Stat5 Expression is Critical for Mast Cell Development and Survival

Christopher P. Shelburne, Margaret E. McCoy, Roland Piekorz, Veronica Sext, Kwan-Ho Roh, Sarah M. Jacobs-Helber, Sheila R. Gillespie, Daniel P. Bailey, Paria Mironsef, Meredith N. Mann, Mohit Kashyap, Harry V. Wright, Hey Jin Chong, L. Andrew Bouton, Brian Barnstein, Carlos D. Ramirez, Kevin D. Bunting, Steven Sawyer, Chris S. Lantz, and John J. Ryan

From the Departments of:

1 Biology, Virginia Commonwealth University, Richmond, Virginia, USA 23284-2012.
2 Biology, James Madison University, Harrisonburg, VA, USA 22807.
3 Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN, USA 38105.
4 Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA 23209-0613.
5 Hematopoiesis, Jerome H. Holland Laboratory for the Biomedical Sciences, Rockville, MD 20855, and The George Washington University, Washington, D.C. 20037.

Address correspondence to:
John J. Ryan, Ph.D., Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012. E-mail: jjryan@saturn.vcu.edu.
Telephone: (804) 828-0712. Fax: (804) 828-0503.

Running Foot: A Role for Stat5 in Mast Cell Development and Survival.

Word Count: 4316

Key Words: STAT, interleukin-3, stem cell factor, c-kit, apoptosis.

Abbreviations: STAT, Signal transducer and activator of transcription; BMMC, bone marrow-derived mast cell.

This work was supported in part by generous grants to the Ryan lab from The American Cancer Society (IN-105), the Thomas F. Jeffress and Kate Miller Jeffress Memorial Trust (J-457), the Horsley Cancer Research Fund, the National Institute of Allergy and Infectious Diseases (1R01-AI43433) and the National Cancer Institute (1R01-CA91839).
Abstract

Interleukin-3 (IL-3) and stem cell factor (SCF) are important mast cell growth and differentiation factors. Since both cytokines activate the transcription factor Stat5, a known regulator of proliferation and survival, we investigated the effects of Stat5 deficiency on mast cell development and survival. Bone marrow-derived mast cell (BMMC) populations cultured from Stat5 A/B-deficient mice survived in IL-3+SCF, but not in either cytokine alone. These cells demonstrated reduced expression of Bcl-2, Bcl-x(L), cyclin A2, and cyclin B1, with increased apoptosis and delayed cell cycle progression during IL-3 or SCF culture. Finally, the absence of Stat5 resulted in loss of in vivo mast cell development, as judged by assessments of Stat5-deficient mice and transplantation of Stat5-deficient bone marrow cells to mast cell-deficient recipient mice. These results indicate that Stat5 A and B are critical regulators of in vitro and in vivo mast cell development and survival.
Introduction

In asthma and allergy, mast cell activation provides an environment in the connective and mucosal tissues conducive to chronic inflammation and resulting pathology (Reviewed in 1). A role for mast cell activation has also been shown in animal models of multiple sclerosis (2), rheumatoid arthritis (3) and coronary artery disease (4). However, recent data challenge the dogma of a pathological role for mast cell activation, demonstrating its importance to innate immunity (Reviewed in 5). These data make our understanding of mast cell biology more crucial than ever.

Critical aspects of mast cell biology have been brought to light through use of naturally occurring and targeted genetically-deficient rodents. Data from these studies implicated stem cell factor (SCF) and IL-3 in rodent mast cell development (reviewed in 1, 6, 7). SCF and its receptor, Kit, are essential for normal mast cell development. In contrast, Lantz and co-workers demonstrated that IL-3 is dispensable for mast cell development, but is required for normal mast cell expansion during immune responses to intestinal pathogens (8).

SCF and IL-3 induce signal transduction through several pathways, including phosphoinositol 3’-kinase (PI3-K), phospholipase C, protein kinase C, the Ras-MAP kinase (MAPK) cascade, Janus (Jak) kinases, and signal transducers and activators of transcription (Stats). The relative importance of each pathway in mast cell development, survival, and proliferation is incompletely understood. Several studies have addressed these questions through use of primary bone marrow-derived mast cell (BMMC)
populations or cell lines. The sum of these studies implicates PI3-K, Ras-MAPK, and Stat5 in IL-3- and SCF-induced survival and/or proliferation (9-12).

While SCF has been shown to activate both Stat1 and Stat5, we find that in mast cells, only Stat5 DNA binding activity is elicited by SCF. In contrast, IL-3 activates both Stat3 and Stat5 in mast cells (13, 14, 15). Given the unique role of SCF in mast cell development, and its selective activation of Stat5, we designed experiments to assess the role of Stat5 in mast cell biology. Using *in vivo* and *in vitro* approaches, we find that Stat5 expression is an essential aspect of mast cell development, survival, and proliferation. These data emphasize the importance of Stat5 in IL-3 and SCF signal transduction, especially with respect to the mast cell lineage.

Materials and Methods

Derivation of BMMC Populations – BMMC were derived from 6-12 week old C57BL/6x129 mice, (Taconic Farms, Germantown, NY), or from C57BL/6x129 STAT5-A/B +/- or -/- mice (the kind gift of James Ihle, Memphis, TN) (16). BMMC were prepared by culturing unseparated bone marrow cells at 5x10^5 cells/ml in complete RPMI supplemented with IL-3 (5ng/ml) and SCF (50ng/ml) for three weeks. Mast cell phenotype was confirmed by flow cytometry analysis with antibodies specific for Kit, IgE, CD13, FcγRII/RIII or T1/ST2, and by histochemical staining with toluidine blue at acid pH for 30 minutes. At the time of use, BMMC cultures were >99% mast cells. BMMC were maintained in culture for up to six months, but were generally used in the first three months of culture.
Cytokines, Antibodies, and Flow Cytometry – Murine IL-3 and SCF were purchased from R&D Systems (Minneapolis, MN). Fluorescein isothiocyanate (FITC)-conjugated rat anti-Kit, rat anti-CD13, rat anti-FcγRII/RIII, and mouse IgE were purchased from BD Pharmingen (San Diego, CA). FITC-labeled rat anti-mouse IgE was purchased from Southern Biotechnology (Birmingham, AL). FITC-labeled rat anti-mouse T1/ST2 was purchased from Morwell Diagnostics (Switzerland). Flow cytometry was performed using a Becton Dickinson FACScan equipped with CellQuest software (BD Pharmingen, San Jose, CA).

Apoptosis Analyses – For analysis of mast cell apoptosis, BMMC were cultured at 3x10⁵ cells/ml in the indicated cytokines and conditions. Cells were assessed for sub-diploid DNA content by propidium iodide staining after cell fixation (PI-DNA staining) as described (12). To assess cell numbers in some cultures, cells cultured under identical conditions were analyzed in triplicate by flow cytometry with automated counting for a pre-set time (45 seconds per sample, with 0.1 second resolution). Live cell counts included all cells not in the sub-diploid DNA region. Di(OC₆)₃ was purchased from Molecular Probes (Eugene, OR) and used according to the manufacturer’s specifications. CaspaTag-3 and –9 kits were purchased from Intergen (Purchase, NY).

Stat5 Transfection and Transduction – Stat5 A/B-deficient BMMC were transfected with mouse Stat5A cDNA expressed in pIRES.EGFP by electroporation at 400V, 500µF. GFP-positive cells were isolated by cell sorting after 48 hours of culture. For Stat5 transduction experiments, bone marrow cells from wild-type C57Bl/6 mice were pre-
stimulated for 2 days in DMEM/15% fetal bovine serum with recombinant murine IL-3 (20 ng/ml), recombinant human IL-6 (50 ng/ml), and recombinant mouse SCF (50 ng/ml). Cells were then transduced by co-culture on irradiated retroviral ecotropic producer cells for an additional two days in the presence of the same growth factors and polybrene (6 mg/ml). The cells were then removed and expanded in IL-3 and SCF to establish BMMC cultures. Stat5A or Stat5A Δ757 transcription from the bicistronic retroviral vectors was driven by the murine stem cell virus (MSCV) long-terminal repeat. The vectors also included an internal ribosomal entry sequence (IRES) to initiate translation of a downstream GFP gene from the same mRNA.

RNase protection assay (RPA) analysis – Total RNA harvested from 5-10x10⁶ cells was subjected to RPA analysis using the RiboQuant System (BD Pharmingen, San Diego, CA) according to the manufacturer’s specifications.

Western Blot Analysis – Whole cell lysates were prepared and analyzed as described previously (12). Anti-cyclin D3 and anti-Bcl-x were purchased from BD Transduction Laboratories (San Diego, CA). Anti-cyclin A, anti-cyclin B1, anti-bcl-2, anti-actin, and horse radish peroxidase-conjugated secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell cycle progression analysis – For bromodeoxyuridine (BrdU) measurements of cell cycle progression, BMMC were incubated without cytokines for 16 hours, then cultured as indicated for 48 hours. BMMC were then incubated with 10mM bromodeoxyuridine...
(BrdU) for 60 minutes, fixed in 70% ethanol, and subjected to PI-DNA staining and staining with FITC-anti BrdU.

Transplantation of bone marrow cells to W/W-v mice. For bone marrow transplantation studies, whole bone marrow was flushed from both hindlimbs (femur and tibia) into PBS/2% fetal bovine serum. The cells were then injected into W/W-v recipient mice at a donor to recipient ratio of 1:5.

Tissue Preparation from Stat5 A/B-deficient Mice – Mouse tissues were fixed overnight in Carnoy's fixative and embedded in paraffin. Four-micron sections were cut and processed for staining of mast cells with safranin and 1% alcian blue, pH 1.0. Some sections were similarly stained with acid toluidine blue. The number of mast cells per mm² of tissue was determined on a Macintosh computer using the public domain NIH Image program (developed at the U.S. National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/).

Cytokine Measurements from Isolated Tissues – Phosphate-buffered saline supplemented with 2% bovine serum albumin was used to flush peritoneal cavities (2ml per mouse) and to aspirate bone marrow from femurs (1ml per mouse). SCF and IL-3 concentrations in supernatants were measured using ELISA kits purchased from R&D Systems (Minneapolis, MN) and BD Pharmingen (Palo Alto, CA), respectively.
Statistical Analysis – Analyses of variance were performed at $\alpha = 0.05$ using Statmost software (DataMost, Salt Lake City, UT). Student’s T test was performed using SysStat9 software.

Results

Stat5 is essential for in vitro mast cell development. Given evidence of Stat5 involvement in IL-3 and SCF signaling, we attempted to derive BMMC populations from mice deficient in both Stat5A and Stat5B (hence referred to as Stat5-deficient). However, Stat5-deficient bone marrow cells died rapidly when cultured in WEHI-3 cell-conditioned medium, conditions that normally support BMMC (Figure 1A). Similarly, expressing a dominant negative Stat5A (Stat5A Δ757) in wild type bone marrow cells greatly decreased cell proliferation in response to IL-3+SCF, though mast cell differentiation did occur (Figures 1B, 1C).

As with the studies using Stat5A Δ757 gene transfer into wild type bone marrow cells, Stat5-deficient BMMC populations could be derived in recombinant IL-3+SCF. The resulting BMMC populations had a normal granulated mast cell morphology and expressed surface markers consistent with the mast cell lineage, including FceRI, Kit, T1/ST2, and FcyRII/RIII, at levels comparable to wild type BMMC (Figure 1D and data not shown). Like their wild type counterparts, Stat5-deficient BMMC could be stably cultured for up to 6 months in IL-3 +SCF. After deriving these BMMC cultures, we assessed their growth in IL-3 or SCF alone. Neither wild type nor Stat5-deficient BMMC could be maintained in SCF alone for long periods, as it appears to function largely as a co-mitogen for these cells (data not shown). In contrast, wild type BMMC could be
maintained for weeks in IL-3 alone, but similar cultures of Stat5-deficient BMMC could not be cultured for more than 4-7 days. Under these conditions the Stat5-deficient cells slowly lost proliferative capacity and died (Figure 1E). It appears that Stat5 is critical to the survival and expansion of developing mast cells.

Defective IL-3- and SCF-induced survival signaling in Stat5-deficient BMMC.

IL-3 and SCF are potent stimulators of mast cell survival, and prevent factor-withdrawal-induced apoptosis (reviewed in 17). Moreover, gain-of-function c-Kit mutations are frequently observed in apoptosis-resistant, factor-independent mastocytomas (18). Stat5 function has been associated with control of survival and proliferation (19-22). Since we found a defect in Stat5-deficient BMMCs when attempting to culture them for long periods, we assessed their survival more precisely using short-term survival assays.
Wild type and Stat5-deficient BMMC were cultured in IL-3, SCF, or IL-3+SCF for 48 hours, and apoptosis was assessed by the presence of sub-diploid DNA after PI-DNA staining (Figure 2). While IL-3+SCF allowed survival of both groups, cultures with single cytokines showed significantly different concentration-response curves. Calculation of half-maximal concentrations needed to prevent apoptosis revealed an approximate 80-fold difference in IL-3-induced signaling, and a 50-fold difference in SCF-induced survival signaling.

Stat5-deficient BMMC cultured in SCF or IL-3 demonstrate mitochondrial damage. The loss of survival signaling observed with Stat5-deficient BMMC was reminiscent of factor withdrawal-induced apoptosis. This process has been shown to proceed through a mitochondrial mechanism, with loss of Bcl-x(L) and Bcl-2 expression.
in some cells (23-25). We therefore assessed expression of Bcl-2 and Bcl-x(L) during culture in IL-3+SCF (positive control for survival) or in conditions where IL-3 (.02ng/ml) or SCF (10ng/ml) alone were at limiting concentrations. Using IL-3+SCF cultures as reference survival controls for each population, we found that both wild type and Stat5-deficient BMMC reduced Bcl-2 and Bcl-x(L) expression after culture in IL-3 or SCF alone, but that this reduction was more pronounced in Stat5-deficient populations (Figure 3A). Importantly, these mRNA data were matched by a total loss of detectable Bcl-2 and Bcl-x(L) protein in Stat5-deficient BMMC after 36 hours of culture in IL-3 or SCF alone, as judged by western blotting (Figure 3B).

In keeping with reduced Bcl-2 and Bcl-x(L) expression, we observed a greater loss of mitochondrial membrane potential and a greater activation of caspases –9 and –3.
over a 24-48-hour period after culturing wild type and Stat5-deficient BMMC in limiting IL-3 or SCF (Figure 4). Stat5-deficient BMMC cultures generally had twice the percentage of cells expressing active caspases-9 or –3 when cultured in IL-3 or SCF alone as did wild type cells. Collectively these data indicate that Stat5 expression is necessary for properly maintaining Bcl family gene expression and mitochondrial membrane stability.

Stat5-deficient BMMC exhibit delayed cell cycle progression and cyclin expression in response to IL-3 and SCF stimulation. To investigate the role of Stat5 in IL-3- and SCF-induced cell cycle progression, we employed dual PI-DNA and BrdU staining. BMMC were synchronized in G₀/G₁ by incubation in medium without
cytokines for 16 hours, then stimulated with high concentrations of IL-3 (5ng/ml) and/or SCF (50ng/ml), and the percentage of cells in S phase was determined over 48 hours (Figure 5A). Under these short-term incubation conditions, culture in IL-3 or SCF alone did not lead to an increase in apoptosis, as judged by sub-diploid DNA content (for example, Figure 5A, bottom).

Wild type BMMC exhibited a consistently sharp increase in S phase progression after 12-18 hours, reaching approximately 25% of the population by 36 hours in cultures containing IL-3+SCF or SCF alone. In experiments using primary BMMC from a variety of sources, we have found this to be the maximum percentage of cells able to enter S phase at any point in culture, even when the cells are synchronized prior to cytokine stimulation. Cultures containing IL-3 alone exhibited a similar profile, but peaked at
12% of the population. Surprisingly, Stat5-deficient BMMC entered S phase in all culture conditions. This S phase progression was substantially delayed, requiring 24-36 hours to occur. The delay could be noted in the time required for half-maximal entry into S phase. For example, SCF-stimulated wild type cells reached this point in approximately 18 hours, while Stat5-deficient BMMC required 33 hours.

To investigate the mechanism for this delay in cell cycle progression, we examined cyclin mRNA and protein expression. We found that cyclin D2 and D3 mRNAs were upregulated with similar time courses in wild type and Stat5-deficient BMMC (Figure 5B). Western blot studies corroborated these results, demonstrating similar cyclin D3 expression in wild type and Stat5-deficient BMMC after 36 hours of stimulation (Figure 5C).

In contrast to the cyclin D family, we observed reduced expression of downstream cyclins in Stat5-deficient BMMC cultured in IL-3 or in SCF alone, compared to wild type control cells. RPA and western blot analyses were comparable, exhibiting a striking difference in both mRNA and protein (Figures 5B and 5C). While wild type BMMC demonstrated cyclin A2 mRNA induction within 18 hours of IL-3 and/or SCF stimulation, this required 36 hours in Stat5-deficient BMMC. Moreover, western blotting of cells stimulated for 36 hours revealed expression of cyclin A protein in wild type but not Stat5-deficient BMMC stimulated with IL-3 or SCF alone. Expression of the mitotic cyclin B1 was similarly delayed at the RNA level. Western blotting of cyclin B1 protein proved less sensitive than cyclin A. Despite this reduced signal, cyclin B1 was detected in WT BMMC under all conditions tested, but not in Stat5-deficient BMMC even after co-stimulation with IL-3+SCF (Figure 5C). These data are consistent with the delay in G1-
to-S transition we observed in Stat5-deficient BMMC, since loss of cyclin A could retain cells in the G1 phase.

Stat5 deficiency prevents in vivo mast cell development. Given the defects in BMMC survival and proliferation, it seemed possible that in vivo mast cell development and survival could be compromised in the absence of Stat5. We assessed mast cell development by two methods. First, mast cell-deficient W/W-v mice were transplanted with wild type or Stat5-deficient bone marrow cells. Mast cell numbers in the peritoneal cavity were determined 12 weeks post-transplantation. While wild type bone marrow cells gave rise to 0.68% +/- 16 (SEM) mast cells, no histologically identifiable mast cells were present in mice receiving Stat5-deficient bone marrow cells (Figure 6A). The inability to detect mast cells did not appear to be due to defective granulation, since flow cytometry staining for Kit and FcεRI expression also demonstrated very few cells expressing these mast cell markers (Figure 6B). It appears that Stat5-deficient bone marrow cells are unable to repopulate the mast cell compartment of W/W-v mice.
We next assessed mast cell numbers in tissue sections from 12 week-old Stat5 A/B+/- (lacking one chromosomal copy of both Stat5A and Stat5B) or Stat5 A/B -/- littermate mice. Since mast cells are numerous in mucosal and connective tissues, we analyzed peritoneal fluid, skin, stomach, and spleen tissue by alcian blue or toluidine blue staining. Stat5-deficient mice had no detectable mast cells after staining with alcian blue or toluidine blue in any tissue (Figure 7A and Table I). As with the W/W-v transplant studies, flow cytometry analysis demonstrated that the lack of detectable mast cells was not due to changes in morphology such as loss of granule composition. In these studies, heterozygous mice averaged 1.7% IgE receptor-positive/Kit-positive mast cells, but Stat5-deficient mice were essentially devoid of such a population (0.04% +/- 0.03%,
Table I). Hence by two in vivo analyses, the absence of Stat5 appears to result in mast cell deficiency.

Although the maturation and survival defects we observed in Stat5-deficient BMMC offer the most likely explanation for the in vivo mast cell deficiency, an alternative explanation is reduced growth factor production due to loss of Stat5. We assessed this possibility by measuring IL-3 and SCF levels in bone marrow and peritoneal fluid, the tissues where all mast cells begin their development or where many reside, respectively. As shown in Table 2, IL-3 and SCF concentrations in these tissues were consistently low, well below the ng/ml concentrations used in vitro. Importantly, only one measure, reduced IL-3 levels in the peritoneal fluid of Stat5-deficient mice,
achieved statistical significance. Since IL-3-deficient mice have normal basal mast cell numbers (8), this is an unlikely explanation for the loss of mast cell development in Stat5-deficient mice.

Table I. Mast cell distribution in Stat5 A/B +/- and Stat5 A/B -/- littermates

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Stat5 +/-</th>
<th>Stat5 -/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peritoneal Fluid</td>
<td>1.71 +/- 0.42</td>
<td>0.04 +/- 0.03</td>
</tr>
<tr>
<td>Back Skin</td>
<td>22.5 +/- 4.8</td>
<td>0-</td>
</tr>
<tr>
<td>Stomach</td>
<td>13.11 +/- 1.31</td>
<td>0-</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.4 +/- 0.2</td>
<td>0-</td>
</tr>
</tbody>
</table>

Peritoneal values are expressed as percentage of the total cell population. Other numbers shown are averages and SEM values, expressed in number of mast cells/mm² tissues, from 4-10 mice each.

Table 2. IL-3 and SCF Concentrations in Stat5 +/- and Stat5 -/- Mouse Tissues

<table>
<thead>
<tr>
<th>Tissue</th>
<th>IL-3 (pg/ml) Stat5 +/-</th>
<th>Stat5 +/- (p value)</th>
<th>SCF (pg/ml) Stat5 +/-</th>
<th>SCF (pg/ml) Stat5 +/- (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marrow</td>
<td>20.0 +/- 2.8</td>
<td>14.6 +/- 3.0</td>
<td>(.245)</td>
<td>14.3 +/- 9.0</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>19.4 +/- 1.7</td>
<td>9.5 +/- 2.9</td>
<td>(.018)</td>
<td>91.3 +/- 23.5</td>
</tr>
</tbody>
</table>

| Discussion |

These results indicate that Stat5 is an essential regulator of mast cell development and survival, whose absence results in lack of tissue mast cells in vivo and altered
maturation, survival and cell cycle progression in vitro. The defect in maturation and proliferation can be overcome in vitro by co-stimulation with IL-3+SCF. The mechanism by which co-stimulation supports survival remains elusive. We suspect that synergistic induction of a survival/proliferation pathway occurs under these conditions, but have not yet identified the pathway involved. For example, preliminary studies found wild type and Stat5-deficient BMMC to be equally sensitive to the apoptotic effects of phosphatidylinositol 3-kinase inhibitors (data not shown). Despite the lack of knowledge about this pathway, the morphology and surface marker expression of Stat5-deficient BMMC indicate that combined signaling by IL-3+SCF is supporting normal mast cell differentiation without Stat5.

It is interesting to note that studies of mice lacking SCF or IL-3 production have shown distinct roles for these cytokines as mast cell growth factors. For example, Sl/Sl^d mice, lacking membrane-bound SCF, are nearly devoid of mast cells, but IL-3-deficient mice have normal mast cell development and peripheral mast cell numbers (1,8). Infection of IL-3-deficient mice with intestinal pathogens revealed that IL-3 is important in mast cell hyperplasia during the immune response (8). Consequently, it appears that SCF is essential for mast cell development and survival, while the non-redundant functions of IL-3 relate to peripheral mast cell expansion. While many other growth factors such as nerve growth factor and IL-9 have been implicated in mast cell survival (Reviewed in 1), our understanding of how these cytokines collectively regulate mast cell development in vivo is far from complete. The lack of tissue mast cells in Stat5-deficient mice would appear to indicate that the co-stimulation allowing mast cell development in vitro doesn’t exist in vivo.
Complex in vivo environments can resist interpretations inferred from reductionist in vitro assays, and the use of Stat5 by many cytokines and growth factors makes indirect effects quite possible. For example, Stat5-deficient mice have defects in peripheral T cell proliferation (21). This could cause cytokine alterations, possibly reducing mast cell numbers. However, our ELISA studies (Table 2) revealed little change in IL-3 or SCF levels when assessing Stat5-deficient mice. Additionally, athymic mice or IL-3-deficient mice have normal numbers of connective tissue mast cells (26, 8). Therefore, a peripheral T cell defect or lack of IL-3 alone is unlikely to explain the lack of mast cells we observe in Stat5-deficient mice. Further, a general loss of SCF should lead to other observable phenotypes, such as coat color defects (1), which are not found in Stat5-deficient mice. Given these findings, we believe that the lack of tissue mast cells in Stat5-deficient is not due to reduced growth factor production. Further supporting this theory, Stat5-deficient bone marrow cells failed to repopulate the mast cell lineage in W/W-v mice, whereas wild type bone marrow cells were able to do so. This experiment points to a cell-intrinsic defect in the etiology of Stat5-dependent mast cell deficiency, rather than microenvironmental conditions. Lastly, the use of Stat5A Δ757 demonstrated that inhibiting Stat5 function greatly decreases proliferation without preventing mast cell maturation. Collectively, these data argue that Stat5 activation by IL-3 and SCF is required for normal proliferative/survival signals, the absence of which dampen mast cell development sufficiently to preclude their detection in vivo.

Supporting the theory that Stat5 is important to mast cell survival signaling, we found Stat5-deficient BMMC very sensitive to growth factor withdrawal. The reduction in Bcl-2 and Bcl-x(L) expression, concomitant with mitochondrial membrane potential
dysfunction, agree with data derived from studies of IL-3 or SCF withdrawal-induced apoptosis. For example, Bojes and co-workers found that IL-3 withdrawal elicited a loss of mitochondrial potential in 32D cells, with resulting caspase-3 activation (24). Li and co-workers showed that Akt activation, which could lead to inactivation of pro-apoptotic Bad protein, prevented IL-3 withdrawal-induced apoptosis in 32D cells (27). Mekori et al. demonstrated that SCF deprivation caused a reduction of both Bcl-2 and Bcl-x(L) in human mast cells that preceded apoptosis, and that expression of these proteins was maintained in transformed, apoptotic-resistant mast cells (25). Lastly, Zhou-Li and co-workers found a correlation between increased Stat1 and Stat5 expression and survival of IL-3-deprived 32D cells (28). Collectively, these data illustrate a connection between IL-3 or SCF signaling, Stat activation and maintenance of mitochondrial membrane potential through Bcl proteins.

Importantly, our data do not show that Stat5 directly controls transcription of Bcl-2 or Bcl-x(L) in mast cells, a topic which has sparked some debate (29-32). Unfortunately, we find Stat5-deficient BMMC to be very poor transfection subjects, making reporter assay systems difficult to employ. What we can say with certainty is that Stat5-deficient mast cells are much more sensitive to IL-3 or SCF deprivation, and die coincidental with loss of mitochondrial membrane potential and caspase-9 and –3 activation. These data, coupled with reduced expression of Bcl-2/Bcl-x(L), fit the profile of the mitochondrial pathway for apoptosis that would be expected from withdrawal of IL-3 or SCF signaling. This points to Stat5 as a critical component in maintaining IL-3- and SCF-mediated survival.
Several studies have implicated Stat5 in control of cyclin D expression (21, 33-35), which could explain the delayed S phase progression of Stat5-deficient BMMC. However, our assessment of cyclin gene expression in these cultures yielded distinctly different results. These cultures, prepared in the same manner as our PI/BrdU (Figure 4) studies, made it apparent that loss of cyclin D induction does not explain the observed delay in S phase progression. The discrepancy in cyclin D induction between previous studies and our own could lie in the experimental systems employed. BMMC are primary cells at a nearly complete stage of differentiation. Previous studies of Stat5-mediated cyclin D regulation have generally employed transformed cell lines, such as CTLL2, BaF3, and F-36P-mpl (33-35). However, Moriggl and co-worker found that primary T cells lacking Stat5 also failed to induce cyclin D, as well as cyclin A proteins (21). It is possible that control of cyclin D expression is lineage-dependent, maturation-dependent, or is differentially regulated in transformed cell lines.

In place of a cyclin D defect, our RPA and western blot analyses found reduced expression of the downstream cyclins A and B. The lack of cyclin A induction was consistent with the delayed S phase transition we observed. These results indicate that Stat5 expression is required for normal cyclin A induction, but that a delayed induction is possible through a Stat5 independent pathway. This entry into S phase appeared to be at best a faltering one, since Stat5-deficient BMMC could not be maintained in IL-3 alone (Figure 1). It is interesting to note that Stat5-deficient bone marrow has been found to have a poor competitive repopulating ability in transplantation assays (36, 37), and that bone marrow populations enriched stem cells are 10-fold less responsive to IL-3+SCF stimulation than wild type cells (38). These results also fit with a defect in cell cycle
progression and/or survival. At present we do not know whether the *in vivo* loss of mast cells found in Stat5-deficient mice or in the W/W-v transplant model is due to defects in proliferation, survival, or both.

Stat5 is the most ubiquitously activated member of the Stat family, employed by the receptors for IL-2 (39, 40), IL-3 (41), IL-4 (42), IL-5 (41), IL-7 (43), IL-9 (44), IL-15 (45), GM-CSF (41, 46), EPO (47, 48), TPO (49), prolactin (50), growth hormone (51, 52), and SCF (13, 14). Collectively these receptors control almost all aspects of the immune and hematopoietic systems. Our studies show that Stat5 is a central regulator of IL-3 and SCF signaling with overt effects on mast cell biology. Its absence precludes proper control of mast cell development, survival, and proliferation such that mast cell development fails *in vivo*. It is interesting to note that the mast cell deficiency, combined with the sterility (16) and hematopoietic defects (31, 36, 38) observed in Stat5-deficient mice, give a phenotype reminiscent of mutations in the Kit (W) and SCF (Sl) loci (reviewed in 1). This makes it apparent that Stat5 is a critical component of Kit signaling. The use of Stat5 by a range of cytokines and growth factors makes understanding its biological functions important to many areas of clinical relevance, including hematopoiesis and cancer.
Acknowledgements

The authors would like to thank Lawrence B. Schwartz for thoughtful review of this manuscript.

References

Figure Legends

Figure 1. Stat5-deficiency reduces survival and proliferation of developing mast cells. (A) Wild type and Stat5-deficient bone marrow cells were cultured for the indicated times in WEHI-3CM. Live cell number and percent apoptotic cells were determined by assessing sub-diploid DNA content with PI-DNA staining, using timed flow cytometry counts. (B) Wild type bone marrow cells were infected with MSCV-based bicistronic retrovirus expressing either wild type Stat5A or Stat5A Δ757 and an IRES-translated GFP. GFP-positive cells were isolated by cell sorting and cultured in IL-3 (5ng/ml)+SCF (50ng/ml). Viable cell numbers were determined by trypan blue exclusion. * p < .05 when comparing cells expressing wild type Stat5A and Stat5 Δ757 by Student’s T test. (C) Toluidine blue staining of wild type bone marrow cells expressing either wild type Stat5A or Stat5A Δ757, after 21 days of culture in IL-3+SCF. Final magnification shown is 1000x. (D) Expression of mast cell surface antigens on wild type and Stat5-deficient BMMC populations after culture in IL-3 (5ng/ml)+SCF (50ng/ml) for 21 days. (D) Survival and proliferation of wild type and Stat5-deficient BMMC in IL-3 (5ng/ml)+SCF (50ng/ml) or in IL-3 alone (5ng/ml). Cells were cultured in the indicated conditions and fed on day 4 of culture. PI-DNA staining with timed flow cytometry counts was used to compare numbers of viable cells. * p < .05 when comparing wild type and Stat5-deficient cells under identical conditions by Student’s T test.
Figure 2. Stat5-deficient BMMC are defective in IL-3- and SCF-induced survival.

Wild type or Stat5-deficient BMMC were cultured in the indicated concentrations of IL-3 or SCF for 48 hours. Apoptosis was assessed by the presence of sub-diploid DNA after PI-DNA staining. Cells were also cultured in medium alone, or in IL-3 (5ng/ml)+SCF (50ng/ml) as death and survival controls, respectively (shown on the right of the graph). Data shown are means and standard errors from 3-8 samples per point, taken from two of nine independent experiments. * p < .001; + p <.05 by Student’s T test or Analysis of Variance.

Figure 3. Reduced Bcl expression in Stat5-deficient BMMC. (A) Wild type or Stat5-deficient BMMC were cultured in IL-3 (0.02ng/ml) or SCF (10ng/ml) for 24 hours. Control cultures were maintained in IL-3 (5ng/ml)+SCF (50ng/ml). Total RNA was subjected to RPA analysis. For each culture, the ratio of Bcl-x(L) or Bcl-2 expression to the GAPDH and L32 loading controls was determined. These ratios were then used to determine relative changes in Bcl-x(L) or Bcl-2 expression in cultures containing IL-3 or SCF alone to the same cells cultured in IL-3+SCF. This percentage of Bcl-x(L) and Bcl-2 expression relative to IL-3+SCF is plotted in the bar graph next to the autoradiogram. These data are from one of three experiments that gave similar results. (B) Wild type and Stat5-deficient BMMC were cultured as in part (A) for 36 hours, and total cell lysates were subjected to western blot analysis for the indicated Bcl proteins. The same filter was stripped and re-probed for actin to show protein loading.
Figure 4. Loss of Stat5 accentuates mitochondrial damage and caspase activation.
(A) Wild type or Stat5-deficient BMMC were cultured in IL-3 (0.02ng/ml), in SCF
(10ng/ml), or in IL-3 (5ng/ml)+SCF (50ng/ml) for 48 hours, and assessed for changes in
mitochondrial membrane potential by Di(OC₆)₃ staining. Data shown are representative
of at least 3 wild type and Stat5-deficient populations assessed in three independent
experiments. (B) Cells were cultured as in part (A) 24 hours, and assessed for caspase-9
or caspase-3 activation. Numbers on the right of each histogram indicate means of 4
samples from one experiment. Data shown are representative of two independent
experiments.

Figure 5. Stat5-deficient (Stat5 KO) BMMC exhibit delayed cell cycle progression
and cyclin upregulation. (A) Wild type or Stat5-deficient BMMC were cultured in IL-3
(5ng/ml), SCF (50ng/ml), or IL-3+SCF for the indicated times, and assessed for S phase
progression by PI/BrdU staining. Data shown are means and standard error values from
6-9 measurements taken from 5 independent experiments. * p<.001 when comparing wild
type and Stat5-deficient cells under identical conditions. The lower panel shows a
representative PI-DNA staining profile for BMMC cultured in IL-3 alone for 48 hours.
Under these conditions, sub-diploid content (apoptotic cells) represented approximately
5% of wild type or Stat5-deficient populations. (B and C) Cells were cultured as in part
A for the indicated times (B) or for 36 hours (C). Total cellular RNA or protein was
assessed for cyclin expression by RPA analysis (B) or western blot analysis (C). Western
blots were stripped and re-probed for actin expression to show equal protein loading.
Figure 6. Stat5-deficient bone marrow fails to repopulate mast cells in W/W-v mice.

(A) Wild type or Stat5-deficient bone marrow cells were transplanted to W/W-v mice. Twelve weeks post-transplantation, peritoneal cells were harvested and stained with toluidine blue. Arrow indicates mast cell morphology, present in wild type, but not Stat5-deficient recipients. Final magnification is 200x. (B) Representative flow cytometry profiles of peritoneal cells from W/W-v mice (control) or W/W-v mice transplanted with wild type or Stat5-deficient bone marrow cells. Samples were stained for IgE receptor and Kit expression. Background staining with control antibodies averaged 0.05%.

Figure 7. Stat5-deficient mice lack detectable mast cells. (A) An example of alcian blue staining from ear skin of Stat5 A/B +/- and A/B -/- littermate animals. (B) Flow cytometry profile of Kit and FceRI expression on peritoneal cells extracted from Stat5 A/B +/- or A/B -/- littermate animals at 12 weeks of age. Background staining with control antibodies was approximately 0.05%.
Stat5 expression is critical for mast cell development and survival

Christopher P Shelburne, Margaret E McCoy, Roland Piekorz, Veronika Sexl, Kwan-Ho Roh, Sarah M Jacobs-Helber, Sheila R Gillespie, Daniel P Bailey, Paria Mirmonsef, Meredith N Mann, Mohit Kashyap, Harry V Wright, Hey Jin Chong, L Andrew Bouton, Brian Barnstein, Carlos D Ramirez, Kevin D Bunting, Stephen T Sawyer, Chris S Lantz and John J Ryan

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.