Neutrophil PRV-1 expression across the chronic myeloproliferative disorders and in secondary or spurious polycythemia

Ayalew Tefferi, Terra L. Lasho, Alexandra P. Wolanskyj, Ruben A. Mesa

Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, U.S.A.

Address correspondence and reprint requests to Ayalew Tefferi, MD, Division of Hematology and Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 (E-mail: tefferi.ayalew@mayo.edu; Phone: 507-284-3159)

Abstract word count: 153
Text word count: 1329
Abstract

Recent studies have demonstrated neutrophil over-expression of the PRV-1 gene in polycythemia vera (PV) but not in secondary or spurious polycythemia (SP). In order to validate as well as expand upon this novel observation, we conducted a prospective study of 88 subjects; 30 with PV, 22 with SP, 14 with essential thrombocythemia (ET), 12 with myelofibrosis with myeloid metaplasia (MMM), and 10 controls. In order to minimize inter-study methodological differences, we used published real-time PCR-based assay. The proportion of patients with increased neutrophil PRV-1 expression was 83% in PV, 21% in ET, 42% in MMM, 18% in SP, and 0% in controls. All 5 MMM patients with PRV-1 up-regulation had an antecedent history of PV. We conclude that neutrophil PRV-1 up-regulation is a characteristic feature of PV that may not be affected by fibrotic transformation. However, quantifying neutrophil PRV-1 mRNA, while complementary to other tests, is not self-sufficient for the diagnosis of PV.
Introduction

Although clinical presentation, serum erythropoietin (Epo) level, and bone marrow histology provide adequate information for the diagnosis of PV in the majority of cases, the possibility of either SP or ET is sometimes entertained and needs to be clarified. In this regard, the traditional PV study group “diagnostic criteria” lack both accuracy and practicality and are being replaced by a “diagnostic algorithm” that utilizes, when necessary, specialized tests including an assay for endogenous erythroid colony (EEC) formation, megakaryocyte/platelet Mpl expression, and the more recently described neutrophil PRV-1 expression. Although none of these biological markers are specific to PV, they have certainly provided an additional level of comfort in establishing a working diagnosis.

Quantitative neutrophil PRV-1 measurement has been evaluated in healthy controls as well as patients with PV, SP, ET, and de novo MMM. In the most recent of such studies, the diagnostic accuracy of a quantitative, neutrophil PRV-1 assay was reported to be 100% in distinguishing PV from SP. In the particular study, all 71 patients (100%) with PV but none of 11 patients with SP displayed neutrophil PRV-1 over-expression. In contrast, two previous reports that used a similar quantitative assay found neutrophil PRV-1 mRNA not to be elevated in 4 of 13 and 2 of 23 patients with PV, respectively. In regards to ET, while one study found PRV-1 upregulation in only 2 of 12 patients (17%), a second study reported a corresponding rate of 67% (10 of 15 patients). In the current study, we sought to independently verify the performance of the quantitative PRV-1 assay in distinguishing PV from SP as well as examine neutrophil PRV-1 expression patterns in ET and MMM (both de novo and post-polycytemic).

Methods

This is a prospective, IRB-approved, single institutional study involving 88 subjects; 30 with PV, 22 with SP, 14 with ET, 12 with MMM, and 10 controls. All patients with PV, ET, or MMM
fulfilled either the updated PVSG10,11 or WHO12 diagnostic criteria. Furthermore, the diagnosis was confirmed by characteristic bone marrow histology in all cases of PV, ET, MMM and in 15 of the 22 patients with SP13. Among the 22 patients with SP, 13 had secondary erythrocytosis (2 with high-oxygen-affinity hemoglobin variants, 3 with history of exogenous testosterone administration, 4 with a combination of sleep apnea, tobacco use, or pulmonary hypertension, 1 with atrial septal defect, 1 with valvular fibroelastoma, 2 indeterminate causes) and 9 had spurious polycythemia that was defined as an erroneous perception of increased red cell mass that resulted from either volume contraction or a clinician’s perception of what constitutes the upper limit of normal values for hematocrit.2 Among the 12 patients with MMM, 7 had de novo MMM and 5 had post-polycythemic myeloid metaplasia (PPMM).

In order to minimize inter-study methodological differences, the current study used the original test protocol that was kindly provided by Dr. Heike L. Pahl.7 Thirty ml of blood, in EDTA, was obtained from each patient during a clinically indicated phlebotomy. All samples were processed within 6 hours at room temperature. Neutrophils were isolated through double density gradient centrifugation using Ficoll-Paque (Sigma, St. Louis, MO). Total RNA was extracted via Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA). Samples were analyzed for both integrity and quantity using the Agilent 2100 bioanalyzer (Agilent Technologies, Inc., Carmel, IN). Reverse transcription and PCR were performed in the single buffer system Taqman One Step RT-PCR (Applied Biosystems, #4309169). PRV-1 transcripts were amplified by using primers created from the human PRV-1 mRNA GenBank sequence (NM_020406); prv1 forward primer (9 uM; 5’-GCT GTC CAC CAA AAT GAG CAT –3’), prv1 reverse primer (0.5 uM; 5’-TTC TCA CGC GCA GAG AAG ATC-3’), and prv1 probe (2.5 uM; 5’-FAM-TTC TTG TTG AAC CAC ACC AGA CAA ATC GG-3’). Cycling conditions were as follows: 30 min at 48° C, 10 min at 95° C, and 40 cycles of: 15 sec at 95° C, 1 min at 60° C.
To standardize results, the experiment was run as a relative quantitation assay, incorporating the housekeeping glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcript, which used a JOE reporter dye (Taqman GAPDH Control Reagents, Applied Biosystems, #402869). The amplification of PRV-1 and GAPDH were performed in separate wells of the same 96-well plate using the Taqman ABI Prism 7700 (Applied Biosystems, Foster City, CA). Each sample was analyzed in triplicate for both PRV-1 and GAPDH, with RNA diluted to 50 ng in final suspensions of 50 uL. Data was collected for FAM (PRV-1) and JOE (GAPDH) during the 40 cycles. Results were analyzed with the FAM threshold at 0.2 and the JOE threshold at 0.04. The mean cycle threshold (CT) value of the triplicate PRV-1 values was calculated and then divided with the mean CT value for GAPDH, creating a PRV-1/GAPDH ratio. PRV-1 gene expression was considered elevated in the presence of a PRV-1/GAPDH ratio of 1.17 or lower.

Results and Discussion

Median ± SD and range of neutrophil PRV-1 expression values, calculated as the ratio of mean cycle of threshold (Ct) for each triplicate measurement of PRV-1 to GAPDH, are outlined in table 1. The results are also graphically presented in a figure that accompanies table 1. The current study confirms previous observations regarding the strong association between PV and neutrophil PRV-1 over-expression. The study also demonstrates, for the first time, neutrophil PRV-1 upregulation in PPMM but not in de novo MMM; suggesting a distinct biological difference between PV and MMM. In regards to de novo MMM, our results are different from those of Kralovics et al.9 who used a similar quantitative assay and found PRV-1 over-expression in 4 of 6 patients but similar to those of Teofili et al. who used a qualitative PRV-1 assay and did not detect PRV-1 mRNA in 5 patients.14 In regards to ET, our results were similar to those of Liu et al.8 who reported a neutrophil PRV-1 over-expression rate of 17% but different from those of both Kralovics et al. (67%) and Teofili et al. (100%).14
In regards to test sensitivity and specificity, as it pertains to distinguishing PV from SP, our results were different from those of Klippel et al. (100% accuracy rate)7 but similar to those of both Liu et al.8 and Kralovics et al.9. This clinically relevant discrepancy may not be attributed to methodological differences because assay performance and interpretation were similar among the 4 studies. In the current study, 20 of the 30 patients with PV were receiving active phlebotomy and 17 myelosuppressive drug therapy at the time of study tests. Among the 5 PV patients with normal PRV-1 expression, one was newly diagnosed and manifested all the features of PV (splenomegaly, decreased Epo level, thrombosis). The other 4 patients were diagnosed within 1 month to 10 years of the test date. Three patients were receiving hydroxyurea therapy for 3, 9, and 10 years, respectively, in addition to phlebotomy in two cases. None of these 5 patients was receiving interferon-α therapy, a treatment modality that has been associated with correction of PRV-1 upregulation in PV.15

Four SP patients displayed unexplained (no history of myeloid growth factor use, trauma, or surgery)6 over-expression of neutrophil PRV-1. None of these patients manifested any clinical or laboratory features of PV and bone marrow histology lacked features of a chronic myeloproliferative process in each instance. One patient was receiving testosterone treatment and another patient suffered from chronic tobacco-associated obstructive pulmonary disease. The third patient had a stable hemoglobin level of 17.4 to 18.5 g/dL over the preceding 5 years with normal Epo level. The fourth patient presented with a history of increased hemoglobin level associated with increased Epo level. This patient has now been followed for 18 months with a normal hemoglobin level. The current study suggests that PRV-1 upregulation may not be either an essential or specific component of PV, in the context of its distinction from both SP and ET. Keeping these limitations in mind, however, a carefully standardized quantitative test for measuring neutrophil mRNA should be a useful addition in the diagnostic armamentarium for PV.
Table 1. Neutrophil PRV-1 expression in healthy controls, secondary or spurious polycythemias (SP), essential thrombocytopenia (ET), polycythemia vera (PV), and myelofibrosis with myeloid metaplasia (MMM). GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

<table>
<thead>
<tr>
<th></th>
<th>controls</th>
<th>SP</th>
<th>ET</th>
<th>PV</th>
<th>MMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total = 88</td>
<td>10</td>
<td>22</td>
<td>14</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>median PRV-1/GAPDH ratio (+/- SD)</td>
<td>1.28+/-.07</td>
<td>1.23+/-.09</td>
<td>1.25+/-.16</td>
<td>1.01+/-.13</td>
<td>1.21+/-.18</td>
</tr>
<tr>
<td>Range of ratio</td>
<td>1.20-1.43</td>
<td>0.99-1.41</td>
<td>0.90-1.44</td>
<td>0.84-1.36</td>
<td>0.88-1.4</td>
</tr>
</tbody>
</table>

![Graph showing PRV-1 expression levels](image-url)
References.

5. Tefferi A, Yoon SY, Li CY. Immunohistochemical staining for megakaryocyte c-mpl may complement morphologic distinction between polycythemia vera and secondary erythrocytosis. Blood. 2000;96:771-772

Neutrophil PRV-1 expression across the chronic myeloproliferative disorders and in secondary or spurious polycythemia

Ayalew Tefferi, Terra L Lasho, Alexandra P Wolanskyj and Ruben A Mesa