ACTIVATION OF INTERLEUKIN-13 EXPRESSION IN T-CELLS FROM HTLV-1 INFECTED INDIVIDUALS AND IN CHRONICALLY INFECTED CELL LINES

Hye-Kyung Chung†, Howard A. Young2, Peter K.C.Goon3, Gisela Heidecker1, Gerald L. Princi1, Osamu Shimozato#, Graham P. Taylor4, Charles R.M. Bangham3, and David Derse1*

Basic Research Laboratory1 and Laboratory of Experimental Immunology2, NCI-Frederick, Frederick, Maryland, 21702-1201, Department of Immunology3, and Department of Genito-Urinary Medicine and Communicable Diseases, Division of Medicine4, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom

*Corresponding author. Mailing address: Basic Research Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702-1201. Phone: (301) 846-5611. Fax: (301) 846-6863. E-mail: derse@ncifcrf.gov.

†Current address: Advanced BioScience Laboratories, Inc., Kensington, Maryland 20895.

#Current address: Division of Pathology, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, CHIBA, 260-8717, Japan.

Total word count: 5258
ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) infection profoundly alters T-cell gene expression and the dysregulated synthesis of cytokines could influence the course and pathological consequences of infection. In the process of screening T-cell lines for Th1 and Th2 cytokine mRNAs, we observed that IL-13 mRNA was highly expressed in HTLV-1 infected, IL-2 dependent T-cell lines. IL-9 and interferon gamma (IFN-γ) mRNAs were also expressed at high levels in chronically infected cell lines. IL-5 mRNA was detected in 60% of the HTLV-1 infected cell lines, but mRNAs for IL-4, IL-10, IL-2, and IL-15 were either below detection limits or did not correlate with HTLV-1 infection. Transcriptional activation of the IL-13 promoter by the HTLV-1 Tax trans-regulatory protein was demonstrated in Jurkat T-cells transiently transfected with an Il-13 promoter-reporter plasmid. The clinical relevance of these observations was demonstrated by immunofluorescent staining and flow cytometry of lymphocytes obtained from HTLV-1 infected patients. These studies revealed that IL-13 production was directly related to the level of Tax expression in the infected CD4+ T-cells soon after in vitro culture. As IL-13 plays key roles in tumor immuno-surveillance, asthma, and central nervous system inflammation, it may contribute to the pathophysiology of HTLV-1 associated diseases.
INTRODUCTION

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects about 10-20 million people worldwide with endemic foci in Southern Japan, the Caribbean, Central and South Africa, and South America. Less than 5% of HTLV-1 infected individuals develop either adult T-cell leukemia (ATL) or a chronic inflammatory disease of the central nervous system termed HTLV-1 associated myelopathy / tropical spastic paraparesis (HAM/TSP). HTLV-1 also has been implicated in a broader spectrum of diseases including uveitis, infective dermatitis, polymyositis, arthropathy, and Sjögren’s syndrome1-3. HTLV-1 associated diseases may be accompanied by pulmonary disorders and immunosuppression and it is noteworthy that patients with acute ATL generally succumb to opportunistic infections4. The majority of HTLV-1 proviruses are found in CD4+ and in CD8+ T-cells 5-7 and there is a clonal expansion of HTLV-1 infected CD4+ T-cells8.

HTLV-1 infection of primary T-cells in vitro results in the infrequent establishment of chronically infected T-cell lines that continuously proliferate in the absence of antigenic stimulation, but most require IL-2 for growth9-12. A small number of HTLV-1 infected T-cell lines also have been established that do not require IL-2, but these do not closely resemble patient-derived HTLV-1 infected T-cells13. The viral trans-regulatory protein, Tax, is the primary effector of T-cell transformation. In addition to its role in activating virus transcription, Tax alters the expression or function of signal transduction proteins, cell cycle regulators and transcription factors14. Targets of the Tax protein also include cytokine promoters15-19 and dysregulation of cytokine expression in HTLV-1 infected individuals may play an important role in the course of disease.
Although expression patterns of a number of cytokines have been studied in HTLV-1 infected cells, IL-13 has not been examined in this context. Because IL-13 is a key mediator of various immune functions20-22, including the inhibition of tumor immunosurveillance23,24 and the pathophysiology of asthma25,26, we asked whether its expression is altered in HTLV-1 infected T-cells. IL-13 mRNA was expressed at high levels in ten independent, chronically infected T-cell lines, but not uninfected controls. Transient transfections of Jurkat T-cells revealed that the IL-13 promoter was transcriptionally activated by ectopic expression of the HTLV-1 Tax regulatory protein. Peripheral blood lymphocytes (PBLs) from asymptomatic HTLV-1 carriers, HAM/TSP patients, and uninfected donors were cultured ex vivo, stained with fluorescently labeled antibodies to CD4, Tax and IL-13 proteins, and analyzed by flow cytometry. IL-13 was detected only in those CD4+ T-cells that also expressed Tax protein. Indeed, there was a positive correlation between the levels of Tax expression and IL-13 synthesis. Therefore, we propose that the activation of IL-13 expression in HTLV-1 infected T-cells may contribute to the pathophysiology of HTLV-1 associated diseases.
MATERIALS AND METHODS

Cell lines: The HTLV-1 transformed (IL-2 independent) T-cell lines, MT-211, HuT-1029, C816612, and C10-MJ10 have been described elsewhere. The HTLV-1 immortalized (IL-2 dependant) T-cell lines, 1657, FS, SP, A212, and EG, were generously provided by Dr. Renu Lal (CDC, Atlanta)27. The HTLV-1 immortalized cell lines, MS-9, MS-64, MS-68, and MS-74 were established by coculture of activated human PBMCs with 293T cells transfected with the HTLV-1 provirus clone, pHTLV-X1MT28. The cell line, DCH-4, was established by transduction of activated, primary human CD4+ T-cells with a lentivirus vector encoding an HTLV-1 Tax-enhanced yellow fluorescent protein fusion. The three plasmids used to produce recombinant lentivirus included: i) a packaging plasmid, pCMV\Delta8.2; ii) a transfer vector, pHRTaxyfp; and iii) an envelop expression plasmid, pCMV-VSV-G29. Non-infected T-cell lines, Jurkat and Kit 225, served as negative controls. The cell lines, Kit225, 1657, FS, SP, A212, EG, MS-9, MS-64, MS-68, MS-74, and DCH-4 were maintained in RPMI-1640 medium supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 100 IU/mL penicillin, 100 \(\mu \)g/mL streptomycin, and 100 U/ml of recombinant human (rh) IL-2 (Roche Applied Science, Indianapolis, IN). Jurkat, MT-2, HUT102, C8166, and C10-MJ T-cell lines were maintained in complete RPMI-1640 medium without rhIL-2. Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats of leukopheresed blood from normal, healthy volunteers by Ficoll-Hypaque density centrifugation. CD4+ and CD8+ T cell subsets were isolated from PBMCs by negative-selection using magnetic beads (Stem Cell Technologies, Vancouver, BC, Canada) according to the manufacturer’s instructions. Purified CD4+ and CD8+ T-cells were activated with anti-CD3/anti-CD28 antibody coated beads (Dynal Biotech, Lake Success, NY) and maintained in RPMI-1640 complete...
medium with (rh) IL-2.

Plasmids: The HTLV-1 Tax expression plasmid, pRSTax-1C, and the luciferase reporter plasmids, pGL3-basic and pGL3-CMV, were described previously\(^30\). The lentivirus vectors were originally obtained from Didier Trono and are described elsewhere\(^31\). The human IL-13 promoter (-939 to +48) was provided by David Lewis (Stanford University School of Medicine)\(^32\) and was subcloned into the pGL3-basic reporter plasmid (Promega, Madison, WI). A series of IL-13 promoter fragments with nested 5'-deletions were constructed by PCR amplification and cloned into the pGL3-basic plasmid. These 5'-deletion constructs are designated as pD3397 (-357 to +48); pD3402 (-155 to +48); and pD3403 (-67 to +48) where the numbers in parentheses indicate the IL-13 promoter termini relative to the RNA start site.

RNA preparation and analyses: Total cellular RNAs were isolated from cell lines using Qiagen RNeasy purification kits (Qiagen, Alameda, CA). The Multiprobe RNase protection assays (RPA) were performed with 5-10 µg of total RNA according to the manufacturer’s directions (PharMingen, San Diego, CA) with the following modifications. Hybridization probes were synthesized with \(^{33}\text{P}\)-UTP (70-80 µC per reaction) utilizing the Pharmingen In Vitro Transcription kit. Following incubation, yeast tRNA and EDTA were added and products were purified on Amersham-Pharmacia G25 Microspin columns. To each sample RNA, 0.5-1.0 x 10\(^6\) cpm of probe was added in a final hybridization volume of 10-20 µl (at least 50% Pharmingen hybridization buffer). A master cocktail, containing 200 µl of Ambion RNase inactivation/precipitation reagent III (Ambion, Inc., Austin, TX), 50 µl ethanol, 5 µg yeast tRNA and 1µl Ambion GycoBlue co-precipitate was added to each RNA sample to precipitate the protected RNA. After adding the individual RNase treated samples to 250 µl of the
inactivation/precipitation cocktail, the samples were mixed well, placed at -70°C for 15 minutes, and subjected to centrifugation at 14,000 rpm for 15 min. The supernatants were decanted and the pellet was suspended in 3 µl of Pharmingen sample buffer.

Real-time RT-PCR for HTLV-1 pX-tax/rex mRNA was performed on a Prism 7700 sequence detector (Perkin Elmer/Applied Biosystems, Foster City, CA), using primers: ex2/6950, 5'-ACCAACACCATGGCCCA-3'; 3'-7170, 5'-GAGTCGAGGGATAAGGAAC-3'. The taqman probe was 5'FAM-CCTTTCATTACGACTAACTGC-TAMRA-3'. The reaction conditions were 50°C for 2 minutes, 95°C for 10 minutes to activate the DNA polymerase, then 50 cycles of 15 seconds at 94°C and 1 minute at 60°C. All reaction volumes were 25 µl, including 5 µl of cDNA template and 20 µl of master mix (Applied Biosystems), 100 ng of each primer, taqman probe, and water. Calibration curves were derived by running 10-fold serial dilutions of cDNA plasmid over the range of 2.5x10⁰ to 2.5x10⁷ copies. Cellular cDNA samples were run at several dilutions. Each assay included duplicate wells for each dilution of calibration plasmids, triplicate wells for each cellular cDNA, and controls which included non-specific plasmid DNA, TLE, and water, all in duplicate. The threshold cycle values (Ct) were used to plot the calibration curve. All standard curves had a coefficient of variation of at least 0.97. The copy numbers were normalized to the human GAPDH values measured in separate real-time PCR assays with the GAPDH kit (Perkin Elmer/Applied Biosystems) and calibration DNA standards from Serologicals Corp., (Norcross, GA). All copy numbers derived are the result of at least three determinations.

ELISA assays for secreted IL-13 protein: HTLV-1 infected T-cell lines were suspended in fresh medium at 1x10⁶ cells per ml and were cultured for 24 hr; supernatants were
then collected for cytokine ELISA assays. The assay was performed by the National Cancer Institute-Frederick core facility using IL-13 ELISA kit (R&D Systems, Minneapolis, MN).

Transfections and luciferase assays: Jurkat T-cells (1 x 10^6 cells) were transfected with 4 µg of luciferase reporter plasmid DNA and 1 µg of pRS-Tax1C or empty expression vector DNA using DMRIE-C reagent (Invitrogen, Carlsbad, CA). After 48hrs, transfected cells were harvested, washed with phosphate buffered saline (PBS), and suspended in 200 µl of lysis buffer (Promega, Madison, WI). Luciferase activities were measured with 100 µl of cell lysate in the Promega luciferase assay system according to the manufacturer's protocol.

Flow Cytometry: PBMCs were obtained from three patients with a clinical diagnosis of HAM/TSP, three asymtomatic HTLV-1 carriers, and one normal individual at St. Mary’s Hospital, London, United Kingdom. PBMCs were prepared as previously described. Briefly, PBMCs were isolated from whole blood on Histopaque-1077 (Sigma, St. Louis, MO) density gradient and washed twice with PBS. PBMCs were cultured in RPMI-1640 medium supplemented with 10 % fetal bovine serum (FBS), 2 mM glutamine, 100 IU/ml penicillin, and 100 µg/mL streptomycin. For the intracellular protein staining, PBMCs were cultured in complete medium with 20 nM Concanamycin A (Sigma) present throughout the culture period and 10 µg/ml of Brefeldin A (Sigma) for at least 4 hr prior to harvest. After harvesting, cells were fixed with 4 % paraformaldehyde in PBS (pH 7.4) for 5 minutes at 37°C. Fixed cells were washed with PBS and then suspended in PBS containing 7% normal goat serum (Sigma) (PNGS). The fixed cells were stained with phycoerythrin-cyanine 5.1 (PC5)-labeled anti-CD4 and phycoerythrin and Texas Red (ECD)-labeled anti-CD8 antibodies for 20 minutes at room temperature and then washed with PNGS. To prevent nonspecific binding, FCR-blocking reagent (human IgG from Miltenyi Biotec (Bergisch Gladbach, Germany) was used in all procedures.
Intracellular cytokine staining was performed by suspending cells in PNGS containing 0.2 % saponin (PS), followed by washing with PS. Cells were then suspended in PS containing an IgG3 anti-tax monoclonal antibody (mAb) (Lt-4) (33) or an isotype control mAb (Southern Biotechnology, Birmingham, AL) and a phycoerythrin (PE)-conjugated IL-13 mAb (BD PharMingen) or its respective isotype control mAb for 20 minutes at room temperature. Cells were washed twice with PS, stained with FITC-labeled goat F (ab’)2 anti-mouse IgG3 (Southern Biotechnology,) in PS for 20 minutes, and then washed twice with PS. Cells were suspended in 1 ml of PBS and analyzed by flow cytometry on a Coulter EpicsXL (Beckman Coulter, Brea, CA) using Coulter Expo 32 software.
RESULTS

Cytokine gene expression profiles in HTLV-1 infected cell lines

In order to identify HTLV-1 induced alterations in cytokine gene expression, we initially examined cytokine mRNA expression profiles in a panel of diverse HTLV-1 infected T-cell lines. Of the nine IL-2 dependent, HTLV-1 infected T-cell lines examined, five were CD4+ (MS-9, 1657, FS, SP, A212) and four were CD8+ (MS-68, MS-64, EG, MS-78). An additional CD4+ T-cell line was examined (DCH-4) which was immortalized by transduction with a recombinant lentivirus vector encoding a Tax-YFP fusion protein. Four IL-2 independent HTLV-1 infected T-cell lines (MT-2, HuT-102, C8166, C10-MJ) were included in the panel. Two uninfected T-cell lines (Jurkat and Kit 225) and primary activated CD4+ and CD8+ T-cells were used as controls.

Nine cytokine mRNAs (IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-14, IL-15, and IFN-γ) were analyzed with a multiprobe RNase protection assay (RPA) using total cellular RNA from each cell culture (Fig. 1). None of the cytokine mRNAs surveyed were expressed at detectable levels in the uninfected Jurkat and Kit 225 T-cell lines (Fig. 1, lanes 1 and 2). Activated CD4+ and CD8+ T-cells (lanes 3 and 4) both expressed IL-13 and IFN-γ mRNAs; CD4+ T-cells expressed IL-2 mRNA and CD-8+ T-cells expressed IL-5 mRNA at low but detectable levels.

The cytokine mRNA expression patterns among the IL-2 independent, HTLV-1 transformed T-cells (MT-2, HuT-102, C8166, and C10-MJ) were highly variable and with several exceptions, barely detectable levels of cytokine mRNAs were expressed (Fig. 1, lanes 5-8). The HuT-102 cell line (lane 6) expressed IL-15 mRNA at high levels as previously reported. In contrast to the other three cell lines, C10-MJ cells expressed IL-9 and IFN-γ
mRNAs in large amounts (lane 8). IL-13 mRNA was detected at low levels in C8166 and C10-MJ cells but not in MT-2 and HuT-102 cells.

Among the chronically infected, IL-2 dependent T-cell lines, the cytokine mRNA expression patterns were more consistent than the IL-2 independent cell lines (Fig. 1, lanes 9-18 compared to lanes 5-8). IL-13 mRNA expression was highly active in all of the IL-2 dependent, HTLV-1 infected T-cell lines compared to IL-2 independent counterparts and uninfected controls. IFN-γ mRNA was produced in all but one of the IL-2 dependent cell lines (A212) and IL-9 was strongly activated in all cell lines with the exception of MS-68. IL-5 and IL-14 mRNAs were detected in three out of six HTLV-1 infected CD4+ T-cell lines (MS-9, FS, and DCH-4) and in three out of four CD8+ cell lines (MS-68, MS-64, and EG). IL-4 mRNA expression was not activated in any of these samples, and IL-10 mRNA expression was activated only in MS-78 cells (lane 17). In general, the IL-2 dependent, HTLV-1 immortalized cell lines displayed activation of IL-13, IL-9, and IFN-γ mRNA synthesis, sometimes accompanied by activation of IL-5 expression. The cytokine expression profiles appeared to be independent of whether the infected cells were CD4+ or CD8+. The cytokine mRNA expression patterns were independent of IL-2 added to the growth medium. In particular, IL-13 mRNA expression levels were identical when HTLV-1 infected T-cell lines were grown either in the presence or in the absence of IL-2 for 16 hr (data not shown). Conversely, treatment of MT2 or HUT102 cells with IL-2 did not activate IL-13 mRNA synthesis.

Secretion of IL-13 protein in HTLV-1 infected T-cells

We next determined IL-13 protein levels in supernatants from the T-cell lines by enzyme linked immunosorbent assay (ELISA) (Fig. 2A). IL-13 protein was not detected in
supernatants from Jurkat cells but was produced at low levels from activated CD4+ T-cells. Among the HTLV-1 positive cell lines, IL-13 was not detected in MT2 and HuT-102 cell cultures. Low levels of IL-13 were detected in C8166, C10/MJ cells, and A212 cultures. All of the other HTLV-1 infected cell lines produced IL-13 at levels ranging between 4 ng/ml and 21 ng/ml. These protein levels corresponded to IL-13 mRNA band intensities in Figure 1. We also examined the levels of HTLV-1 Tax mRNA expressed in these cell lines by quantitative real-time PCR analysis (Fig. 2B). Tax mRNA was detected only in HTLV-1 infected cell lines and correlated with Tax protein levels28 (unpublished observation). In cell lines IL-13 production was activated only in Tax positive cells, but IL-13 levels were not proportional to amounts of Tax mRNA expressed. The latter may reflect the complex nature of IL-13 gene expression that may involve Tax mediated alterations of cellular transcription factor activity as well as DNA and chromatin modifications.

HTLV-1 Tax transactivates the IL-13 promoter

The ability of Tax to activate the IL-13 promoter was examined by cotransfecting Jurkat T-cells with luciferase reporter plasmids controlled by the IL-13 promoter in combination with a Tax expression plasmid (Fig.3). IL-13 reporter plasmids containing promoter sequences 357 bp (pD3397) or 155 bp (pD3402) upstream of the RNA start site were activated approximately 18-fold by Tax (Fig. 3B). The IL-13 promoter fragment in pD3403 contains only 67 bp upstream of the RNA start site and was not activated by ectopic expression of Tax (Fig. 3B). The region of the IL-13 promoter between -67 and -155 contains NFAT and GATA3 binding sites that are essential for promoter activity in activated T-cells32,35-36 and when mutated individually diminished Tax activation by approximately 60% and 80%, respectively (unpublished...
observation).

IL-13 expression in CD4+ T-cells from HTLV-1 infected individuals

We next asked whether IL-13 expression is activated in T-cells from HTLV-1 infected individuals. To this end, PBMCs were collected from one normal donor, three asymptomatic HTLV-1 carriers and three HAM/TSP patients. PBMCs were cultured for 24 hours in medium containing concanamycin A (to inhibit CTL activity) and brefeldin A (to inhibit IL-13 secretion), but without IL-2 or mitogens. Cells were then fixed and stained for cell surface markers with fluorescent dye-conjugated anti-CD4 and anti-CD8 antibodies followed by intracellular staining for Tax and IL-13. Stained cells were analyzed by four-color flow cytometry; Tax and IL-13 expression were examined in cells gated for CD4. Tax protein was not detected in the CD4+ T-cells from the HTLV-negative, healthy donor (Fig 4). In contrast, Tax protein was detected in CD4+ T-cells from both HAM/TSP patients and asymptomatic carriers. The relative number of Tax expressing CD4+ T-cells varied from 8.36% to 38.1% among the HAM/TSP patient samples and correlated with provirus load, which ranged from 2.8% to 41.4% (Table 1). Compared to the HAM/TSP samples, CD4+ T-cells from asymptomatic carriers had lower provirus loads (1.3% to 1.6%) and fewer Tax-expressing CD4+ T-cells (0.44% to 4.24%). IL-13 protein was expressed in HTLV-1 infected CD4+ T-cells from both HAM/TSP patients and asymptomatic HTLV-1 carriers (Fig. 4 and Table 1). IL-13 protein was expressed exclusively in cells that also expressed Tax; in fact, there was a direct correlation between the intensity of staining for Tax and expression of IL-13. This was most apparent in lymphocytes from the HAM/TSP patient designated TBI (Fig. 4). The IL-13 signal was observed with two different anti-IL-13 mAbs and could be blocked by addition of exogenous IL-13; no IL-13 signal was detected with a matched
isotype control mAb (data not shown).

Kinetics of Tax and IL-13 expression in ex vivo cultures of CD4+ T-cells

It has been reported previously that fresh PBMCs from HTLV-1 infected patients express very low levels of virus, but for unknown reasons virus expression becomes detectable soon after the start of in vitro culture\(^ {19} \). We exploited this phenomenon to examine the kinetics of Tax and IL-13 protein expression in PBMCs from an uninfected donor, an asymptomatic HTLV-1 carrier, and a HAM/TSP patient. Tax and IL-13 expression patterns in CD4+ T-cells were determined by intracellular staining and flow cytometry at 6, 24, or 48 hours of in vitro culture (Fig 5). The percentage of total CD4+ T cells did not vary during the time course. Neither Tax protein nor IL-13 was detected in T-cells from the normal donor at any time point. Tax expression was not detected in CD4+ T-cells from the HAM/TSP patient or the asymptomatic carrier at the start of in vitro culture (Fig. 5, 0 hr) but increased rapidly thereafter, reaching a peak at 6 hr then declined. As expected, the number of Tax-expressing cells was greater in the HAM/TSP sample compared to the asymptomatic carrier, but the expression kinetics were similar. These data are in agreement with a previous report that showed that Tax expression reached a maximum at 6-12 hours after in vitro culture and then decreased by 50% during the next 12-36 hours\(^ {19} \). IL-13 protein expression lagged behind that of Tax and reached a maximum at the 24 hour time point then decreased rapidly during the next 24 hr (Fig 5). The kinetics of IL-13 expression also indicate the specificity of the IL-13 signal, since a nonspecific signal would be observed at all time points. In summary, the number of IL-13 positive cells was proportional to Tax expression and IL-13 expression was temporally related to Tax accumulation. The time lapse between peak Tax and IL-13 accumulation could be related to the induction of cellular factors needed to
activate the IL-13 promoter.
DISCUSSION

IL-13 expression was induced in the HTLV-1 infected, CD4+ T-cells shortly after lymphocytes from infected patients were placed in culture. The percentage of cells expressing HTLV-1 Tax was proportional to provirus load, which was highest in HAM/TSP patients. IL-13 expression correlated with Tax protein levels and was not detected in uninfected cells. HTLV-1 induction of IL-13 synthesis was also observed in ten independent, chronically infected T-cell lines. This group of HTLV-1 infected cell lines included both CD4 single-positive and CD8 single-positive T-cells. Because IL-13 has been shown to elicit a variety of biological effects on lymphoid and non-lymphoid cells20, it is tempting to speculate that HTLV-1 has conscripted it to mediate functions necessary for virus propagation or for survival of the infected cell.

The overlap between HTLV-1 associated disease manifestations and the known consequences of IL-13 expression is compelling. For example, recent reports that IL-13 acts as an inhibitor of tumor immunosurveillance23,24 raises the possibility that its expression by HTLV-1 infected T-cells could influence the antiviral immune response and could underlie the immunosuppression seen in acute HTLV-1 associated disease2,4,37,38. HTLV-1 infected individuals often present with pulmonary disease4,39,40, and IL-13 is known to be a critical factor in the pathophysiology of asthma25,26. It was recently reported that IL-13 producing T-cells were elevated in the relapse phase of multiple sclerosis, a neurodegenerative disease similar to HAM/TSP41. In that study, HAM/TSP patients did not show changes in the number of IL-13 producing T-cells; but this may reflect the shorter in vitro culture period used. It seems unlikely that IL-13 is solely responsible for HTLV-1 associated diseases, but in concert with other cytokines and chemokines produced by HTLV-1 infected cells, it may be an important
contributor. The possible therapeutic application of IL-13 antagonists, in the context of HTLV-1 associated diseases, should be contemplated.

Analyses of the HTLV-1-infected patient samples and chronically infected cell lines suggested that Tax is involved in activating the IL-13 promoter. This was supported by the activation of an IL-13 promoter-reporter plasmid by ectopic expression of Tax in transiently transfected Jurkat T-cells. Although these studies revealed that the promoter-proximal region containing NFAT and GATA3 binding sites was essential for Tax trans-activation32, 35, 36, regulation of the endogenous IL-13 promoter is likely to be more complex. For example, MT2 and HuT-102 cells, which express HTLV-1 Tax, did not express IL-13. It is likely that the IL-13 promoter in MT-2 cells is silenced by DNA methylation, since the IL-13 promoter-reporter plasmid was active in transfected MT-2 cells and endogenous IL-13 mRNA synthesis was induced after treatment of the cells with 5-aza-cytidine (unpublished observation). Further analysis of the role of cellular cofactors and effects of Tax on chromatin structure and DNA methylation at the IL-13 promoter will be very informative.

Although IL-13 was induced in chronically infected cells, other Th2 cytokines were not coordinately activated. For example, mRNAs for IL-4 and IL-10 were not generally detected in cells that produced IL-13. Although the IL-5 promoter shares transcription control elements with the IL-13 promoter32, 35, 36, the former gene was activated in only 60% of the cell lines that produced IL-13. Although the IL-13 gene is located on human chromosome 5 in a cluster with IL-3, IL-4, IL-5, and GM-CSF genes, IL-4 and IL-5 were not coordinately activated by HTLV-1. IL-9 and IFN-\(\gamma\) were consistently activated in the HTLV-1 infected cell lines, in agreement with previous studies19, 42, 43. Although a number of cytokines have been reported to be activated by HTLV-1 infection or Tax expression, we observed a rather limited and specific pattern of
cytokine gene activation in HTLV-1 infected cell lines. We suggest that Tax-mediated activation of IL-13 expression is specific and biologically relevant.

IL-13 may act as an autocrine activator of leukemic cell proliferation in Hodgkin’s lymphoma, since the Reed-Sternberg cells express the IL-13 receptor and secrete IL-13 protein44-46. Although the IL-13 receptor, a heterodimer composed of IL-13Rα1 and IL-4Rα chains, is not normally expressed in T-cells47, the possibility existed that it was induced in HTLV-1 infected T-cells. RNase protection analysis revealed that the HTLV-1 infected T-cells that expressed IL-13 mRNA (Fig. 1) did not express detectable amounts of IL-13Rα1 mRNA; they did, however, express IL-4Rα mRNA (unpublished observation). It was reported that IL-13 treatment of CD4+ T-cells and T-cell lines resulted in the phosphorylation of STAT648,49. This paradoxical observation suggested that the HTLV-1 infected cell lines that produce IL-13 might exhibit constitutive STAT6 phosphorylation by an autocrine mechanism independent of IL-13Rα. We observed that STAT6 was neither constitutively activated nor was it responsive to exogenous IL-13 treatment in the HTLV-1 infected T-cell lines, MS-9 and MS-68 (unpublished observation). However, STAT6 was activated in these cells in response to IL-4 treatment. Therefore, it is unlikely that IL-13 acts as an autocrine activator of HTLV-1 infected T-cells or that IL-13 producing cells are selected during the course of establishing the chronically infected T-cell lines.

It will be of interest in the future to define the biological functions of IL-13 with respect to HTLV-1 infection and to explore the relationship between IL-13 expression and the course and severity of HTLV-1 associated diseases.
ACKNOWLEDGEMENTS

We thank the Wellcome Trust (U.K.) for support (C.R.M.B., G.P.T. AND P.K.C.G.). We would also like to thank Michael Sanford for assistance with RPAs and Richard Frederickson for graphics.

REFERENCES

Table 1. IL-13 and Tax expression in lymphocytes from HTLV-1 infected donors.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Percent of PBMC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tax<sup>a</sup></td>
<td>IL-13<sup>b</sup></td>
<td>Proviral Load<sup>c</sup></td>
</tr>
<tr>
<td>HAM/TSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW<sup>d</sup></td>
<td>8.36</td>
<td>0.76</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>TBI<sup>e</sup></td>
<td>11.8</td>
<td>3.60</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>TBL<sup>e</sup></td>
<td>36.8</td>
<td>0.30</td>
<td></td>
<td>41.4</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBI<sup>d</sup></td>
<td>0.44</td>
<td>0.18</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>HT<sup>d</sup></td>
<td>0.83</td>
<td>0.12</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>HN<sup>d</sup></td>
<td>4.24</td>
<td>0.12</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>

^aPercentage of Tax positive cells in CD4+ T lymphocytes.

^bPercentage of Tax and IL-13 positive cells in CD4+ T lymphocytes.

^cProvirus load is expressed as percent of PBMC containing HTLV-1 provirus.

^dCells were cultivated in the presence of 10 µg/ml of Brefeldin A for 6 hr.

^eCells were cultivated in the presence of 10 µg/ml of Brefeldin A for 24 hr.
FIGURE LEGENDS

Figure 1. Multiprobe RNase protection analysis of cytokine mRNAs expressed in HTLV-1 infected and uninfected T-cells. Total RNA was prepared from the cell lines shown in the right hand panel. Lanes 1-4: uninfected T-cell lines and activated CD4+ and CD8+ T-cells. Lanes 5-8: chronically infected T-cell lines that do not require IL-2 for growth. Lanes 9-17: HTLV-1 immortalized T-cell lines that require IL-2 for growth; lane 18: T-cell line immortalized with a lentivirus vector encoding a Tax-YFP fusion protein. Cell surface phenotypes of the IL-2 dependant, HTLV-1 immortalized cells were CD4+ (lanes 9-13 and 18) or CD8+ (lanes 14-17). The probes used for RNase protection are shown on the right side of the gel and protected fragments are indicated by arrows on the left side. Probes for L32 and GAPDH mRNA were included as controls for mRNA quantity and quality. The figure shows results from a typical experiment, which was performed at least three times.
IL-9
IL-13
IFN-γ
L32
GAPDH

Lane T cell lines
1 Jurkat
2 KI 223
3 Activated CD4+ T-cells
4 Activated CD8+ T-cells
5 MT-2
6 HUT 102
7 C8166
8 C10-MJ
9 MS-9
10 1657
11 FS
12 SP
13 A212
14 MS-68
15 MS-64
16 EG
17 MS-78
18 DCH-4
Figure 2. IL-13 protein secretion and Tax mRNA levels in HTLV-1 infected and uninfected T-cell lines. A) T-cells were suspended in fresh media at 1x10^6 cells per ml and incubated for 24 hr. Culture medium was then collected and IL-13 protein was quantified by ELISA. B) HTLV-1 Tax mRNA was quantified by Taqman RT-PCR analysis. Tax cDNA copy numbers are expressed as the log_{10} of the Tax cDNA copy number relative to 1x10^5 copies of GAPDH cDNA. IL-13 protein and Tax mRNA levels are the mean of at least three determinations with standard deviations of less than 10% of the mean value.
Figure 3. HTLV-1 Tax trans-activates the IL-13 promoter in transiently transfected
Jurkat T-cells. A) Luciferase reporter plasmids containing the human IL-13 promoter element extending 357 bp (pD3397), 155 bp (pD3402), or 67 bp (pD3403) upstream of the RNA start site are shown. Locations of the promoter-proximal NFAT and GATA3 sites are indicated. B) Jurkat T-cells were cotransfected with the indicated IL-13 promoter reporter plasmids and either a Tax expression plasmid (black bars) or an empty expression vector (white bars). Luciferase activity was determined in cell extracts prepared 48 hr after transfection and is expressed as the percent of the activity obtained in cells transfected with pCMV-luc. The data represent the mean of five independent transfection experiments with standard deviations indicated by error bars.
Figure 4. Activation of IL-13 synthesis in CD4+ T-cells infected with HTLV-1 in vivo.

Blood was drawn and PBMCs were prepared from 3 HAM/TSP patients, 3 asymptomatic carriers (AC), and one HTLV-1 negative donor (NC). Cells were cultured for 24 hours in medium containing brefeldin A and concanamycin A but lacking mitogens. Cells were then stained with fluorescent-tagged antibodies directed against cell surface CD4+ or intracellular IL-13 and HTLV-1 Tax proteins and analyzed by flow cytometry. Fluorescence intensities of Tax vs IL-13 are plotted for cells gated as CD4+. Neither Tax nor IL-13 signals were observed using matched isotype control antibodies. Patient designations are shown in the upper right corner of each quadrant.
Figure 5. Kinetics of IL-13 and Tax expression during in vitro culture of PBMCs from HTLV-1 infected individuals. PBMCs prepared from a HAM/TSP patient (TW; top), an HTLV-1 positive asymptomatic carrier (HT; middle), and an HTLV-1 negative normal control (NC; bottom) were stained and analyzed by flow cytometry as in Figure 4. PBMCs were stained and analyzed immediately after preparation (0 hr) or incubated in medium containing brefeldin A and concanamycin A for the time periods indicated at the top of the figure (6 hr, 24 hr, and 48 hr) prior to analysis. Fluorescence intensities of Tax (y-axis) and IL-13 (x-axis) are plotted for CD4+ T-cells.
Activation of interleukin-13 expression in T cells from HTLV-1-infected individuals and in chronically infected cell lines

Hye-Kyung Chung, Howard A Young, Peter K C Goon, Gisela Heidecker, Gerald L Princler, Osamu Shimozato, Graham P Taylor, Charles R M Bangham and David Derse