A Novel Genetic Leukocyte Adhesion Deficiency in Subsecond Triggering of Integrin Avidity by Endothelial Chemokines Results in Impaired Leukocyte Arrest on Vascular Endothelium Under Shear Flow

Running title: Genetic disorder in chemoattractant-stimulated leukocyte adhesion

Ronen Alon1, Memet Aker2, Sara Feigelson1, Maya Sokolovsky Eisenberg1, Donald E. Staunton3, Guy Cinamon1, Valentin Grabovsky1, Revital Shamri1 and Amos Etzioni4*

1 Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
2 Division of Pediatric Hemato- Oncology, Hadassah Medical Center, Jerusalem, Israel
3 ICOS Corporation, Bothell, Washington, 98021, U.S.A.
4 Department of Pediatrics, Meyer Children Hospital, Rambam Medical Center and the B. Rappaport School of Medicine, Technion, Haifa, Israel

Parts of this study were supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities and by the Minerva Foundation (to R.A.).

*Address correspondence to:
Amos Etzioni M.D.
Meyer Children Hospital, Rambam Medical Center, Haifa, Israel 31096
Tel: 972-4-854-2646, Fax: 972-4-854-2441.
Email: etzioni@rambam.health.gov.il

Total word count: 5,373
Abstract word count: 234
Abstract
Leukocyte arrest on vascular endothelium under disruptive shear flow is a multi-step process which requires in situ integrin activation on the leukocyte surface by endothelium-displayed chemoattractants, primarily chemokines. A genetic deficiency of leukocyte adhesion to endothelium associated with defective β2 integrin expression or function (LAD-I) has been described. We now report a novel severe genetic disorder in this multi-step process associated with functional defects in multiple leukocyte integrins, reflected in recurrent infections, profound leukocytosis and a bleeding tendency. This syndrome is associated in an impaired ability of neutrophil and lymphocyte β1 and β2 integrins to generate high avidity to their endothelial ligands and arrest cells on vascular endothelium in response to endothelial chemoattractant signals. Patient leukocytes roll normally on endothelial selectins, express intact integrins and G-protein coupled chemokine receptors (GPCR), spread on integrin ligands and migrate normally along a chemotactic gradient. Activation of β2 integrins in response to GPCR signals and intrinsic soluble ligand binding properties of the VLA-4 integrin are also retained in patient leukocytes. Nevertheless, all integrins fail to generate firm adhesion to immobilized ligands in response to in situ GPCR-mediated activation by chemokines or chemoattractants, a result of a primary defect in integrin rearrangement at ligand-bearing contacts. This syndrome is the first example of a human integrin-activation deficiency associated with defective GPCR stimulation of integrin avidity at subsecond contacts, a key step in leukocyte arrest on vascular endothelium under shear flow.

Corresponding author’s e-mail: etzioni@rambam.health.gov.il
Introduction

Circulating leukocytes must rapidly translate specific adhesive and stimulatory signals into firm adhesion to the endothelial lining of specific sites of inflammation or antigen presentation, in order to extravasate the bloodstream at these sites (1). Leukocyte arrest at target endothelial sites is nearly exclusively mediated by integrin receptors, expressed on all circulating hematopoietic cells (2). Circulating leukocytes maintain their integrins in largely nonadhesive states to avoid non-specific sticking to blood vessels. A unique feature of leukocyte integrins is that their adhesive capacity is dynamically regulated independent of their level of surface expression, in response to a variety of inside-out signaling events (3). The in situ activation of integrin avidity to endothelial ligands by endothelium-displayed activating signals serves as a key checkpoint for reversibly adhered rolling leukocytes to successfully arrest on target endothelial sites. Several recent studies indicated that activation of integrin avidity to endothelial ligands by endothelium-displayed chemoattractants (or chemokines) can take place within fractions of seconds and can promote both reversible rolling adhesions or immediate conversion of leukocyte rolling to firm arrest on vascular ligands (4, 5). Chemokine triggering of integrin avidity involves enhanced integrin clustering, alone, or with concomitant induction of high affinity recognition of ligand (5-7). Although implicating Gi protein signaling, very little is known about how chemokine activation of leukocyte-expressed chemokine receptors and their associated G-protein machinery upregulates integrin avidity to ligand at endothelial contacts.

The significance of vascular integrins and selectins in immune cell trafficking has been demonstrated by numerous studies in murine knock out models (8). Clinical verification of the role of these adhesion receptors in human leukocyte trafficking has been provided in the past two decades by the identification of two kinds of rare adhesion deficiencies. The first, LAD I, is the result of defective expression of CD18, the β2 subunit shared among the major leukocyte integrins, LFA-1, Mac-1 and P150/95 (9). A second LAD syndrome, LAD II, has been linked to defective expression of key fucosylated glycans, which comprise the carbohydrate ligands for both endothelial and leukocyte selectins (10). In addition, leukocyte adhesion deficiencies may arise from point mutations in normally expressed CD18 (11) or from impaired activation of structurally intact integrins (12, 13). We now describe a new LAD syndrome associated with recurrent infections, marked leukocytosis and a severe bleeding tendency. The patient’s leukocytes express normal integrin levels which are functionally intact in vitro in mediating adhesive tethers to respective endothelial ligands during dynamic contacts. However, LAD
neutrophils and both LAD primary lymphocytes (PBL) and Epstein-Barr virus (EBV)-transformed lymphoblasts fail to develop firm integrin-mediated adhesion to vascular endothelial surfaces or endothelial integrin ligands in response to rapid signals of surface-bound chemokines or chemoattractants. Consequently, LAD lymphocytes exhibit defective transendothelial migratory capacity triggered by an endothelial chemokine under physiological shear flow. This syndrome is a first example of a defect in the ability of vascular integrins on circulating leukocytes to rearrange with their endothelial ligands at adhesive contacts and rapidly arrest on target vascular endothelium in response to endothelial-displayed chemoattractants.

Methods

Reagents and mAbs

Recombinant soluble 7-domain human VCAM-1, sVCAM-1 (14) was the generous gift of Dr. R. Lobb (Biogen, Cambridge, MA), and was stored in PBS. Affinity purified human ICAM-1 (15) was a gift of Dr. T. Springer (Harvard U. Boston, MA). Recombinant ICAM-1-IgG1 fusion protein as well as human SDF-1α, IP-10 and IL-2 were purchased from R&D Systems (Minneapolis, MN). Recombinant Mig was from Peprotech, Inc. (Rocky Hills, NJ). Bovine serum albumin (BSA; fraction V), Ca^{2+} and Mg^{2+}-free Hank's balanced salt solution (HBSS), EGTA, HEPES, fibrinogen, and Ficoll-Hypaque 1077 were obtained from Sigma Chemical, Co. (St. Louis, MO). Human serum albumin (HSA; fraction V) and pertussis toxin were from Calbiochem (La Jolla, CA). The anti α4 integrin subunit mAb, HP1/2 (16), a gift of Dr. R. Lobb (Biogen), the anti-L-selectin DREG-200 (17), the anti β2 integrin subunit mAb, TS1.18, the anti LFA-1 (TS2.4), gifts of Dr. T. Springer (Harvard U., Boston, MA) and the β2 subunit activating mAb KIM185, a gift of Dr. I. Van Kooyk (VU Hospital, Amsterdam, the Netherlands) were all used as purified Ig. The anti Mac-1 integrin mAbs, CBRM1/2 and M1/5 (18), were used as ascites. The β2 integrin stimulatory Fab, 240Q and the Alexa-488 conjugated anti β2 integrin neoepitope 327C mAb were previously described (19). The anti-CD44 mAb was purchased from Serotec (Kidlington, Oxford, UK). The anti-CD15a (SLex) was purchased from Becton Dickenson (Woburn, Massachusetts, USA). The anti-CXCR4 mAbs 12G5 was purchased from Pharmingen (San Diego, CA). The anti-CXCR4 mAb 6H8 (20) was a gift from Dr. F. Arenzana-Seisdedos (Institute Pasteur, Paris, France). The anti-CCR7 rat mAb (3D12) was a gift of Dr. M. Lipp (Max Delbruck, Berlin, Germany).
Isolation and culture of leukocytes and preparation of lymphoblasts

Human peripheral blood lymphocytes and neutrophils were isolated from citrate-anticoagulated whole blood as described (5, 16). The isolated peripheral blood lymphocytes (PBL) were more than 90% CD3 positive and are therefore referred to as T lymphocytes. T lymphoblasts were derived from PBL by stimulation with phytohemagglutinin (0.2 µg/ml, Sigma) and IL-2 (50 U/ml, R&D), in the presence of irradiated allogeneic lymphocytes for 7 days. PBL isolated from the LAD patient and from age-matched healthy donor were transformed with EBV, and lymphoblastoid lines were derived and maintained in culture as previously described (21). Human umbilical cord endothelial cells (HUVEC) were isolated from umbilical cord veins and cultured as described (22, 23).

Fluorocytometry and confocal microscopy

Surface staining was performed and analyzed by FACScan as described (16). For analysis of neutrophil expression of the Mac-1 antigen (detected with CBRM1/2) and the Mac-1 activation neoepitope CBRM1/5, neutrophils were stimulated with agonists for 10 min at 37°C, and immediately incubated with the appropriate primary mAb for 30 min at 4°C. PE-conjugated secondary Ab staining (Jackson ImmunoResearch Labs, West Grove, PA) and FACScan analysis were performed as described above. β2 integrin activation on leukocytes was assayed by incubating intact or agonist-stimulated leukocytes with the neoepitope-specific 327C-Alexa-488 mAb (19) for 10 min at 37°C. VLA-4 distribution on paraformaldehyde fixed lymphoblasts was probed with the anti-α4 mAb HP1/2, followed by Alexa488-labeled secondary mAb (Molecular Probes Inc., Eugene, OR) as described (24). Samples were analyzed at 488 nm with a krypton/argon laser confocal microscope. Induction of ligand induced binding site (LIBS) epitopes by soluble VLA-4 ligand mimetic peptide (Bio1211), a gift of Dr. Lobb, was monitored as previously described (16).

Western blot analysis

Western blot analysis was performed with anti-phosphospecific ERK1/2 mAb, polyclonal anti ERK1/2 (both kind gifts from Dr. Rony Seger, Weizmann Institute), and anti-actin (Sigma) or with anti-phosphospecific Akt mAb (Santa Cruz) and polyclonal anti-Akt (Santa Cruz) antibodies, as described (16).
Preparation of adhesive substrates and HUVEC monolayers

Preparation of substrates for the laminar flow adhesion assays were performed as previously described (16, 25). For adhesion experiments on resting or TNFα-activated EC, primary HUVEC (passage 2 or 3) were left intact or stimulated for 18 hrs with heparin-free culture media supplemented with TNFα (2 ng/ml, 50 units/ml, R&D, Minneapolis, USA) (25).

Analysis of leukocyte tethering, accumulation and resistance to detachment

All shear flow experiments were performed at 37° C. Neutrophils or PBL were suspended in binding medium (cation-free HBSS, containing 10 mM HEPES (pH 7.4) and 2 mg/ml BSA supplemented with Ca$^{2+}$ and Mg$^{2+}$ at 1 mM each) and immediately perfused through the chamber at controlled flow rates as described (5). All cellular interactions with the adhesive substrates were determined by manually tracking the motions of individual cells along 0.9 mm field as previously described (5). Transient tether lifetime were determined at a resolution of 0.02 sec and cell displacements were determined by computerized motion analysis (26). For analysis of integrin activation by chemokines or phorbol myristate ester (PMA, 100 ng/ml) at short stationary contacts, leukocytes were perfused into the flow chamber and allowed to settle onto the substrate for 1 min. Flow was then initiated and increased step-wise every 5-s by a programmed set of flow rates. At the end of each 5-s interval increase in flow rate, the number of cells that remained bound was expressed relative to the number of cells originally settled on the substrate.

Analysis of lymphocyte migration under shear flow and shear-free conditions

Transendothelial migration assays were performed as previously described (25). Briefly, SDF-1α (100 ng/ml) in binding medium was overlaid for 5 min on TNFα-stimulated HUVEC (18 hrs, 2 ng/ml). Motion analysis was performed manually on all accumulated cells (ranging between 30 to 60 cells), from the initial site of cell tethering to the endothelial surface. Four distinct categories of interacting lymphocytes (detaching, arrested, locomoting over the EC without transmigration, or transmigrating) were defined as described (25). Chemokine-triggered PBL chemotaxis assay in Modified Boyden Chamber transwell filters was performed as described (27).
Results

Patient

A male child, product of the first pregnancy to parents of Arab ethnic origin who were first cousins, was born at term through normal vaginal delivery. At birth multiple mulberry hematomas were observed all over his body which resolved spontaneously. Initial laboratory tests showed a low hemoglobin, slightly reduced platelet count and leukocytosis (results not shown). At age of 5 days he developed periumbilical cellulitis and staphylococcal septicemia. Recovery with appropriate antibiotic therapy was slow but uneventful. The umbilical cord was shed at four weeks. During the subsequent months his clinical course was punctuated by severe mucosal bleeding that on several occasions necessitated blood transfusions and recurrent non-suppurating skin infections. During this time interval, the platelet counts rose and were maintained above 150,000. The white cell count however remained constantly elevated and ranged from 30,000 to 60,000 / mm. Platelet aggregation studies demonstrated a grossly abnormal response to agonists (Aker et al, manuscript in preparation). On several occasions life threatening hemorrhage was controlled by platelet transfusions. The incidence of infections was reduced by prophylactic antibiotic treatment but remained a significant clinical problem. At the age of 6 years he unfortunately died from disseminated fungal infection after a mismatch bone marrow transplantation. A younger brother who presented with the same clinical and hematological phenotypes at birth died at one week of age from sepsis.

Auxiliary tests demonstrated normal expression of integrins on patient’s lymphocytes and neutrophils (Figs. 1, 4, and 5) thus excluding LAD-1 syndrome. Similarly LAD-II was excluded by the normal expression of fucosylated marker CD15A comprising the sLex carbohydrate selectin ligant and normal blood group expression (table 1). Flow cytometry studies showed normal distribution of T and B subsets. Patient T cells had reduced levels of the chemokine receptor CCR7 as well as of L-selectin and CD44 (table 1). Reduced L-selectin and CCR7 were not, however, the cause of elevation in T cell activation since the fraction of effector/memory CD45RO lymphocytes was in fact reduced from 60% of the total PBL in normal donors to 30% in patient lymphocytes (table 1).

Lymphocyte recirculation through lymph nodes is necessary for maintaining their normal architecture and size (28). Consistent with defective homing of patient lymphocytes to peripheral lymph nodes, a process tightly regulated by lymphocyte L-selectin and CCR7 (29, 30), the patient had grossly reduced tonsillar tissue upon physical examination. The in vitro response of patient lymphocytes to various mitogens was, however, normal (data not shown). Furthermore,
the expression levels of the major integrins on lymphocytes and neutrophils were largely conserved in the patient cells (see below), ruling out a LAD-1 syndrome. Patient leukocytes also did not appear to have a LAD-II like fucosylation defect, since they expressed normal levels of the fucosylated marker CD15a, comprising the sLex carbohydrate selectin ligand (table 1). Consistent with normal selectin ligand activity on LAD leukocytes, in vitro analysis also confirmed normal capturing and rolling of LAD neutrophils on purified endothelial selectins under physiological shear flow (data not shown).

LAD neutrophils fail to trigger β2 integrin-mediated arrest on inflamed endothelial surfaces under flow

The preliminary results suggested that the LAD syndrome could be associated with impaired integrin avidity modulation at endothelial contact sites. To test this possibility, LAD neutrophils were perfused over a monolayer of TNF-stimulated HUVEC under physiological shear flow. This model of inflamed endothelium expresses high levels of E-selectin and multiple integrin ligands (5). Consistent with their normal expression of selectin ligands, LAD neutrophils were captured by the cytokine-activated HUVEC at comparable rates and initiated normal rolling on the endothelial monolayer (Fig. 1A). Shortly after capture on the endothelial surface, normal neutrophils spontaneously arrested on the activated endothelium, in a β2-integrin dependent manner (data not shown), a result of rapid β2 integrin-activation by apically-displayed chemoattractants, mainly PAF and IL-8 (31). Notably, however, LAD neutrophils failed to arrest and continued to roll over the cytokine-activated EC monolayer (Fig. 1A). This failure could not be explained solely by their reduced levels of the LFA-1 β2 integrin (Fig. 1B), a major player in neutrophil arrest on vascular endothelium (32), since a second endothelial-binding β2 integrin, Mac-1, was highly expressed at normal levels on the LAD neutrophils (Fig. 1B) and underwent normal surface upregulation and activation upon chemoattractant stimulation (Fig. 2A,B). Furthermore, patient leukocytes failed to arrest on PAF-presenting non-stimulated HUVEC monolayers under flow (Fig. 1C), while normal neutrophils arrested readily and rapidly on identical monolayers (Fig.1C and data not shown), a result of an in situ triggering of β2 integrin avidity to endothelial ligands by endothelial-presented PAF (33). Interestingly, both PAF and IL-8 triggered an activation Mac-1 neoepitope associated with a high affinity integrin conformation (18) to the same extent in both patient and normal neutrophils (Fig. 2B). Additionally, β2 integrins on patient leukocytes could acquire activation neoepitopes in response to neutrophil or lymphocyte stimulation by phorbol ester or by the CD18 stimulatory mAb 240Q (19) (data not
shown). Nevertheless, PAF-stimulated LAD neutrophils failed to even loosely tether to the Mac-1 ligand, fibrinogen (Fig. 2C). Thus, despite the ability of patient β2 integrins to acquire high affinity conformations in response to chemoattractants, these activated integrins were completely defective in their ability to develop firm adhesiveness to ligand at subsecond contacts under physiological flow conditions (Figs. 1A, 1C, 2B, 2C).

LAD lymphocytes exhibit impaired chemokine-triggered avidity despite normal expression and intrinsic function of integrins and chemokine receptors

Normal and patient PBL were next tested for their ability to interact with a monolayer of TNFα-stimulated HUVEC under physiological shear flow. This EC model mediates the capture and rolling of PBL through its abundant E-selectin (5, 25). In agreement with their conserved expression of selectin ligands, patient lymphocytes established normal rolling on TNFα-activated EC monolayers (Fig. 3A). Furthermore, a small fraction of both normal and patient lymphocytes spontaneously arrested on the endothelial cells, a process mediated by chemokine-independent adhesiveness of both VLA-4 and LFA-1 to endothelial VCAM-1 and ICAM-1 (5). Nevertheless, whereas the prototypic PBL chemokine, SDF-1 (CXCL12) overlaid on TNF-activated HUVEC could trigger robust integrin-dependent arrest of captured PBL on the TNFα-stimulated HUVEC monolayer, only a small subset of patient lymphocytes could arrest on the HUVEC in response to SDF-1 (Fig. 3A). SDF-1-triggered integrin-dependent lymphocyte arrest on HUVEC involves chemokine activation of Gi-protein machinery (4-6). This result therefore suggested that SDF-1-triggered integrin avidity to vascular endothelial ligands is impaired in patient lymphocytes. Patient lymphocytes had, however, normal expression levels and G-protein signaling capacity of the key SDF-1 receptor, CXCR4 (Figs. 3B,C). Similarly, T lymphoblasts generated from LAD patient or control PBL underwent normal MAP kinase activation in response to short exposure to IP-10 (Fig. 3D), a prototypic chemokine to CXCR3 expressed by activated effector lymphocytes, although this chemokine failed to stimulate VLA-4-mediated adhesion to VCAM-1 (data not shown). We could not extend this observation to other major lymphocyte chemokines such as SLC or ELC (CCL21 and 19), in light of reduced expression of their receptor CCR7 in patient PBL.

To substantiate these conclusions, we next compared both the spontaneous and SDF-1-stimulated integrin avidity developed by patient derived PBL to purified integrin ligands. Despite conserved VLA-4 expression levels (Fig. 4A) and intact spontaneous VLA-4 adhesiveness to low density VCAM-1 (Fig. 4A), SDF-1-stimulated VLA-4 avidity, generated at
subsecond contacts of PBL tethered to VCAM-1 under shear flow, was entirely abrogated in patient lymphocytes (Fig. 4A). Hence, SDF-1 did not augments VLA-4 dependent tethering to VCAM-1 in LAD PBL and had no effect on the duration of the transient tethers spontaneously generated by intact LAD PBL. A more prolonged contact of patient PBL on VCAM-1 also did not restore their defective ability to develop high avidity adhesion to VCAM-1 in response to SDF-1 stimulation, despite robust VLA-4 avidity stimulation by SDF-1 in normal lymphocytes (Fig. 4B). Patient lymphocytes also failed to develop firm LFA-1-dependent adhesion to purified ICAM-1, induced by SDF-1 (Fig. 5A), despite normal expression and spontaneous adhesiveness of their LFA-1 to high density ICAM-1 (Fig. 5A insert, Fig. 5B). Chemokine stimulation of lymphocyte LFA-1 avidity to ICAM-1 at rapid stationary contacts does not implicate intact DAG-dependent PKC (Cinamon and Alon, unpublished results). However, phorbol ester-stimulated PKC-mediated enhancement of LFA-1 avidity to ICAM-1 was reduced by about 50% in patient lymphocytes compared with control lymphocytes (Fig. 5C). Thus, in addition to a defective integrin activation by GPCR signaling, PKC-triggered activation of patient LFA-1 integrins was also partially impaired, although to a lesser extent than chemokine-triggered LFA-1-dependent adhesion (Fig. 5A). The ability of LAD PBL to spread on ICAM-1 remained, however, intact (Figs. 5B,C), suggesting normal LFA-1 outside-in signaling and downstream actin remodeling in LAD lymphocytes. Taken together, SDF-1 activation of both VLA-4 and LFA-1 avidity to ligand under dynamic conditions of shear flow was severely impaired in LAD patient lymphocytes, despite normal levels and intrinsic adhesiveness of both integrins and normal signaling capacity of the SDF-1 GPCR, CXCR4.

Transendothelial migration (TEM) of lymphocytes arrested on endothelium and subsequent chemotaxis are largely conserved in LAD cells

We have recently shown that lymphocyte TEM in the presence of physiological shear flow is promoted by apical endothelial chemokines and requires persistent integrin-mediated adhesion to the endothelial surface (25). In agreement with these results, within the fraction of LAD PBL capable of arresting on TNF-activated HUVEC presenting apical SDF-1 after prolonged rolling periods, only half successfully transmigrated the EC barrier, compared with two thirds of normal arrested lymphocytes (Fig. 6A). Reduced TEM potential of the LAD lymphocytes was mainly due to their inability to remain firmly adherent to the endothelial surface throughout the assay, rather than to defective spreading, locomotion or subsequent transmigration across the barrier (Fig. 6A).
Consistent with this conserved inherent migratory ability of the LAD lymphocytes across endothelial barriers in response to chemokine signals (Fig. 6A), the ability of LAD PBL to migrate across transwell filters towards a chemotactic gradient of SDF-1, under conditions where integrin contribution is minimized (data not shown), was only slightly reduced relative to control PBL (Fig. 6B). These results indicate that impaired integrin activation by chemokines in LAD PBL results in dramatic suppression of arrest, but a relatively small defect in the ability of stably arrested lymphocytes to transmigrate through the endothelial barrier. Thus, rapid chemokine-stimulated integrin avidity at endothelial contacts could be functionally separated from the chemokine stimulated migration and chemotaxis in the LAD lymphocytes, consistent with the conserved signaling capacity of the chemokine GPCR.

LAD VLA-4 fails to generate high avidity to ligand in response to distinct inside-out signals despite normal preexistent clustering and affinity to soluble ligand

To gain further insight into the molecular basis of this integrin activation defect, we analyzed the adhesive properties of VLA-4 (α4β1) in EBV transformed B lymphoblasts derived from the LAD patient PBL and from age-matched control lymphocytes. LAD EBV blasts expressed normal α4β1 and CXCR4 levels as well as normal basal levels of the β1 integrin activation epitope, 15/7 (34) (Fig. 7A and data not shown). Furthermore, VLA-4 on LAD blasts underwent normal induction of this epitope in the presence of increasing concentrations of the monovalent VLA-4 ligand, Bio1211 (Fig. 7A inset), suggesting that soluble ligand binding properties of VLA-4 are conserved in the LAD lymphocytes. In addition, SDF-1 did not elevate VLA-4 affinity to ligand in neither control nor LAD lymphoblasts (data not shown), as previously reported for PBL (5). Nevertheless, LAD cells demonstrated a reduced ability to arrest on VCAM-1 coimmobilized with SDF-1 under shear flow relative to control cells, a step mediated by preexistent high affinity VLA-4 subsets on tethered lymphocytes (5). SDF-1 or Mig (CXCL9)-stimulated LAD cells also developed much weaker VLA-4-dependent adhesion to VCAM-1 at 1 min stationary contacts (data not shown). However, VLA-4 on the LAD blasts efficiently responded to the chemokine signals and initiated weak rolling tethers on VCAM-1 (Fig. 7B). Furthermore, the ability of SDF-1 to trigger functional VLA-4 tethers to low density VCAM-1 in LAD blasts was indistinguishable from control cells, indicating normal subsecond GPCR signaling to integrins in LAD lymphoblasts (Fig. 7C), complementing the fully intact GPCR signaling of primary LAD T cells and T cell blasts (Fig. 3). VLA-4 was also normally distributed in largely unclustered states on LAD and control cells prior to chemokine encounter...
(Fig. 7D). Consistent with normal chemokine signaling to α4 integrins, SDF-1 co-immobilized with the α4 integrin specific mAb, HP1/2, which binds α4 integrins independent of their affinity to native ligands (16, 35), enhanced α4-dependent LAD capture to immobilized HP1/2 with comparable efficiency to control cells (Fig. 7E). This finding also suggested that the ability of VLA-4 to cluster with a high affinity binding mAb when in situ activated by a chemokine signal was not impaired in LAD lymphoblasts. In addition to a defective stimulation of VLA-4 avidity by chemokine signaling, inside-out signaling triggered by phorbol ester-activated PKC, although normal in LAD cells (Fig. 7F), failed to stimulate VLA-4 avidity to VCAM-1 in LAD lymphoblasts (Fig. 7G). These results collectively suggest that even when VLA-4 responds normally to chemokine signals and promotes transient tethers to low density VCAM-1 (Fig. 7C), both chemokine-facilitated and phorbol ester-stimulated avidity of VLA-4 to high density VCAM-1 are severely impaired in LAD lymphocytes.
Discussion

Rapid stimulation of integrin adheriveness to endothelial ligands is a hallmark of leukocyte recruitment to sites of inflammation and lymphocyte homing to lymph nodes (1, 36). Although the molecular basis of this process is still poorly understood, the ability of leukocyte integrins to upregulate their avidity has been linked to stimulatory signals transduced through specialized leukocyte GPCRs occupied by endothelial-displayed chemokines or chemoattractants at subsecond contacts (4, 5, 37). Integrin avidity is regulated by multiple cytoskeletal effectors which promote integrin affinity, clustering and post-ligand integrin anchorage to the cytoskeleton (38, 39). Thus far, no human or animal model with a specific defect in rapid GPCR-mediated integrin activation has been described. We now provide a first demonstration of a genetic defect in this key process, in which functionally intact integrins fail to undergo rapid stimulation of avidity to vascular ligand in response to a subsecond chemokine-triggered GPCR signal. This failure results in a marked leukocyte adhesion deficiency syndrome with severe clinical manifestations including profound leukocytosis and impaired leukocyte trafficking to sites of inflammation.

The two major genetic adhesion deficiencies described to date, LAD I and II, although rare, have contributed key insights into the critical role of integrin and selectin adhesion receptors in leukocyte trafficking (40). The first syndrome, LAD-I, a result of defective expression of CD18 (9, 41) has been reported in more than 200 patients with more than 20 different mutations in the CD18 encoding gene (40). In addition, two reports described patients with a moderate LAD-1 phenotype, the result of point mutations which disrupted integrin function, rather than expression (11, 42). Three additional reports with some similarities to the present LAD case demonstrated severe LAD-I like syndromes associated with normal expression of structurally intact integrins but defective activation of multiple integrin types, including platelet β3 integrin (12, 13, 19, 43). However, in none of these LAD-1 variant cases was the ability of leukocyte integrins to develop high avidity to ligands in response to rapid chemokine-stimulation signals under physiological conditions of shear flow tested. The LAD-I variant reported by Kuijpers and coworkers exhibited a major defect in the ability of β2 integrins on both neutrophils and B lymphoblasts to acquire high affinity integrin activation states (12, 19). In sharp contrast, the present LAD neutrophils and lymphocytes exhibited normal induction of multiple β2 integrin activation neoepitopes (Fig. 2 and data not shown). The presently investigated LAD syndrome was also not associated with major impairment of spontaneous β2 integrin avidity to ICAM-1 or lymphocyte spreading triggered by LFA-1 occupancy (Fig. 5B)
but rather, in a severe defect in a subsecond chemokine-triggering of integrin-mediated arrest (Fig. 5A). Furthermore, whereas artificial β2 integrin stimulation by the affinity activating mAb, KIM185 completely rescued the presently described LAD defect (data not shown), different subsets of leukocytes in these earlier reports showed impaired β2 integrin-dependent adhesion in the presence of Mn²⁺ or the KIM185 mAb (13, 43). In addition, whereas in two of these cases, LAD variant leukocytes showed defective chemotaxis (12, 13), the present LAD lymphocytes migrated normally towards SDF-1. Time lapse microscopic analysis of LAD PBL in SDF-1-containing collagen gels also revealed normal spreading and motility (data not shown). Interestingly, in one of the LAD cases, normal LFA-1-dependent lymphocyte spreading and motility was reported (43), reminiscent of the intact LFA-1-dependent T cell spreading noted here. This LAD case, reported, however, abnormally augmented constitutive clustering of both VLA-4 and LFA-1 integrins on the surface of T cells (43), contrasting the normal integrin clustering observed in the present study (Fig. 7D). In conclusion, it is likely that although these three earlier LAD cases may share with the present case some similar dysfunctions of integrin activation, they likely each represent distinct molecular defects in inside-out integrin activation. Validation of subsecond integrin activation deficiencies by chemokine signals in each one of these earlier LAD cases remains to be tested, and may reveal interesting hierarchies of integrin avidity modulation defects at rapid adhesive contacts.

The molecular defect underlying this specialized LAD phenotype i.e. functionally intact integrins that fail to undergo rapid stimulation of avidity and adhesion in response to a subsecond chemokine-triggered GPCR signal, is still obscure. Our previous findings suggested that subsecond induction of VLA-4 avidity to VCAM-1 by immobilized chemokines involves rapidly triggered, cytoskeletonally stabilized integrin clustering rather than de novo induction of high affinity (5). To analyze the molecular basis of the LAD defect in this specific integrin activation process, we took several approaches to follow the course of VLA-4 avidity stimulation by SDF-1 in control and LAD EBV lymphoblasts. At a first level we observed normal preformed integrin distribution and monovalent ligand binding properties of VLA-4 in LAD blasts (Fig. 7A,D). At the second level, we observed normal integrin clustering by cell capture to immobilized mAb specific to the VLA-4 integrin (Fig. 7E). At a third level, we observed intact chemokine-mediated VLA-4 tethering to low density VCAM-1 suggesting that intrinsic integrin response to subsecond GPCR signals is retained in this cellular system (Fig. 7C), despite defective avidity induction on high density VCAM-1 (Fig. 7B and data not shown). As we do not detect alterations in soluble ligand binding of VLA-4 by chemokine (data not shown and (5), we postulate that in
normal lymphocytes, VLA-4 molecules occupied by ligand (possibly a preexistent subset with performed high affinity state (5)) rearrange at subsecond contacts to derive high avidity binding and immediately arrest tethered lymphocytes. This chemokine-stimulated integrin rearrangement step is defective in LAD cells. In addition, distinct integrin stimulating inside-out signals, triggered by global PKC activation of PMA-treated lymphocytes also resulted in impaired integrin avidity stimulation, although these processes operate at a much slower timescale than chemokines (Figs. 5 and 7). In addition to abrogation of high avidity VLA-4 stimulation in LAD-derived EBV lymphoblasts, low avidity chemokine-stimulated VLA-4 tethers were also impaired in LAD primary T lymphocytes, suggesting that the severity of the integrin-rearrangement defect may vary between different types and activation states of leukocytes. Consistent with a severe defect in integrin avidity generation in primary LAD leukocytes, even when β2 integrins in LAD neutrophils acquired activation neoepitopes associated with high affinity ligand binding (18, 19) in response to chemoattractant stimuli, they completely failed to generate low or high avidity to ligand-containing adhesive sites in response to these stimuli (Fig. 2). Thus, LAD β2 integrins failed to generate high avidity contacts even when conformationally stimulated by GPCR signals, possibly due to failure to rearrange these stimulated integrins at sites of ligand occupancy.

Although implicating Gi protein signaling and transient in nature, very little is known about the effectors that translate subsecond chemokine-induced signals into integrin rearrangements resulting in immediate avidity upregulation (37, 44). Different cytoskeletal associations have been proposed to regulate the avidity of distinct integrins (39). For instance, inhibition of LFA-1 release from cytoskeletal constraints was suggested to perturb stimulation of avidity at subsecond contacts (6). However, release of VLA-4 from the cytoskeleton completely abrogates its ability to upregulate avidity in response to chemokine signals under shear flow (24). Notably, immediate targets for G-protein activation such as PI3K, PLC and DAG-dependent PKC, Src or focal adhesion kinases (3) were found to be dispensable for chemokine stimulation of VLA-4 avidity in T cells (Winter and Alon, unpublished results). Furthermore, although the GTPases RhoA and Rac have been suggested to play a key role in chemokine-stimulated integrin avidity (45, 46), subsecond SDF-1-stimulated VLA-4 avidity was insensitive to attenuation of chemokine-triggered Rho or Rac activation (Sokolovsky-Eisenberg, in preparation). It is therefore possible that an as yet unidentified cytoskeletal adaptor is utilized by VLA-4, LFA-1, Mac-1, and other immune cell and platelet integrins to rapidly generate high avidity at adhesive contacts in response to in situ GPCR signals. Interestingly, the patient is a child of first cousins,
most probably heterozygote carriers of the defective gene. The recessive nature of the genetic defect underlying the LAD phenotype rules out that the defect is due to a dominant suppressor abnormally expressed or functionally mutated in LAD leukocytes. Notably, partial suppression of chemokine-activation of integrin avidity was also observed in PBL derived of the patient’s parents (data not shown). This observation suggests that the LAD disorder may result of a loss or a mutation in the cytoskeletal adaptor shared by leukocyte and platelet integrins, the function of which is rescued by a normal allele in the heterozygote patients. Identification of this integrin effector will lead to a better understanding of the most upstream adhesive events, triggered by GPCR agonists at specific endothelial sites, controlling the arrest and subsequent emigration of circulating leukocytes and hematopoietic progenitors at these sites to target extravascular tissues.

Acknowledgments

The authors wish to thank Drs. R. Lobb, T. Springer, C. Beals, Y. van Kooyk and M. Lipp for gifts of reagents. We also thank Dr. Susanne Franitza for analysis of PBL motility and Dr. S. Schwarzbaum for editorial assistance. R. Alon is the Incumbent of the Tauro Career Development Chair in Biomedical Research. The human experimentation and ethics committees of the Weizmann Institute approved the use of human cells in accordance with the indicated procedures.
References

Table 1. Blood count, lymphocyte subsets, and non-integrin markers in LAD patient

<table>
<thead>
<tr>
<th></th>
<th>Patient</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell count (10^3 cells/mm^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cells</td>
<td>30-60</td>
<td>5-10</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>18-40</td>
<td>3-5</td>
</tr>
<tr>
<td>Platelets</td>
<td>60-90</td>
<td>150-200</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>9-15</td>
<td>2-5</td>
</tr>
<tr>
<td>Lymphocyte subsets (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3</td>
<td>72</td>
<td>60-85</td>
</tr>
<tr>
<td>CD45 RO</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>CD45 RA</td>
<td>71</td>
<td>51</td>
</tr>
<tr>
<td>CD4</td>
<td>41</td>
<td>24-57</td>
</tr>
<tr>
<td>CD8</td>
<td>22</td>
<td>17-35</td>
</tr>
<tr>
<td>CD16</td>
<td>7</td>
<td>4-12</td>
</tr>
<tr>
<td>CD19</td>
<td>18</td>
<td>6-15</td>
</tr>
<tr>
<td>T lymphocyte surface antigens (M.F.I.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD15a (SLe^a)</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>L-selectin</td>
<td>1,018</td>
<td>1,754</td>
</tr>
<tr>
<td>CD44</td>
<td>1,306</td>
<td>3,483</td>
</tr>
<tr>
<td>CCR7</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>CXCR4</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>
Figures and Legends

Figure 1 Firm adhesion but not capture and rolling are defective in LAD neutrophils. (A) Neutrophil accumulation and development of firm arrest on TNF-activated HUVEC under physiological shear flow. Leukocytes isolated from a healthy donor (control) or patient (LAD) were perfused for 1 min at 0.75 dyn/cm2 over the HUVEC monolayers and accumulated leukocytes were subjected to a shear stress of 5 dyn/cm2 for a 10 sec period. The number of leukocytes remaining adherent which either continued to roll on the monolayer or came to full arrest was determined. The values of adherent categories depicted in the figure correspond to fractions of the original leukocyte flux perfused in immediate contact with the endothelial layer. (B) FACS staining of LFA-1 and Mac-1 integrins on control and LAD neutrophils using the mAbs, TS2.4 (anti-αL integrin subunit) and CBRM1/2 (anti-αM integrin subunit) as primary antibodies. (C) PAF-triggered neutrophil arrest on nonactivated HUVEC. Control or LAD neutrophils were perfused at 0.75 dyn/cm2 over unstimulated HUVEC overlaid with PAF (100 nM, 5 min incubation). Arrested cells were determined as in A. Where indicated, neutrophils
were pretreated with the β2 integrin blocking mAb, TS1.18. (20 μg/ml, 5 min, 4˚C). Values in A and C are given as mean ± range of determinations in two fields of view. As transient tethers comprised less than 10% of the total cell capturing events they were not included in the analysis. Results in A-C are representative of three independent experiments.

Figure 2

Normal chemoattractant activation of Mac-1 in LAD neutrophils is insufficient to trigger adhesion to Mac-1 ligand. (A) PAF- or IL-8-triggered upregulation of Mac-1 on surface of control or LAD neutrophils. Cell surface Mac-1 on intact or agonist-treated neutrophils was assessed by FACs staining using the Mac-1 specific mAb, CBRM1/2. (B) Induction of the activation neoepitope CBRM1/5 on surface Mac-1 of intact and chemoattractant-stimulated neutrophils. In both A and B, neutrophils were stimulated with either 200 ng/ml of IL-8 or 100 nM of PAF as outlined in Methods. (C) Arrest of PAF-stimulated neutrophils on fibrinogen (coated at 10 μg/ml) under low physiological shear flow. Control or LAD neutrophils activated by PAF identically as in A and B were immediately perfused over fibrinogen at a shear stress of 0.5 dyn/cm². The number of leukocytes stably arrested on the substrate upon capture was determined. No transient tethers were observed in any of the indicated settings. Results are given as mean ± range of determinations in two fields of view. Inset: Instantaneous velocity profile (upper panel, black squares) of a PAF-stimulated control neutrophil tethered and arrested on the fibrinogen coated substrate deduced from computerized cell tracking analysis (47). Velocity profile of a resting control neutrophil (grey circles) is shown for comparison. Velocity profiles of
both PAF-stimulated and resting neutrophils from the LAD patient (lower panel, black squares and grey circles, respectively) show no velocity drops suggesting lack of transient adhesive tethers. Profiles are shown for representative neutrophils.

Figure 3 Normal GPCR signaling but defective chemokine-activated adhesion in LAD PBL.

(A) Effect of SDF-1 on normal and patient PBL rolling and arrest on TNF-activated HUVEC under physiological shear flow. Leukocytes isolated from a healthy donor (control) or patient (LAD) was perfused for 1 min at 0.75 dyn/cm² over HUVEC monolayers and the number of accumulated leukocytes which either continued to roll or came to full arrest was determined. Transient tethers comprised less than 10% of the total cell capturing events and were not included in the analysis. Results are given as mean ± range of determinations in two fields of view. (B) FACS staining of CXCR4 on control and LAD PBL with the 12G5 mAb. (C) SDF-1 stimulation (100 nM, 30 sec) of ERK1/2 phosphorylation in control or LAD PBL. Immunoblotting with anti-phosphospecific ERK1/2 (upper panel) and anti-ERK (lower panel) is depicted. Cells lysates were separated on reducing 10% SDS PAGE. Control actin immunoblots is shown in the lower panels. (D) IP-10, IL-2 and phorbol ester stimulation of Akt (Pkb) and ERK1/2 in T lymphoblasts. Blasts were stimulated with either IP-10 (100 nM, 30 sec), IL-2 (1000 u/ml, 5 min) or PMA (100 ng/ml, 2 min), before lysis. Immunoblotting with anti phosphospecific Akt or ERK1/2 (first and third rows, respectively) and anti- Akt or ERK
(second and fourth rows, respectively) is depicted. In both C and D, lysates of agonist-stimulated lymphocytes were separated on reducing 10% SDS-PAGE.

Figure 4 Defective triggering of VLA-4 avidity to VCAM-1 by chemokine in LAD PBL. (A) SDF-1 augmented VLA-4-mediated capture and arrest of control and patient PBL to purified VCAM-1 under shear flow. Frequency of PBL tethers to purified sVCAM-1 (2 µg/ml) with functional (+) or heat-inactivated (-) SDF-1 (2 µg/ml). The different tether categories were determined in two fields at 1 dyn/cm² and results are an average and range of each tether category. Mean duration of transient tethers is shown on top of bars. Inset: FACS staining of α4 integrins using the α4-subunit specific mAb HP1/2. This mAb fully blocked all PBL adhesion to the different VCAM-1/SDF-1 substrates characterized in A and B (not shown). (B) SDF-1-triggered VLA-4-mediated adhesion of PBL to VCAM-1 at rapid stationary contacts. Resistance to detachment by incremented shear forces developed by control or LAD patient PBL settled for 1 min at stasis on sVCAM-1 (2 µg/ml) coimmobilized with functional (+) or heat-inactivated (-) SDF-1 (2 µg/ml). Results are given as mean ± range of determinations in two fields of view. A representative experiment of three, is shown.
Figure 5 LAD PBL express functional LFA-1 but fail to exhibit LFA-1-dependent adhesion to ICAM-1 in response to chemokine. (A) SDF-1-triggered LFA-1-mediated adhesion of PBL to ICAM-1 at stationary contacts. Resistance to detachment by incremented shear forces developed by control or LAD patient PBL settled for 1 min at stasis on ICAM-1 coimmobilized at 0.25 µg/ml with inactivated SDF-1 (-) or intact SDF-1 (+), each at 2 µg/ml. Inset: FACS staining of LFA-1 using the αL-subunit specific mAb TS2.4. (B) Spontaneous LFA-1-mediated adhesion to high density ICAM-1 (0.75 µg/ml) developed upon 1 min static contact of control or LAD patient PBL. Level and strength of adhesion was determined by the relative resistance of the different PBL to detachment by incremented shear stresses. The fraction of adherent cells remaining bound to ICAM-1 at a shear stress of 6.25 dyn/cm² which underwent spreading on the ligand is shown in parentheses. Further details are outlined in Material and Methods. (C) PMA-triggered adhesion and resistance to detachment developed on ICAM-1-IgG (0.25 µg/ml overlaid on protein A) upon 1 min static contact of control or LAD PBL. The fraction of adherent cells which underwent spreading is shown in parentheses. Results in A-C are given as mean ± range of determinations in two fields of view and the experiment shown is representative of three independent tests.
Figure 6 Chemokine triggered transendothelial migration of patient PBL is partially defective, but chemotaxis is conserved. (A) Migration of PBL accumulated on TNF-activated HUVEC alone or overlaid with SDF-1 (100 ng/ml), subjected to physiological shear stress (5 dyn/cm²) for 20 min. The four indicated categories of lymphocytes accumulated on the HUVEC monolayer were defined as outlined in Methods. Results represent the mean ± SEM of three independent experiments. (B) SDF-1- triggered PBL chemotaxis determined in a transwell-filter assay. Control or LAD PBL were allowed to migrate towards the indicated concentrations of SDF-1 placed in the lower chamber of a BSA-coated transwell. Results are average± range of duplicate wells.
Figure 7 Chemokine-triggered adhesion strengthening of VLA-4 tethers is impaired in LAD lymphoblasts due to defective VLA-4 rearrangement inspite of conserved integrin clustering and affinity to soluble ligand (A) FACS staining of α4 integrins on control and LAD dervied EBV transformed B lymphoblasts with the α4-subunit specific mAb HP1/2.
Staining of the SDF-1 receptor CXCR4 was performed with the mAb 6H8. Inset: Induction of 15/7 LIBS epitope by soluble monovalent VLA-4 ligand (Bio1211). Dose dependent induction of the epitope by increasing concentrations of the specific ligand is depicted for LAD cells (circles, dotted line) and control cells (squares, smooth line). The 15/7 epitope staining, as detected with PE-anti mouse IgG and analyzed by FACScan, is expressed in mean fluorescence intensity units (M.F.I.). (B) Chemokine-triggered adhesion strengthening of VLA-4/VCAM-1 tethers at subsecond contacts is impaired in LAD EBV lymphoblasts. Immediate SDF-1-augmented VLA-4-mediated capture and arrest of control and patient cells on VCAM-1 under shear flow. The frequency of different types of cell tethers to purified sVCAM-1 (2 µg/ml) coimmobilized with functional (+) or heat-inactivated (-) SDF-1 (1 µg/ml) was determined as in Figure 4. Complete blocking of chemokine-triggered or spontaneous blast adhesion to VCAM-1 with α4 and β1 integrin mAbs but not with the α4β7 specific mAb suggested an exclusive role for VLA-4 in SDF-1-triggered lymphoblast tethering to VCAM-1 (not shown). (C) Chemokine-triggering of transient VLA-4-mediated tethers to low density ligand is not defective in LAD blasts. The frequency of different types of cell tethers to purified sVCAM-1 (0.5 µg/ml) coimmobilized with functional (+) or heat-inactivated (-) SDF-1 (2 µg/ml) was determined as in Figure 4. (D) VLA-4 is uniformly distributed both on normal and LAD lymphoblasts prior to contact with chemokine and ligand. Fluorescence microscopy of α4 integrins on normal and LAD EBV lymphoblasts. Fixed cells were incubated with HP1/2, stained with Alexa488-conjugated secondary Ab and analyzed by confocal microscopy as described in Material and Methods. White scale bar, 5 µm. (E) Capture of lymphoblasts on immobilized α4 specific mAb HP1/2 (0.2 µg/ml) triggered by coimmobilized SDF-1 (2 µg/ml; inactive, -; intact, +). All cell capture events resulted in immediate arrest in this experimental setting. No tethers were observed on SDF-1 alone or on control mAb anti-VCAM 1 (not shown). (F) Normal PMA stimulation (100 ng/ml, 2 min) of ERK1/2 phosphorylation in control and LAD EBV lymphoblasts. Immunoblotting with anti-phosphospecific ERK1/2 (upper panel) and anti-ERK (lower panel) is depicted. Cells lysates were separated on reducing 10% SDS PAGE. (G) Impaired PMA-triggered VLA-4-mediated adhesion of LAD-derived EBV transformed B lymphoblasts to VCAM-1 at 1 min stationary contacts. Resistance to detachment by incremented shear forces developed by cells, untreated or stimulated by PMA (100 ng/ml, 2 min), settled for 1 min at stasis on sVCAM-1 (0.5 µg/ml). Results are given as mean ± range of determinations in two fields of view. PMA failed to stimulate VLA-4 avidity at subsecond contacts of both normal
and LAD EBV lymphoblasts tethered to VCAM-1 under shear flow (not shown). Experiments depicted in B,C,E and G are each representative of three to four independent tests.
A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow

Ronen Aion, Memet Aker, Sara Feigelson, Maya Sokolovsky-Eisenberg, Donald E Staunton, Guy Cinamon, Valentin Grabovsky, Revital Shamri and Amos Etzioni