KRN5500: A Novel Therapeutic Agent With In Vitro Activity Against Human B-Cell Chronic Lymphocytic Leukemia Cells Mediates Cytotoxicity via the Intrinsic Pathway of Apoptosis.

John C. Byrd M.D.¹
David M. Lucas Ph.D. ¹
Andrew Mone M.D., PhD.¹
Joshua B. Kitner B.S.¹
Joseph J. Drabick M.D.²
Michael R. Grever M.D.¹

1. Division of Hematology-Oncology, Department of Medicine, The Ohio State University, Columbus OH
2. Division of Hematology-Oncology, Department of Medicine, Walter Reed Army Medical Center, Washington D.C.

Address Correspondence to: John C. Byrd M.D.
Division of Hematology-Oncology
Starling Loving Hall, Room 302
The Ohio State University
Columbus, OH 43210
614-293-7509
614-293-7526
byrd-3@medctr.osu.edu

This work in part supported by the National Cancer Institute (P01 CA81534-02 and CA98099), The Sidney Kimmel Cancer Research Foundation, The Leukemia and Lymphoma Society of America, and The D. Warren Brown Foundation
Abstract

Therapy of B-cell chronic lymphocytic leukemia (CLL) is currently palliative, emphasizing the need for identification of new therapies for this disease. KRN5500 is a novel agent that has a unique sensitivity pattern in the National Cancer Institute cell line screening panel suggesting a unique mechanism of action. To assess its \textit{in vitro} activity in CLL, we exposed peripheral mononuclear cells from CLL patients (n=11) to varying concentrations of this agent. Viability of the CLL cells was reduced by 50 percent (LC$_{50}$) at 4 hours, 24 hours, and 4 days at KRN5500 concentrations of 2.50 μM, 0.276 μM and 0.139 μM, respectively. KRN5500 induced cellular injury via caspase-dependent apoptosis involving the intrinsic mitochondrial (caspase-9) initiating caspase and caspase 3 effector caspase; however, expression of the anti-apoptotic mitochondrial membrane protein Bcl-2 was unaffected. These data demonstrate KRN5500 has significant \textit{in vitro} activity against human CLL cells, thus providing support for introduction of this agent into clinical trials for patients with CLL.
Introduction

B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western hemisphere. (1) Outcome for advanced stage CLL patients is poor with an expected median survival of 3 years. (2) Treatment of patients with alkylator or fludarabine therapy is not generally considered until the development of symptoms or cytopenias of advanced stage disease. (3) Neither of these therapies have been shown to be curative or to prolong survival over best supportive care interventions. Recent studies have demonstrated clinical activity with the monoclonal antibodies rituximab (4,5) and Campath-1H (6,7) in CLL. These therapies are not curative, thus supporting continued pre-clinical studies to identify new, structurally distinct agents for clinical investigation of CLL treatment.

One such agent is KRN5500, a synthetic derivative of the spicamycin class of compounds that were initially isolated from Streptomyces alanosinicus 879-MT3. The structure of this class of agents includes a variant purine nucleoside with the purine joined to a sugar unit via its amino group, forming the backbone spicamycin amino-nucleoside (SAN) joined to a glycine amino acid (SAN-gly). (8) The different spicamycin compounds vary by the composition of the fatty acid chain. (8,9) A variety of studies have demonstrated that KRN5500 is the most optimal structural analog of those examined, and that deletion of the glycine residue or the fatty acid chain greatly compromises the activity of this agent. (10-12) The fatty acid allows effective diffusion of KRN5500 into the cell where it is metabolized by a yet to be identified enzyme to the biologically active SAN-gly sub-unit. Indeed, cancer cell lines that are resistant to KRN5500 have adequate diffusion of KRN5500 into the cell but do not covert the pro-drug to the active form. (13) In the NCI in vitro drug screening, KRN5500 demonstrated variable activity, which ranged from marked sensitivity to leukemia (HL60TB), lymphoma (SR), colon (Colo 205), glioma (U251), ovarian
(OVCAR-5), and renal (786-0) carcinoma cell lines, to zero activity in seventeen cell lines at concentrations of drug exceeding 10 µM. (13) Most importantly, this pattern of cytotoxicity is unique relative to all other compounds tested by the NCI, suggesting this agent has a novel mechanism of action. (13) Several studies have demonstrated in vivo activity of KRN5500 in animals (11, 13-15) with acceptable toxicity thus prompting investigation of this novel agent in phase I clinical trials (16,17).

Extending these findings to CLL, we describe a pre-clinical evaluation of KRN5500 that suggests it has promise for future clinical trials in this disease.

Materials and Methods

Patients, Cell Separation, and Culture Conditions

Written, informed consent was obtained to procure cells from patients with previously diagnosed CLL as defined by the modified NCI criteria (18). All of the CLL patients had been without prior therapy for a minimum of two months. Clinical data provided in Table 1 includes modified Rai stage, previous treatment, presence of active disease and fludarabine response status at the time of cell acquisition. Patients were considered to have active disease if they required initiation of therapy within two months of donating cells. Criteria for being considered fludarabine refractory included lack of partial or complete response to treatment with this agent or relapse within 6 months of last fludarabine treatment. Response was judged according to the modified NCI criteria. (18)

CLL cells and normal mononuclear cells were isolated immediately following donation using ficoll density gradient centrifugation (Ficoll-Paque Plus, Pharmicia Biotech, Piscataway, NJ). Isolated mononuclear cells were incubated (37° C and 5% CO₂) in RPMI 1640 media supplemented with 10% heat inactivated FBS (HyClone Laboratories, Logan, UT), 2 mM L-glutamine
(Invitrogen, Carlsbad, CA) and penicillin (100U/ml)/streptomycin (100ug/ml) (Sigma-Aldrich, St. Louis, MO). As noted in the results section, normal B-cells and T-cells from healthy volunteers were isolated using CD19 or CD3 microbeads and MACS separation columns according to the manufacturer’s instructions (Miltenyl Biotec, Auburn, CA). The broad caspase inhibitor Z-VAD-fmk was obtained from Calbiochem, San Diego, CA. KRN5500 was obtained from the Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute.

Blood Viability and Apoptosis Assays

Viability assays of isolated mononuclear cells from CLL patients and normal B-cells and T-cells were performed utilizing the MTT assay as previously described by our group.(19) Cell death was measured relative to cells incubated in media. The annexin-V/PI assay was also performed as previously described by our group.(19) Assessment of caspase-3 activation using a phycoerythrin (PE) labelled anti-active Caspase-3 polyclonal antibody (BD Pharmingen, San Diego, CA) was performed using the manufacturers instructions. Rhodamine-123 was used to monitor the integrity of mitochondria following treatment with KRN5500. Media and KRN5500 treated cells were washed once in RPMI 1640 media and then incubated in RPMI 1640 media containing 50 ng/ml rhodamine-123 (Molecular Probes, Eugene, OR) for 30 minutes at 37°C. Stained cells were washed once in RPMI 1640 media, placed on ice, then quickly analyzed by flow cytometry. (Becton Dickinson, San Jose, CA).

Protein Extraction and Western Blot Analysis

Caspase-8, capase-9, PARP, and bcl-2 protein expression was analyzed by immunoblot after incubation either in medium or in two concentrations of KRN5500 (0.134 µM and 1.34 µM) for 24 hours. Western Blot analysis of whole cell lysates were done as previously described (19). Primary antibodies included caspase-8 (monoclonal antibody 3-1-9, BD Pharmingen, San Diego, CA),
caspase-9 (rabbit polyclonal antibody Ab-1, Oncogene Research Products, San Diego, CA), bcl-2 (Dako, San Diego CA) and PARP (monoclonal antibody C-2-10, Oncogene Research Products, San Diego, CA). Following antibody incubation, the blots were detected with chemiluminescent substrate (SuperSignal, Pierce). Gel loading equivalence was confirmed by re-probing with monoclonal anti-human GAPDH (Chemicon, Temecula, CA). Protein bands were quantified by digital analysis of the chemiluminescence signals by ChemiDoc (BioRad, Hercules, CA).

Results

KRN5500 Produces Cytotoxicity In Human CLL Cells

Peripheral mononuclear cells from eleven patients with CLL were exposed to varying (0.01, 0.033, 0.1, 0.33, 1, 3.3, 10, 33, and 100 \(\mu \text{M} \)) concentrations of KRN5500. The clinical features of these patients are summarized in Table 1. Cells were incubated as follows: 4 hours and then MTT reduction immediately assessed; 4 hours and then incubated in fresh medium without drug for a total of 92 hours; 24 hours and then MTT reduction immediately assessed; 24 hours, and then incubated in fresh medium without drug for a total of 72 hours; and finally, MTT reduction was assessed after 96 hours of continuous incubation with drug. All of the patients with CLL demonstrated \textit{in vitro} response to KRN5500, although there was significant variability in response from patient to patient as summarized in Table 1. The mean concentration of KRN5500 required to produce 50% cytotoxicity (LC\textsubscript{50}) after 4 hours of agent exposure followed by incubation in fresh medium until 96 hours was 2.5 \(\mu \text{M} \) (median 0.209; range 0.106-22.47; 95% c.i.± 3.93). In contrast, the 24 hour drug incubation followed by incubation in fresh medium until 96 hours and 96 hour continuous exposure to KRN5500 had a LC\textsubscript{50} of 0.287 \(\mu \text{M} \) (median 0.091;range 0.023-1.88; 95% c.i.± 0.329) and 0.139 \(\mu \text{M} \) (median 0.09; range 0.024-0.443; 95% c.i.± 0.0793) respectively. Examination of the sensitivity of the human CLL cells relative to the time of exposure to KRN5500
demonstrated no significant advantage to exposure beyond 4 hours for the majority of patients. However, the LC$_{50}$ concentration did decrease substantially in the three patients (1,4, and 11) with initial LC$_{50}$ values above 1.0 µM. These data suggest that the ideal time of KRN5500 administration in CLL is 4 to 24 hours.

KRN5500 Demonstrates Less Cytotoxicity to Normal T-Cells and B-Cells

Fludarabine and Campath-1H are both approved for the treatment of CLL, but produce significant cellular immune suppression. To assess the impact of KRN5500 on normal T-cells and B-cells, these were isolated from normal volunteers and incubated in KRN5500 for 4-hours followed by incubation in fresh medium until 96 hours. As shown in Figure 1a and Figure 1b, the viability of both normal T-cells and B-cells exceeded 50% of the media control in all patients at the 1 uM or less concentration. In contrast, the median LC50 for the CLL patients studied was 0.209 uM suggesting KRN5500 demonstrates some selectivity for the malignant B-cell.

Figure 1a: KRN5500 is Less Cytotoxic to Normal T-cells
Figure 1b: KRN5500 is Less Cytotoxic to Normal B-cells

KRN5500 Induces Caspase-Dependent Apoptosis in CLL Cells

In an attempt to determine if the cytotoxicity induced by KRN5500 was due to an increase in apoptosis, mononuclear cells from five CLL patients were incubated in medium alone, 0.134 \(\mu \text{M} \) or 1.34 \(\mu \text{M} \) of KRN5500 for 24 hours. At this point, cleavage of caspase-3 and Poly(ADP-ribose) polymerase (PARP), which serves as a substrate for this activated effector caspase, were assessed. Figure 2a demonstrates one such representative patient demonstrating a dose dependent increase in active 29 kd heterodimer of caspase 3 as assessed by flow cytometry at 0.134 \(\mu \text{M} \) and 1.34 \(\mu \text{M} \) concentration of KRN5500. Utilizing annexin-V/PI staining, we demonstrated similar findings at
the KRN5500 concentrations of 0.134 µM or 1.34 µM (data not shown) but that apoptosis was completely abrogated by addition of 100 µM of the pan-caspase inhibitor z-VAD-fmk (data not shown). Figure 2b demonstrates the appearance of the 85 kD cleaved product of PARP that is typically observed in the setting of caspase-mediated apoptosis. These data support the conclusion that KRN5500 is inducing cytotoxicity at least in part through the pathway of caspase-dependent apoptosis.

Figure 2a: KRN5500 Induces Caspase-3 Activation in Human CLL Cells

Figure 2b: KRN5500 Induces Cleavage of Poly(ADP-ribose) polymerase (PARP) in Human CLL Cells in vitro
KRN5500 Induces Activation of the Intrinsic Pathway of Apoptosis

Caspase-3 mediated apoptosis can occur both through activation of the tumor necrosis receptor family members via caspase-8 cleavage (extrinsic pathway) or through the mitochondria (intrinsic pathway) of apoptosis that involves activation of caspase-9. We sought to determine which pathway of apoptosis was activated by KRN5500. CLL cells from five patients were incubated with 0.134 µM or 1.34 µM KRN5500 or medium for 24 hours, and examined for processing of caspase-8 and caspase-9. Figure 3a demonstrates that KRN5500 induces processing of caspase-9, as seen by the reduction in the 46 kDa pro-form of the enzyme relative to the housekeeping protein GAPDH. We noted no significant reduction in the 58 kDa pro-form of caspase-8 in these same cells. As loss of mitochondria membrane potential heralds this occurrence, we examined this and demonstrate appropriate loss as demonstrated in Figure 4 at the time processing of the caspase-9 pro-form is noted. These data suggest KRN5500 utilizes the intrinsic pathway of apoptosis to promote cell death of CLL cells.

Bcl-2 is an anti-apoptotic protein that functions through stabilization of the mitochondrial membrane, and its increased expression has been shown to confer resistance to cytotoxic agents. Because of this, we next assessed whether Bcl-2 protein expression was affected by incubation with KRN5500. Cellular lysates from the previous experiments were subjected to immunoblotting with anti-human Bcl-2 antibodies, and protein expression was measured relative to GAPDH. As shown in Figure 3, we did not detect changes in expression of Bcl-2 protein in KRN5500 treated versus untreated cells.
Figure 3: KRN5500 Exposure to CLL cells *in vitro* Causes Caspase-Dependent Apoptosis via the Intrinsic but not the Extrinsic Pathway of Apoptosis and no Change in Bcl-2 Protein Expression
Discussion

This report represents the first pre-clinical evaluation of the novel semi-synthetic antibiotic KRN5500 in human chronic lymphocytic leukemia cells. Data derived from these studies demonstrate that KRN5500 has marked pre-clinical activity against CLL cells, requiring only a 4 to 24 hour exposure time to induce apoptosis in the majority of patients tested. A dose and time dependent increase in loss of viability was observed in the three most resistant patients from 4 to 96 hours of exposure to KRN5500, but the activity of this agent in the whole group was not significantly accentuated by more extended incubation. We also documented that at concentrations of approximately 1 µM, we can detect processing of caspase-9 but not caspase-8 pro-forms in CLL cells, as well as cleavage of the activated caspase substrate PARP. Taken together, these findings strongly support that KRN5500 exerts its cytotoxic effects via the intrinsic pathway of apoptosis.
The mechanism by which KRN5500 promotes mitochondria damage in CLL cells with subsequent activation of caspase 9 and 3 is currently unknown. Given the variable sensitivity of both normal mononuclear cell isolates and CLL, it is possible that the conversion of KRN5500 to SAN-gly is variable and possibly due to a polymorphism in the yet unidentified metabolizing enzyme. Resistance to KRN5500 does not appear to correlate with drug resistance to other types of chemotherapy, as the most resistant patients studied in this series had lower in vitro sensitivity to KRN5500. Similar findings have been noted by others with cell lines resistant to cisplatin were still quite sensitive to the effects of KRN5500.(12) Identifying the enzyme that metabolizes the pro-drug to the active form is of great interest. Once activated, KRN5500 has a variety of potential mechanisms, including both inhibition of protein synthesis and glycoprotein processing. (11, 13) Initial studies demonstrated that KRN5500 decreased protein synthesis in a variety of human tumor cell lines (11), but not in a rabbit reticulocyte system. Subsequent studies performed by Burger and colleagues (13) demonstrated that KRN5500 inhibited protein synthesis at high concentrations of drug, but also increased mannose concentration on glycoproteins at lower concentrations where growth inhibition was noted. This alteration in mannose concentration combined with the observation that lectin binding was diminished implied that KRN5500 might be acting through alteration of cell glycoprotein processing.(13) Electron microscopy of KRN5500-treated cells supported this possible mechanism of action, as cells treated with this agent had altered Golgi apparatus with dilated cisternae as compared to control cells.(13) Our data extends the cell line cytotoxicity data with KRN5550 demonstrating that it can effectively induce apoptosis in a predominately G0 arrested population of human tumor cells. This suggests that KRN5500 may have efficacy in tumors with low proliferation rates. Based upon these data, inclusion of CLL patients on these phase I studies appears warranted.
Bibliography

Table 1: Patient Characteristics and *In Vitro* Sensitivity of B-Cell Chronic Lymphocytic Leukemia Cells to KRN5500

<table>
<thead>
<tr>
<th>Pt.</th>
<th>Modified Rai Stage</th>
<th>Previous Treatment</th>
<th>4-hr LC50 KRN5500</th>
<th>24-hr LC50 KRN5500</th>
<th>96-hr LC50 KRN5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IR</td>
<td>None</td>
<td>22.46 µM</td>
<td>1.89 µM</td>
<td>0.44 µM</td>
</tr>
<tr>
<td>2</td>
<td>HR</td>
<td>C, C + Pent + Theo</td>
<td>0.21 µM</td>
<td>0.91 µM</td>
<td>0.09 µM</td>
</tr>
<tr>
<td>3</td>
<td>HR</td>
<td>Flu (Ref)</td>
<td>0.16 µM</td>
<td>0.02 µM</td>
<td>0.027 µM</td>
</tr>
<tr>
<td>4</td>
<td>HR</td>
<td>None</td>
<td>1.12 µM</td>
<td>0.22 µM</td>
<td>0.26 µM</td>
</tr>
<tr>
<td>5</td>
<td>HR</td>
<td>C + P, Flu, 2 CDA</td>
<td>0.18 µM</td>
<td>0.05 µM</td>
<td>0.05 µM</td>
</tr>
<tr>
<td>6</td>
<td>IR</td>
<td>C + P</td>
<td>0.45 µM</td>
<td>0.13 µM</td>
<td>0.123 µM</td>
</tr>
<tr>
<td>7</td>
<td>IR</td>
<td>None</td>
<td>0.94 µM</td>
<td>0.24 µM</td>
<td>0.175 µM</td>
</tr>
<tr>
<td>8</td>
<td>IR</td>
<td>None*</td>
<td>0.14 µM</td>
<td>0.05 µM</td>
<td>0.024 µM</td>
</tr>
<tr>
<td>9</td>
<td>IR</td>
<td>None*</td>
<td>0.19 µM</td>
<td>0.07 µM</td>
<td>0.052 µM</td>
</tr>
<tr>
<td>10</td>
<td>IR</td>
<td>None*</td>
<td>0.11 µM</td>
<td>0.028 µM</td>
<td>0.024 µM</td>
</tr>
<tr>
<td>11</td>
<td>IR</td>
<td>None</td>
<td>1.55 µM</td>
<td>0.36 µM</td>
<td>0.260 µM</td>
</tr>
</tbody>
</table>

Key: Pt-patient; IR-intermediate risk; HR-high risk; C-chlorambucil; P-prednisone; Flu-fludarabine; 2CDA-cladribine; P-pentostatin; T-theophylline; N/A-not applicable;

Active disease defined as required treatment within 6 months of donating cells.
Figure 1A: **KRN5550 is Less Cytotoxic Toward Normal T-Cells:** T cells were selected from normal peripheral blood mononuclear cells using CD3 MACS™ beads. 1 x 10^6 cells were incubated in each of four wells for each drug concentration. Plates were incubated for four hours, and cells were then washed and re-plated in fresh media without drug for an additional 92 hours. MTT reagent was then added, and after a further 24-hour incubation plates were processed and analyzed. Viability is expressed as percent of media control.

Figure 1B: **KRN5550 is Less Cytotoxic Toward Normal B-Cells:** B cells were selected from normal peripheral blood mononuclear cells using CD19 MACS™ beads. 1 x 10^6 cells were incubated in each of four wells for each drug concentration. Plates were incubated for four hours, and cells were then washed and re-plated in fresh media without drug for an additional 92 hours. MTT reagent was then added, and after a further 24-hour incubation plates were processed and analyzed. Viability is expressed as percent of media control.

Figure 2a: **KRN5500 Induces Caspase-3 Activation in Human CLL Cells in vitro.**

CLL cells were exposed to 24-hours of media or KRN5500 (0.134 and 1.34 µM) and then examined for the presence of the active 29 kd heterodimer of effector caspase 3. An increase in fluorescence is observed with KRN5500 exposure at 24 hours that is indicative of caspase 3 activation.

Figure 2b: **KRN5500 Induces Cleavage of Poly(ADP-ribose) polymerase (PARP) in Human CLL Cells in vitro:**

CLL cells were exposed to 24-hours of media or KRN5500 (0.134 and 1.34 µM) followed by immunoblotting for PARP. A dose
dependent increase in the cleaved p85 fragment of PARP is observed following 24 hour exposure of KRN5500.

Figure 3: **KRN5500 Exposure to CLL cells in vitro Causes Caspase-Dependent Apoptosis via the Intrinsic but not the Extrinsic Pathway of Apoptosis and no Change in Bcl-2 Expression**

A) Expression of caspase-9 zymogen protein (48Kd) in human CLL cells at 24 hours following incubation with medium or KRN5500 (0.134 or 1.34 µM) demonstrating processing of caspase-9 (and thus decrease in 45 Kd band), a finding supportive of activation of the intrinsic pathway of apoptosis.

B) Expression of caspase-8 zymogen protein (55kD) in human CLL cells at 24 hours following incubation with medium or KRN5500 (0.134 or 1.34 µM) demonstrating no processing of pro-caspase-8 (and thus no decrease in 55 Kd band), a finding supportive of KRN5500 apoptosis occurring independent of the extrinsic pathway of apoptosis.

C) Expression of the Bcl-2 protein in human CLL cells at 24 hours following incubation with KRN5500 (0.134 or 1.34 µM) demonstrating no change in bcl-2 expression following treatment with this agent.

Figure 4: **Loss of Mitochondria Integrity with KRN5500 Treatment of B-CLL cells.** After 24 hours of incubation without (A) or with (B) KRN5500, cells were incubated with 50 nM rhodamine-123 and then analyzed by flow cytometry. The rise in the lower intensity peak indicated by the arrow, with KRN5550 treatment, indicates loss of the fluorescent dye rhodamine-123 from mitochondria.
KRN5500: a novel therapeutic agent with in vitro activity against human B-cell chronic lymphocytic leukemia cells mediates cytotoxicity via the intrinsic pathway of apoptosis

John C Byrd, David M Lucas, Andrew Mone, Joshua B Kitner, Joseph J Drabick and Michael R Grever