A) and used them in our aGVHD model. Figure 1B demonstrates that the co-transfer of CD4⁺CD25⁺CD62L⁻ T cells did not lead to a significant survival benefit compared to transfer of CD4⁺CD25⁻ T cells alone (p=0.62). The mice in these two experimental groups rapidly developed severe aGVHD and all mice had succumbed to the disease by day 42 after transplantation. In contrast, about 70% of the mice that received CD4⁺CD25⁺CD62L⁺ T cells together with CD4⁺CD25⁻ T cells survived for more than 100 days (p<0.0001). Survivors appeared normal at 100 days and showed no skin abnormalities, hunched back, or diarrhea. None of the animals that received either CD4⁺CD25⁺CD62L⁺ or CD4⁺CD25⁺CD62L⁻ T cells alone developed any clinical signs of aGVHD and all survived for at least 100 days.

CD62L⁺ and CD62L⁻ subsets of CD4⁺CD25⁺ T cells differ with regard to the expression of various memory/activation markers

We next analyzed CD4⁺CD25⁺CD62L⁺ and CD62L⁻ splenocytes from 8-week old C57BL/6 mice for the expression of other memory/activation markers using 4-color flow cytometry (Figure 2). Both subpopulations had uniformly high surface levels of GITR, a marker that has been described to be preferentially expressed on CD4⁺CD25⁺ Treg cells and to modulate Treg cell function ¹⁷,¹⁸. CD4⁺CD25⁺ Treg cells are known to have a memory phenotype as defined by expression of CD45RB and CD44 ¹⁰. Interestingly, while the CD62L⁻ subset was truly CD45RB_{low} and CD44_{high}, intermediate expression levels of CD45RB and CD44 were observed for the CD62L⁺ subset. Furthermore, about
50% of CD4+CD25+CD62L− T cells were activation marker CD69+ compared to only 15% of the CD4+CD25+CD62L+ T cells, suggesting that the CD4+CD25+CD62L− subset might contain a considerable fraction of recently activated conventional CD4+ T cells.

Both CD62L+ and CD62L− subsets of CD4+CD25+ T cells show Treg cell characteristics in vitro

It has been reported that both CD62L+ and CD62L− subsets of CD4+CD25+ T cells can suppress the proliferation of CD4+CD25− T cells upon polyclonal stimulation in vitro10,11. Figure 3A demonstrates that this holds true for allogeneic stimulation. Both CD4+CD25+CD62L+ and CD4+CD25+CD62L− T cells from C57BL/6 mice failed to proliferate in response to BALB/c stimulator cells but suppressed the proliferation of co-cultured C57BL/6 CD4+CD25− T cells in a dose-dependent manner with similar efficiency. The anergic phenotype of both subsets was further tested by stimulation with PMA/Ionomycin. In contrast to CD4+CD25− T cells, neither CD4+CD25+CD62L+ nor CD4+CD25+CD62L− T cells produced significant amounts of IL-2 when exposed to this strong stimulus (Figure 3B). Expression of the transcription factor Foxp3 has recently been linked to a Treg cell phenotype19,20. We analyzed FoxP3 mRNA levels by quantitative real-time PCR (Figure 3C). No difference in FoxP3 expression could be detected between the two CD4+CD25+ T cell subsets, while both had about 25-fold higher FoxP3 levels than CD4+CD25− T cells. Regardless of the differences in expression of additional cell surface markers, the data presented in Figure 3 demonstrate that both CD4+CD25+CD62L+ and CD4+CD25+CD62L− T cells share key characteristics of Treg cells. In fact, the quantitative similarity with respect to their suppressive capacity, anergic phenotype and FoxP3 expression level is evidence against a major contamination of the CD4+CD25+CD62L− subset with recently activated conventional T cells.

CD4+CD25+CD62L+ T cells home more efficiently to secondary lymphoid organs than CD4+CD25+CD62L− T cells

We hypothesized that differential trafficking as a consequence of the presence or absence of CD62L combined with differential expression of chemokine receptors and other homing molecules might explain the functional differences between CD4+CD25+CD62L+
CD4\(^+\)CD25\(^+\)CD62L\(^+\) T cells inhibit the expansion of alloreactive CD4\(^+\)CD25\(^-\) T cells in vivo more efficiently than CD4\(^+\)CD25\(^+\)CD62L\(^-\) T cells and protect against GVHD-related tissue damage to the large intestine

In order to better understand subsequent events in the interaction between co-transferred CD4\(^+\)CD25\(^+\) and CD4\(^+\)CD25\(^-\) T cells we used congenic C57BL/6 mice (Thy1.1 or Ly5.2) as donors of the CD4\(^+\)CD25\(^-\) T cells. It was thus possible to identify the progeny of these cells as H-2K\(^b\)+CD4\(^+[\text{congenic marker}]^+\) and the progeny of the co-transferred CD4\(^+\)CD25\(^+\) subsets as H-2K\(^b\)+CD4\(^+[\text{congenic marker}]^-. 500,000 CD4\(^+\)CD25\(^-\) T cells were injected together with TCD BM into irradiated BALB/c hosts either alone (control hosts) or together with 500,000 CD4\(^+\)CD25\(^+\)CD62L\(^+\) or CD4\(^+\)CD25\(^+\)CD62L\(^-\) T cells (experimental hosts). Recipients were sacrificed on day 5, i.e. shortly before the first control hosts were expected to die. Single cell suspensions from mesenteric LN, spleen as well as mononuclear cells from the liver were prepared. Viable cells were counted and analyzed by FACS as described. Since there was considerable variation in donor CD4\(^+\) T cell yield in the four independent experiments performed, we normalized the data by calculating the ratio of T cell numbers recovered from individual experimental hosts over...
the average number of donor CD4+CD25- T cells recovered from control hosts within a given experiment. As demonstrated in Figure 5A, we could recover 2.3 times more CD4+CD25-CD62L+ than CD4+CD25-CD62L- T cells from mesenteric LN (p=0.0003) and 2.7 times more from the spleen (p=0.004). Recovery from the liver was equivocal (p=0.46). CD62L expression levels on all recovered Treg cells were low (data not shown). For CD4+CD25- T cell progeny the normalized cell count represents the expansion of CD4+CD25- T cells in the presence of Treg cells relative to their expansion when transferred alone. Figure 5B shows that both CD4+CD25+CD62L+ and CD62L- Treg cell subsets inhibited the proliferation of CD4+CD25- T cells (p<0.001 for all groups and organs), although to a different degree. The expansion of donor CD4+CD25- T cells in the mesenteric LN was more strongly inhibited in mice that had received additional CD4+CD25-CD62L+ T cells than in recipients of the CD62L- subset (median 0.36 vs. 0.65, p=0.017). Similar relative reductions were seen in the spleen (0.17 vs. 0.33, p=0.033) and liver (0.33 vs. 0.67, p=0.002). In Figure 5C we calculated the fraction of donor CD4+ T cells that was derived from CD4+CD25+ T cells. This is an important parameter as it has been shown both \textit{in vitro} and \textit{in vivo} 1 that the protective effect of CD4+CD25+ Treg cells is dose-dependent. CD4+CD25+ Treg cells made up a considerably larger fraction of all donor CD4+ T cells after transfer of the CD62L+ subset than after transfer of CD62L- cells (median 0.20 vs. 0.05 in mLN, p=0.0003, 0.21 vs. 0.08 in spleen, p=0.0003, 0.13 vs. 0.05 in liver, p=0.001).

Finally, we looked at histological changes in target tissues of aGVHD. We have published previously that in this model of aGVHD the most severe tissue damage occurs in skin and colon with minimal changes in liver and small intestine by day 40 21. In this study, smaller donor T cell numbers were transferred resulting in a more protracted disease course. Here, we sacrificed recipient mice after 5 days. Samples of liver, small and large intestine were fixed, processed and stained with hematoxylin and eosin. Although we were able to isolate and analyze single cell suspensions from the liver on day 5 after cell transfer (Figure 5), there was no histological evidence of GVHD in the liver at that time (data not shown). Very mild histological changes were observed in the small intestine of all mice (data not shown). In contrast, clear signs of GVHD could be detected in the large intestine of CD4+CD25- control hosts, confirming our previous
report and suggesting that the colon is the primary target organ in this model system. Figure 6a shows a moderate to severe degree of mononuclear cell infiltration with disruption of the mucosal crypt architecture and apoptosis of enterocytes. Interestingly, recipients of CD4+CD25- T cells and CD4+CD25+CD62L- Treg cells (Figure 6D), were histologically indistinguishable from CD4+CD25- control hosts (Figure 6B) while those that received additional CD4+CD25+CD62L+ Treg cells (Figure 6C) showed only mild histological changes and resembled more the TCD BM control (Figure 6A).
Discussion

We have previously shown that donor-type CD4⁺CD25⁺ T cells were able to protect mice from lethal aGVHD induced by CD4⁺CD25⁻ T cells across a complete MHC mismatch barrier. We show now that, using CD62L expression as a marker, CD4⁺CD25⁺ T cells can be divided into two subpopulations with distinct functional differences in vivo. Although both CD4⁺CD25⁺CD62L⁺ and CD4⁺CD25⁺CD62L⁻ subsets have Treg cell characteristics when analyzed in vitro, only the CD62L⁺ subpopulation protects recipients from death in a mouse model of aGVHD.

It has been recognized that T cell trafficking plays a central role in the pathogenesis of GVHD. Both induction of murine GVHD and, as demonstrated in this paper, protection from GVHD-induced lethality are exerted by T cell populations that express CD62L on their surface. One plausible interpretation of these findings is that the priming of alloreactive conventional CD4⁺ T cells as well as the inhibition of their expansion by donor-derived Treg cells occurs in a location that requires the interaction of CD62L on the T cell surface with PNA-d or alternative endothelial ligands for efficient entry. This is supported by reports that in two different mouse models blockade of CD62L (and CD49d) redirected donor T cells in vivo and ameliorated GVHD. It appears that in our aGVHD model, the mesenteric LN is this crucial “CD62L accessible” priming site. After transfer into irradiated hosts, disease inducing CD4⁺CD25⁻CD62L⁺ T cells accumulate rapidly in all host LNs. However, it is in the mesenteric LN and not in other peripheral LNs where they rapidly expand (unpublished data). Importantly, we demonstrate in this paper that CD4⁺CD25⁺CD62L⁺ Treg cells home significantly better to secondary lymphoid organs than their CD62L⁻ counterparts. This allows them to more efficiently inhibit the proliferation of alloreactive CD4⁺CD25⁻ T cells in the mesenteric LN and protect the host from overwhelming aGVHD and death. A trafficking pattern that more (or less) overlaps with that of the pathogenic CD4⁺CD25⁺CD62L⁺ T cells can thus explain the differential ability of CD4⁺CD25⁺CD62L⁺ and CD62L⁻ T cells to protect from lethal aGVHD.

The lack of protection by the CD4⁺CD25⁺CD62L⁻ Treg cell subset in terms of survival is striking. However, the day 5 data clearly demonstrate that this subset does have some inhibitory effect on the expansion on CD4⁺CD25⁻ T cells in vivo. Reciprocally, the fact
that 70% of the mice that received CD4\(^+\)CD25\(^-\) T cells together with CD4\(^+\)CD25\(^+\)CD62L\(^+\) Treg cells survived >100 days, does not mean that these mice were completely protected from GVHD development. We have previously published \(^1\) that some recipients of CD4\(^+\)CD25\(^-\) plus total CD4\(^+\)CD25\(^+\) T cells showed clinical signs of GVHD at 4-5 week post transfer, but recovered thereafter and survived long-term. Furthermore, there was histological evidence of mild GVHD affecting the skin and gut at 7 weeks after co-transfer of CD4\(^+\)CD25\(^-\) and CD4\(^+\)CD25\(^+\) T cells, but not at 100 days. Our interpretation of these findings is that CD4\(^+\)CD25\(^+\) T cell do not completely prevent the activation of allospecific conventional T cells and that GVHD develops to some degree. This view is further supported by the demonstration that CD4\(^+\)CD25\(^+\) Treg cells prevented death from acute GVHD but still allowed a protective GVL response to occur in two mouse tumor models \(^4\). The data presented in this manuscript are consistent with our previously published results, in that some animals who had received CD4\(^+\)CD25\(^-\)CD62L\(^+\) Treg cells together with CD4\(^+\)CD25\(^-\) T cells died between 4 and 10 weeks after transplantation. The long-term survivors in this group had no clinical signs of GVHD at the end of the experiment. They looked normal without skin changes, hunched back, or diarrhea. Thus, they had the appearance of mice that had received unfractionated CD4\(^+\)CD25\(^+\) Treg cells as described in our previous report \(^1\).

In conventional CD4\(^+\)CD25\(^-\) T cells, expression of CD62L distinguishes between naïve and effector memory T cells \(^26\). The application of this paradigm to CD4\(^+\)CD25\(^+\) T cells is problematic as very little is known about antigen-specificity and antigen-experience of these cells. Recently developed transgenic mouse systems allow the analysis of CD4\(^+\)CD25\(^+\) Treg cells that are specific for defined artificial autoantigens \(^27,28\). However, CD62L\(^+\) and CD62L\(^-\) Treg cell subpopulations have not been analyzed in these mice yet. We did not detect a difference in the ability of CD4\(^+\)CD25\(^+\)CD62L\(^+\) and CD62L\(^-\) subsets to suppress alloresponses \textit{in vitro} suggesting that there is no significant difference in alloreactivity between the two populations. Based on expression of the memory markers CD44 and CD45RB, CD4\(^+\)CD25\(^+\) Treg cells have been classified as having a memory phenotype \(^10\). We demonstrate in this paper that CD4\(^+\)CD25\(^+\)CD62L\(^+\) and CD62L\(^-\) Treg cells differed with regard to expression of CD44 and CD45RB in that CD62L\(^+\) Treg cells had intermediate expression levels of these receptors whereas the CD62L\(^-\) cells were truly
CD4high and CD45RBlow. The previously noted bimodal distribution for CD45RB on CD4+CD25+ Treg cells29 is thus a composite of CD45RB expression on the CD62L+ and CD62L- Treg cell subsets. The differential expression of various memory/activation markers may indicate that the CD62L+ and CD62L- subsets represent distinct stages of CD4+CD25+ Treg cell development30 with functional differences of relevance \textit{in vivo} beyond trafficking. For example, Fu et al. reported that CD4+CD25+CD62L+ T cells expanded better than CD4+CD25+CD62L- T cells when stimulated \textit{in vitro} with anti-CD3 plus IL-213. CD69 is a marker of recent T cell activation. About 50\% of the CD4+CD25+CD62L- T cells were CD69+ compared to only 15 \% of the CD62L+ subset. It has been demonstrated for total CD4+CD25+ T cells that CD69 expression does not distinguish between cells with and without suppressor function11. Furthermore, we did not detect significant differences between CD4+CD25+CD62L+ and CD62L- T cells in any of the Treg cell assays performed \textit{in vitro}. Available data thus do not support the notion that CD4+CD25+CD62L- T cells are contaminated by a major fraction of recently activated conventional T cells.

In conclusion, we have demonstrated that only the CD62L+ subpopulation of donor-type CD4+CD25+ Treg cells protected from lethal aGVHD induced by CD4+CD25- T cells. Both CD4+CD25-CD62L+ and CD4+CD25+CD62L- T cells showed Treg cell characteristics \textit{in vitro}. Our data suggest that the differential ability of the CD62L+ and CD62L- Treg cell subsets to protect from lethal aGVHD \textit{in vivo} is due to their differential ability to enter the priming sites of the pathogenic CD4+CD25- donor T cells.
Acknowledgements

We thank Holger Karsunky and Libu Jerabek for providing congenic mice.
Footnotes
Supported by National Institutes of Health grants DK-61295, CA-65237, HL-57443, HL-58250, CA-49605, CA-92225, and AI-37683.
Figures

Figure 1.
Only the CD62L+ subset of CD4+CD25+ Treg cells protects from lethal aGVHD in vivo. (A) CD4+ splenocytes from C57BL/6 donors were sorted into CD4+CD25+ (not shown), CD4+CD25+CD62L+, and CD4+CD25+CD62L- subpopulations. (B) Lethally irradiated BALB/c recipients received 2x10^6 TCD BM cells from C57BL/6 mice for reconstitution plus 500,000 C57BL/6-derived CD4+CD25+ T cells either alone (n=10) or together with 500,000 CD4+CD25+CD62L+ (n=10) or CD4+CD25+CD62L- (n=10) Treg cells. Additional groups were injected with TCD BM and 500,000 CD4+CD25+CD62L+ (n=5) or CD4+CD25+CD62L- (n=3) Treg cells only. Data were pooled from two independent experiments.

Figure 2.
CD4+CD25+CD62L+ and CD4+CD25+CD62L- T cells express comparable levels of GITR on their surface but differ in the expression of other markers. C57BL/6 splenocytes were stained with anti-CD4 Cy7APC, anti-CD25 APC, anti-CD62L FITC and PE-labeled antibody against the marker of interest and analyzed by flow cytometry. Two-dimensional dot plots of CD62L versus GITR, CD44, CD45RB, or CD69, respectively, are shown for CD4+CD25- T cells in the left and CD4+CD25+ T cells in the middle column. The histograms in the right column are overlays of the respective markers for CD4+CD25- T cells (tinted), CD4+CD25+CD62L- (bold), and CD4+CD25+CD62L+ Treg cells (fine).

Figure 3.
Both CD4+CD25+CD62L+ and CD4+CD25+CD62L- T cells show Treg cell characteristics in vitro. (A) Alloresponse of C57BL/6-derived CD4+CD25- T cells and CD4+CD25+CD62L+ and CD62L- T cells towards BALB/c APC in vitro. Cultures were set up with 100,000 BALB/c-derived APC and 100,000 sorted CD4+CD25- T cells from C57BL/6 mice plus variable numbers of C57BL/6-derived CD4+CD25+CD62L+ or CD62L- T cells to obtain the indicated ratios. CD4+CD25+CD62L+ and CD62L- T cells were also stimulated alone. Proliferation was assessed by labeling the cultures with 3H-
thymidine for the final 16 h of the 5 day incubation period. Data represent mean + SD of triplicate cultures. One of 5 experiments with similar results is shown. (B) 25,000 sorted CD4⁺CD25⁺CD62L⁻, CD4⁺CD25⁺CD62L⁺ and CD4⁺CD25⁻ T cells were stimulated for 24 hours with 50 ng/ml PMA and 1 µM Ionomycin. IL-2 in the supernatant was determined by ELISA. The results represent mean + SD of triplicate cultures. (C) cDNA was prepared from cell populations sorted as in (B) and analyzed for expression of FoxP3 by real-time quantitative PCR using β-actin as normalizing gene.

Figure 4.

CD4⁺CD25⁺CD62L⁺ T cells home significantly better to secondary lymphoid tissues than CD4⁺CD25⁺CD62L⁻ T cells. Sorted CD4⁺CD25⁺CD62L⁺ and CD4⁺CD25⁺CD62L⁻ T cells were labeled with ¹¹¹In before co-transfer with unlabeled CD4⁺CD25⁻ T cells and TCD BM into irradiated hosts. Mice were sacrificed 48 hours later and radioactivity in the various organs was measured. (A) Global comparison of aGVHD target organs (liver, small bowel, large bowel) and primary lymphoid organs (spleen, peripheral LN, mesenteric LN). Results are expressed as fraction of injected radioactive dose divided by organ weight in grams [%ID/g] representing organ-specific enrichment. Mean + SD are given. (B) Results from individual mice are shown for mesenteric LN, spleen and liver. The horizontal line represents the group median. p values are provided above the figure. Data were pooled from 3 experiments (CD4⁺CD25⁺CD62L⁺ mice n=7, CD4⁺CD25⁺CD62L⁻ mice n=8).

Figure 5.

CD4⁺CD25⁺CD62L⁻ T cells are quantitatively less efficient suppressors in vivo. Lethally irradiated BALB/c mice received TCD BM and CD4⁺CD25⁻ T cells from congenic C57BL/5 without (control hosts) or together with (experimental hosts) CD4⁺CD25⁺CD62L⁺ or CD4⁺CD25⁺CD62L⁻ Treg cells from WT C57BL/6 donors. All mice were sacrificed five days after transfer. Single cell suspensions were prepared from mesenteric LN (MLN), spleen and liver of individual mice. Viable cells were counted, stained with appropriate antibodies and analyzed by flow cytometry. The progeny of CD4⁺CD25⁻ and CD4⁺CD25⁺ T cells was identified as CD4⁺H-2Kᵇ⁻[congenic marker]⁺⁻.
Results for individual mice are shown. The horizontal line represents the group median. *p* values are given above the figures. Data were pooled from four experiments with 9–11 mice per group. (A) Recovery of CD4+CD25+ T cells after transfer of the CD62L+ or CD62L- subset. (B) Expansion of CD4+CD25− T cells in mesenteric LN, spleen, or liver after co-transfer of CD4+CD25+CD62L+ or CD4+CD25+CD62L− Treg cells. (C) Fraction of CD4+CD25+ T cell progeny amongst all donor CD4+ T cells in individual mice.

Figure 6.

Minimal histological damage in the large intestine 5 days after co-transfer of CD4+CD25+CD62L+ Treg cells. Lethally irradiated BALB/c hosts received TCD BM or TCD BM plus 500,000 CD4+CD25− T cells alone or together with 500,000 CD4+CD25+CD62L+ or CD4+CD25+CD62L− T cells. Animals (n=3 each group) were sacrificed 5 days later and a piece of large bowel was processed for standard H/E histology. Representative sections are shown at 1:40 magnification for recipients of (A) TCD BM alone, (B) CD4+CD25− T cells (C) CD4+CD25− plus CD4+CD25+CD62L+ T cells, (D) CD4+CD25− plus CD4+CD25+CD62L− T cells.
Figure 1

A

CD4+ splenocytes

CD4+CD25+CD62L-

CD4+CD25+CD62L+

CD62L

B

survival [%]

days

- CD25-
- plus CD25+CD62L+
- plus CD25+CD62L-
- CD25+CD62L+
- CD25+CD62L-
Figure 2

CD4+CD25+CD62L+ (fine)
CD4+CD25+CD62L- (bold)
CD4+CD25- CD4+CD25- (tinted)

GITR
CD62L

CD4
CD62L

CD45RB
CD62L

CD69
CD62L

% of Max

% of Max

% of Max
Figure 3

A

[Graph showing cell proliferation with CD25 and CD62L expression at different ratios.

B

[Graph showing IL-2 production with CD25+CD62L+ and CD25+CD62L-.

C

[Graph showing FoxP3 expression with CD25+CD62L+ and CD25+CD62L-.

Legend:
- CD25+CD62L+
- CD25+CD62L-
- CD25-
Figure 4

A

B

For personal use only. on October 3, 2017. For personal use only.
Figure 5

A

![Graph A]

B

![Graph B]

C

![Graph C]
Figure 6
References

15. Eberl G, MacDonald HR. Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity. 1998;9:345-353

Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD

Joerg Ermann, Petra Hoffmann, Matthias Edinger, Suparna Dutt, Francis G Blankenberg, John P Higgins, Robert S Negrin, C G Fathman and Samuel Strober